植物生态学报 ›› 2015, Vol. 39 ›› Issue (8): 807-815.DOI: 10.17521/cjpe.2015.0077
所属专题: 生态化学计量
闫帮国1,2,3, 刘刚才2, 樊博1, 何光熊1, 史亮涛1, 李纪潮1,4, 纪中华5*()
收稿日期:
2015-03-17
接受日期:
2015-06-10
出版日期:
2015-08-01
发布日期:
2015-08-17
作者简介:
*作者简介:E-mail:
基金资助:
YAN Bang-Guo1,2,3, LIU Gang-Cai2, FAN Bo1, HE Guang-Xiong1, SHI Liang-Tao1, LI Ji-Chao1,4, JI Zhong-Hua5,*()
Received:
2015-03-17
Accepted:
2015-06-10
Online:
2015-08-01
Published:
2015-08-17
Contact:
Zhong-Hua JI
About author:
# Co-first authors
摘要:
了解植物化学计量学特征对生物量变化的响应机制对预测全球变化下植物生产力以及生态系统功能具有重要意义。为了了解干热河谷地区植物化学计量学塑性变化与植物生物量变化的关系, 该研究以当地的典型燥红土为基质, 观察水分、养分以及二者的交互作用对6种植物的生长的促进作用, 并分析这种作用与植物化学计量学特征变化的关系。研究结果显示: 水分、养分、物种及其二元交互作用对植物生长具有显著的作用。养分添加处理增加了32.55%的生物量, 高频次水分处理增加了31.35%的生物量, 水分与养分复合处理下生物量增加了110.60%。植物化学计量学特征的变化与植物生物量对处理的响应具有显著相关性。其中, 植物总体K:Ca、K:Mg、K:Mn、K:Zn、Mg:Mn的变化与植物生物量的变化呈正相关关系, 表明水分和养分处理对植物生长的促进作用影响了植物养分的平衡, 主要的变化趋势是高含量元素与低含量元素的计量比随着生物量的增加而不断增加。此外, 相对于植物生物量变化, 处理类型和物种因素对多数化学计量学特征变化无显著影响, 表明水分和养分处理对化学计量学的影响具有相同的驱动机制, 即通过生物量变化最终影响化学计量学变化。植物生物量对水分和养分的响应可对植物化学计量学特征以及生态系统功能产生深远的影响。
闫帮国, 刘刚才, 樊博, 何光熊, 史亮涛, 李纪潮, 纪中华. 干热河谷植物化学计量特征与生物量之间的关系. 植物生态学报, 2015, 39(8): 807-815. DOI: 10.17521/cjpe.2015.0077
YAN Bang-Guo,LIU Gang-Cai,FAN Bo,HE Guang-Xiong,SHI Liang-Tao,LI Ji-Chao,JI Zhong-Hua. Relationships between plant stoichiometry and biomass in an arid-hot valley, Southwest China. Chinese Journal of Plant Ecology, 2015, 39(8): 807-815. DOI: 10.17521/cjpe.2015.0077
N | W | S | N × W | N × S | W × S | N × W × S | |
---|---|---|---|---|---|---|---|
生物量 Biomass | 58.876*** | 56.373*** | 81.222*** | 10.269** | 23.014*** | 4.025* | 0.073 |
表1 养分(N)、水分(W)处理以及物种(S)因素对植物生物量的方差分析结果(F64,7值)
Table 1 Results (F64,7 values) of three-way ANOVAs on the effects of nutrient addition (N), water treatment (W), species identity (S) and their interactions on biomass
N | W | S | N × W | N × S | W × S | N × W × S | |
---|---|---|---|---|---|---|---|
生物量 Biomass | 58.876*** | 56.373*** | 81.222*** | 10.269** | 23.014*** | 4.025* | 0.073 |
图1 养分、水分处理下的植物生物量(平均值±标准误差)。Hc, 黄茅; Bp, 孔颖草; Cg, 橘草; Da, 双花草; Sb, 裂稃草; Mr, 红毛草。物种内不同字母表示处理间存在显著性差异(p < 0.05)。
Fig. 1 Response of plant biomass to nutrient and water treatments (mean ± SE). Hc, Heteropogon contortus; Bp, Bothriochloa pertusa; Cg, Cymbopogon goeringii; Da, Dichanthium annulatum; Sb, Schizachyrium brevifolium; Mr, Melinis repens. For each species different letters denote significant difference in biomass between treatments (p < 0.05).
