植物生态学报 ›› 2020, Vol. 44 ›› Issue (3): 277-286.DOI: 10.17521/cjpe.2019.0117
• 研究论文 • 上一篇
收稿日期:
2019-05-18
接受日期:
2020-01-29
出版日期:
2020-03-20
发布日期:
2020-03-26
通讯作者:
刘超
基金资助:
JI Ruo-Xuan,YU Xiao,CHANG Yuan,SHEN Chao,BAI Xue-Qia,XIA Xin-Li,YIN Wei-Lun,LIU Chao()
Received:
2019-05-18
Accepted:
2020-01-29
Online:
2020-03-20
Published:
2020-03-26
Contact:
Chao LIU
Supported by:
摘要:
长期受到生长环境影响而形成的遗传变异对植物生长发育有着显著的影响。叶片是植物对环境变化最敏感的器官, 了解叶片解剖结构在不同环境中产生的适应性变异是探索植物对环境适应的基础。同质园试验是研究遗传与环境因素对植物生长代谢等影响的一种有效方法, 该研究利用同质园试验排除了环境梯度的影响, 通过常规石蜡切片、多重比较、相关性分析、一般线性模型分析等方法, 对7个不同种源地的蒙古莸(Caryopteris mongholica)叶片解剖结构及其影响因素进行了定量比较。结果表明, 7个种源地的蒙古莸叶片均为等面叶, 无海绵组织分化, 其上表皮细胞较下表皮细胞厚, 上栅栏组织较下栅栏组织厚; 叶片各解剖结构参数间存在显著的自相关性, 不同种源叶片解剖结构存在显著差异: 随种源地年平均气温升高, 叶厚度、栅栏组织厚度呈增大趋势, 其中, 最西南部的阿左旗种源蒙古莸叶片的上下栅栏组织、叶厚度及叶片结构紧密度值均最大, 表现出明显的抗旱特征。种源地经纬度、气温、降水等对解剖结构指标有显著的影响, 其解释程度为34.09%-81.43%。同质园试验说明, 种源地气候差异驱动的遗传变异是引起不同种源叶片解剖结构差异的重要因素。
纪若璇, 于笑, 常远, 沈超, 白雪卡, 夏新莉, 尹伟伦, 刘超. 蒙古莸叶片解剖结构的地理种源变