N | P | K | Ca | Mg | Mn | Zn | |
---|---|---|---|---|---|---|---|
植物总体 Whole plant | |||||||
平均值 Mean (mg·g-1) | 9.243 | 0.718 | 10.788 | 4.621 | 1.707 | 0.144 | 0.066 |
变异系数 CV | 0.249 | 0.173 | 0.211 | 0.229 | 0.138 | 0.184 | 0.295 |
叶片 Leaf | |||||||
平均值 Mean (mg·g-1) | 13.176 | 0.885 | 13.060 | 6.567 | 2.098 | 0.130 | 0.025 |
变异系数 CV | 0.296 | 0.325 | 0.312 | 0.347 | 0.327 | 0.339 | 0.210 |
茎干 Stem | |||||||
平均值 Mean (mg·g-1) | 9.232 | 0.809 | 13.290 | 3.433 | 1.841 | 0.197 | 0.065 |
变异系数 CV | 0.481 | 0.301 | 0.270 | 0.220 | 0.188 | 0.169 | 0.345 |
根系 Root | |||||||
平均值 Mean (mg·g-1) | 5.950 | 0.451 | 5.528 | 4.636 | 1.196 | 0.091 | 0.111 |
变异系数 CV | 0.172 | 0.387 | 0.312 | 0.382 | 0.253 | 0.527 | 0.517 |
表2 植物体元素含量与变异系数
Table 2 Element concentrations in plants and their coefficients of variation (CV)
N | P | K | Ca | Mg | Mn | Zn | |
---|---|---|---|---|---|---|---|
植物总体 Whole plant | |||||||
平均值 Mean (mg·g-1) | 9.243 | 0.718 | 10.788 | 4.621 | 1.707 | 0.144 | 0.066 |
变异系数 CV | 0.249 | 0.173 | 0.211 | 0.229 | 0.138 | 0.184 | 0.295 |
叶片 Leaf | |||||||
平均值 Mean (mg·g-1) | 13.176 | 0.885 | 13.060 | 6.567 | 2.098 | 0.130 | 0.025 |
变异系数 CV | 0.296 | 0.325 | 0.312 | 0.347 | 0.327 | 0.339 | 0.210 |
茎干 Stem | |||||||
平均值 Mean (mg·g-1) | 9.232 | 0.809 | 13.290 | 3.433 | 1.841 | 0.197 | 0.065 |
变异系数 CV | 0.481 | 0.301 | 0.270 | 0.220 | 0.188 | 0.169 | 0.345 |
根系 Root | |||||||
平均值 Mean (mg·g-1) | 5.950 | 0.451 | 5.528 | 4.636 | 1.196 | 0.091 | 0.111 |
变异系数 CV | 0.172 | 0.387 | 0.312 | 0.382 | 0.253 | 0.527 | 0.517 |
图2 植物总体元素计量学特征响应指数(Rstoichiometry)与植物生物量响应指数(Rbiomass)的关系。**, p < 0.01; *, p < 0.05。N, 养分添加; W, 水分添加。
Fig. 2 Relationships between response index of whole-plant stoichiometry (Rstoichiometry) and response index of plant biomass (Rbiomass). N, nutrient addition; W, water addition. **, p < 0.01; *, p < 0.05.
Rbiomass | 元素含量响应指数 Response index of element concentration | ||||||
---|---|---|---|---|---|---|---|
RN | RP | RK | RCa | RMg | RZn | RMn | |
植物总体元素 Whole plant | -0.057 | -0.328 | 0.015 | -0.535* | -0.473* | -0.557* | -0.592** |
植物叶片元素 Leaf | -0.007 | -0.067 | 0.072 | -0.212 | -0.216 | -0.415 | -0.504* |
植物茎干元素 Stem | -0.059 | -0.180 | 0.004 | -0.206 | -0.221 | -0.461 | -0.357 |
植物根系元素 Root | 0.009 | -0.217 | -0.137 | -0.446 | -0.236 | -0.236 | -0.391 |
表3 植物元素含量响应指数(R)与植物生物量的响应指数(Rbiomass)的相关系数
Table 3 Coefficients of correlation between response index of plant element concentrations (R) and response index of plant biomass (Rbiomass)
Rbiomass | 元素含量响应指数 Response index of element concentration | ||||||
---|---|---|---|---|---|---|---|
RN | RP | RK | RCa | RMg | RZn | RMn | |
植物总体元素 Whole plant | -0.057 | -0.328 | 0.015 | -0.535* | -0.473* | -0.557* | -0.592** |
植物叶片元素 Leaf | -0.007 | -0.067 | 0.072 | -0.212 | -0.216 | -0.415 | -0.504* |
植物茎干元素 Stem | -0.059 | -0.180 | 0.004 | -0.206 | -0.221 | -0.461 | -0.357 |
植物根系元素 Root | 0.009 | -0.217 | -0.137 | -0.446 | -0.236 | -0.236 | -0.391 |
图3 植物叶片元素计量学特征响应指数(Rstoichiometry)与植物生物量响应指数(Rbiomass)的关系。N, 养分添加; W, 水分添加。
Fig. 3 Relationship between response index of leaf stoich- iometry (Rstoichiometry) and response index of plant biomass (Rstoichiometry). N, nutrient addition; W, water addition.
图4 植物根系元素计量学特征响应指数(Rstoichiometry)与植物生物量响应指数(Rbiomass)的关系。N, 养分添加; W, 水分添加。
Fig. 4 Relationship between response index of root stoich- iometry (Rstoichiometry) and response index of plant biomass (Rbiomass). N, nutrient addition; W, water addition.
图5 植物茎干元素计量学特征响应指数(Rstoichiometry)与植物生物量响应指数(Rbiomass)的关系。N, 养分添加; W, 水分添加。
Fig. 5 Relationship between response index of stem stoich- iometry (Rstoichiometry) and response index of plant biomass (Rbiomass). N, nutrient addition; W, water addition.
1 | Ågren GI (2008). Stoichiometry and nutrition of plant growth in natural communities.Annual Review of Ecology, Evolution, and Systematics, 39, 153-170. |
2 | Ågren GI, Weih M (2012). Plant stoichiometry at different scales: Element concentration patterns reflect environment more than genotype.New Phytologist, 194, 944-952. |
3 | Berg B, McClaugherty C (2003). Plant Litter: Decomposition, Humus Formation, Carbon Sequestration. 2nd edn. Springer-Verlag, Berlin, Heidelberg. |
4 | Berg B, Steffen KT, McClaugherty C (2007). Litter decom- position rate is dependent on litter Mn concentrations.Biogeochemistry, 82, 29-39. |
5 | Bin ZJ, Wang JJ, Zhang WP, Xu DH, Cheng XH, Li KJ, Cao DH (2014). Effects of N addition on ecological stoichiometric characteristics in six dominant plant species of alpine meadow on the Qinghai-Xizang Plateau, China.Chinese Journal of Plant Ecology, 38, 231-237.(in Chinese with English abstract) |
[宾振钧, 王静静, 张文鹏, 徐当会, 程雪寒, 李柯杰, 曹德昊 (2014). 氮肥添加对青藏高原高寒草甸6个群落优势种生态化学计量学特征的影响. 植物生态学报, 38, 231-237.] | |
6 | Condit R, Engelbrecht BMJ, Pino D, Pérez R, Turner BL (2013). Species distributions in response to individual soil nutrients and seasonal drought across a community of tropical trees.Proceedings of the National Academy of Sciences of the United States of America, 110, 5064-5068. |
7 | DellaPenna D (1999). Nutritional genomics: Manipulating plant micronutrients to improve human health.Science, 285, 375-379. |
8 | Elser JJ, Acharya K, Kyle M, Cotner J, Makino W, Markow T, Watts T, Hobbie S, Fagan W, Schade J, Hood J, Sterner RW (2003). Growth rate-stoichiometry couplings in diverse biota.Ecology Letters, 6, 936-943. |
9 | Elser JJ, Fagan WF, Kerkhoff AJ, Swenson NG, Enquist BJ (2010). Biological stoichiometry of plant production: Metabolism, scaling and ecological response to global change.New Phytologist, 186, 593-608. |
10 | Elser JJ, Sterner RW, Gorokhova E, Fagan WF, Markow TA, Cotner JB, Harrison JF, Hobbie SE, Odell GM, Weider LW (2000). Biological stoichiometry from genes to ecosystems.Ecology Letters, 3, 540-550. |
11 | Güsewell S (2004). N:P ratios in terrestrial plants: Variation and functional significance.New Phytologist, 164, 243-266. |
12 | Güsewell S, Gessner MO (2009). N:P ratios influence litter decomposition and colonization by fungi and bacteria in microcosms.Functional Ecology, 23, 211-219. |
13 | Han WX, Fang JY, Reich PB, Ian Woodward F, Wang ZH (2011). Biogeography and variability of eleven mineral elements in plant leaves across gradients of climate, soil and plant functional type in China.Ecology Letters, 14, 788-796. |
14 | Harpole WS, Ngai JT, Cleland EE, Seabloom EW, Borer ET, Bracken MES, Elser JJ, Gruner DS, Hillebrand H, Shurin JB, Smith JE (2011). Nutrient co-limitation of primary producer communities.Ecology Letters, 14, 852-862. |
15 | Harpole WS, Potts DL, Suding KN (2007). Ecosystem responses to water and nitrogen amendment in a California grassland.Global Change Biology, 13, 2341-2348. |
16 | He JS, Han XG (2010). Ecological stoichiometry: Searching for unifying principles from individuals to ecosystems.Chinese Journal of Plant Ecology, 34, 2-6.(in Chinese) |
[贺金生, 韩兴国 (2010). 生态化学计量学: 探索从个体到生态系统的统一化理论. 植物生态学报, 34, 2-6.] | |
17 | He JS, Wang L, Flynn DFB, Wang XP, Ma WH, Fang JY (2008). Leaf nitrogen: Phosphorus stoichiometry across Chinese grassland biomes.Oecologia, 155, 301-310. |
18 | He JS, Wang XP, Flynn DFB, Wang L, Schmid B, Fang JY (2009). Taxonomic, phylogenetic, and environmental trade-offs between leaf productivity and persistence.Ecology, 90, 2779-2791. |
19 | Jobbágy EG, Jackson RB (2004). The uplift of soil nutrients by plants: Biogeochemical consequences across scales.Ecology, 85, 2380-2389. |
20 | Karimi R, Chen CY, Pickhardt PC, Fisher NS, Folt CL (2007). Stoichiometric controls of mercury dilution by growth.Proceedings of the National Academy of Sciences of the United States of America, 104, 7477-82. |
21 | Karimi R, Folt CL (2006). Beyond macronutrients: Element variability and multielement stoichiometry in freshwater invertebrates.Ecology Letters, 9, 1273-1283. |
22 | Kaspari M, Garcia MN, Harms KE, Santana M, Wright SJ, Yavitt JB (2008). Multiple nutrients limit litterfall and decomposition in a tropical forest.Ecology Letters, 11, 35-43. |
23 | Koerselman W, Meuleman AFM (1996). The vegetation N:P ratio: A new tool to detect the nature of nutrient limitation.Journal of Applied Ecology, 33, 1441-1450. |
24 | Liu XZ, Zhou GY, Zhang DQ, Liu SZ, Chu GW, Yan JH (2010). N and P stoichiometry of plant and soil in lower subtropical forest successional series in southern China.Chinese Journal of Plant Ecology, 34, 64-71.(in Chinese with English abstract) |
[刘兴诏, 周国逸, 张德强, 刘世忠, 褚国伟, 闫俊华 (2010). 南亚热带森林不同演替阶段植物与土壤中N、P的化学计量特征. 植物生态学报, 34, 64-71.] | |
25 | Lü XT, Dijkstra FA, Kong DL, Wang ZW, Han XG (2014). Plant nitrogen uptake drives responses of productivity to nitrogen and water addition in a grassland.Scientific Reports, 4, 4817. |
26 | Lü XT, Kong DL, Pan QM, Simmons M, Han XG (2012). Nitrogen and water availability interact to affect leaf stoichiometry in a semi-arid grassland.Oecologia, 168, 301-310. |
27 | Makkonen M, Berg MP, Handa IT, Hättenschwiler S, van Ruijven J, van Bodegom PM, Aerts R (2012). Highly consistent effects of plant litter identity and functional traits on decomposition across a latitudinal gradient.Ecology Letters, 15, 1033-1041. |
28 | Mooshammer M, Wanek W, Schnecker J, Wild B, Leitner S, Hofhansl F, Blöchl A, Hämmerle I, Frank AH, Fuchslueger L, Keiblinger KM, Zechmeister-Boltenstern S, Richter A (2012). Stoichiometric controls of nitrogen and phosphorus cycling in decomposing beech leaf litter.Ecology, 93, 770-782. |
29 | Niu SL, Yang HJ, Zhang Z, Wu MY, Lu Q, Li LH, Han XG, Wan SQ (2009). Non-additive effects of water and nitrogen addition on ecosystem carbon exchange in a temperate steppe.Ecosystems, 12, 915-926. |
30 | Olde Venterink H, Wassen MJ, Verkroost AWM, de Ruiter PC (2003). Species richness-productivity patterns differ between N-, P-, and K-limited wetlands.Ecology, 84, 2191-2199. |
31 | Reich PB, Oleksyn J, Modrzynski J, Mrozinski P, Hobbie SE, Eissenstat DM, Chorover J, Chadwick OA, Hale CM, Tjoelker MG (2005). Linking litter calcium, earthworms and soil properties: A common garden test with 14 tree species.Ecology Letters, 8, 811-818. |
32 | Sistla SA, Schimel JP (2012). Stoichiometric flexibility as a regulator of carbon and nutrient cycling in terrestrial ecosystems under change.New Phytologist, 196, 68-78. |
33 | Sterner RW, Elser JJ (2002). Ecological Stoichiometry: The Biology of Elements from Molecules to the Biosphere. Princeton University Press, Princeton. |
34 | Sunda WG, Huntsman SA (1998). Processes regulating cellular metal accumulation and physiological effects: Phytoplankton as model systems.Science of The Total Environment, 219, 165-181. |
35 | van der Heijden MGA, Bardgett RD, Van Straalen NM (2008). The unseen majority: Soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems.Ecology Letters, 11, 296-310. |
36 | Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K, Lamont BB, Lee T, Lee W, Lusk C, Midgley JJ, Navas M-L, Niinemets Ü, Oleksyn J, Osada N, Poorter H, Poot P, Prior L, Pyankov VI, Roumet C, Thomas SC, Tjoelker MG, Veneklaas EJ, Villar R (2004). The worldwide leaf economics spectrum.Nature, 428, 821-827. |
37 | Yan BG, He GX, Li JC, Ji ZH (2012). Scaling relationships and stoichiometry of plant leaf biogenic elements from the arid-hot valley of Jinsha River, China.Chinese Journal of Plant Ecology, 36, 1136-1144.(in Chinese with English abstract) |
[闫帮国, 何光熊, 李纪潮, 纪中华 (2012). 金沙江干热河谷地区植物叶片中各生源要素的化学计量特征以及异速增长关系. 植物生态学报, 36, 1136-1144.] | |
38 | Yan BG, Ji ZH, He GX, Shi LT, Pan ZX, Li JC, Yue XW, Wang CX, Peng H (2013). The effects of leaf stoichiochemistric characters on litter turnover in an arid-hot valley of Jinsha River, China.Acta Ecologica Sinica, 33, 5668-5674.(in Chinese with English abstract) |
[闫帮国, 纪中华, 何光熊, 史亮涛, 潘志贤, 李纪潮, 岳学文, 王春雪, 彭辉 (2013). 金沙江干热河谷植物叶片元素含量在地表凋落物周转中的作用. 生态学报, 33, 5668-5674.] | |
39 | Yan ER, Wang XH, Zhou W (2008). N:P stoichiometry in secondary succession in evergreen broad-leaved forest, Tiantong, East China. Journal of Plant Ecology (Chinese Version), 32, 13-22.(in Chinese with English abstract) |
[阎恩荣, 王希华, 周武 (2008). 天童常绿阔叶林演替系列植物群落的N:P化学计量特征. 植物生态学报, 32, 13-22.] | |
40 | Yu Q, Chen QS, Elser JJ, He NP, Wu HH, Zhang GM, Wu JG, Bai YF, Han XG (2010). Linking stoichiometric homoeostasis with ecosystem structure, functioning and stability.Ecology Letters, 13, 1390-1399. |
41 | Zhang JP, Wang DJ, Wang YK, Wen AB (2000). Discusses on eco-environment changes in dry-lot valley of Yuanmou.Scinentia Geographica Sinica, 20, 148-152.(in Chinese with English abstract) |
[张建平, 王道杰, 王玉宽, 文安邦 (2000). 元谋干热河谷区生态环境变迁探讨. 地理科学, 20, 148-152.] |
[1] | 张文瑾 佘维维 秦树高 乔艳桂 张宇清. 氮和水分添加对黑沙蒿群落优势植物叶片氮磷化学计量特征的影响[J]. 植物生态学报, 2024, 48(5): 590-600. |
[2] | 王袼, 胡姝娅, 李阳, 陈晓鹏, 李红玉, 董宽虎, 何念鹏, 王常慧. 不同类型草原土壤净氮矿化速率的温度敏感性[J]. 植物生态学报, 2024, 48(4): 523-533. |
[3] | 梁逸娴, 王传宽, 臧妙涵, 上官虹玉, 刘逸潇, 全先奎. 落叶松径向生长和生物量分配对气候变暖的响应[J]. 植物生态学报, 2024, 48(4): 459-468. |
[4] | 黄玲, 王榛, 马泽, 杨发林, 李岚, SEREKPAYEV Nurlan, NOGAYEV Adilbek, 侯扶江. 长期放牧和氮添加对黄土高原典型草原长芒草种群生长的影响[J]. 植物生态学报, 2024, 48(3): 317-330. |
[5] | 耿雪琪, 唐亚坤, 王丽娜, 邓旭, 张泽凌, 周莹. 氮添加增加中国陆生植物生物量并降低其氮利用效率[J]. 植物生态学报, 2024, 48(2): 147-157. |
[6] | 韩路, 冯宇, 李沅楷, 王雨晴, 王海珍. 地下水埋深对灰胡杨叶片与土壤养分生态化学计量特征及其内稳态的影响[J]. 植物生态学报, 2024, 48(1): 92-102. |
[7] | 舒韦维, 杨坤, 马俊旭, 闵惠琳, 陈琳, 刘士玲, 黄日逸, 明安刚, 明财道, 田祖为. 氮添加对红锥不同序级细根形态和化学性状的影响[J]. 植物生态学报, 2024, 48(1): 103-112. |
[8] | 马常钦, 黄海龙, 彭政淋, 吴纯泽, 韦庆钰, 贾红涛, 卫星. 水曲柳雌雄株复叶类型及光合功能对不同生境的响应[J]. 植物生态学报, 2023, 47(9): 1287-1297. |
[9] | 李娜, 唐士明, 郭建英, 田茹, 王姗, 胡冰, 罗永红, 徐柱文. 放牧对内蒙古草地植物群落特征影响的meta分析[J]. 植物生态学报, 2023, 47(9): 1256-1269. |
[10] | 赵艳超, 陈立同. 土壤养分对青藏高原高寒草地生物量响应增温的调节作用[J]. 植物生态学报, 2023, 47(8): 1071-1081. |
[11] | 苏炜, 陈平, 吴婷, 刘岳, 宋雨婷, 刘旭军, 刘菊秀. 氮添加与干季延长对降香黄檀幼苗非结构性碳水化合物、养分与生物量的影响[J]. 植物生态学报, 2023, 47(8): 1094-1104. |
[12] | 张慧玲, 张耀艺, 彭清清, 杨静, 倪祥银, 吴福忠. 中亚热带同质园不同生活型树种微量元素重吸收效率的差异[J]. 植物生态学报, 2023, 47(7): 978-987. |
[13] | 李冠军, 陈珑, 余雯静, 苏亲桂, 吴承祯, 苏军, 李键. 固体培养内生真菌对土壤盐胁迫下木麻黄幼苗渗透调节和抗氧化系统的影响[J]. 植物生态学报, 2023, 47(6): 804-821. |
[14] | 罗娜娜, 盛茂银, 王霖娇, 石庆龙, 何宇. 长期植被恢复对中国西南喀斯特石漠化土壤活性有机碳组分含量和酶活性的影响[J]. 植物生态学报, 2023, 47(6): 867-881. |
[15] | 李兆光, 文高, 和桂青, 徐天才, 和琼姬, 侯志江, 李燕, 薛润光. 滇西北藜麦氮磷钾生态化学计量特征的物候期动态[J]. 植物生态学报, 2023, 47(5): 724-732. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19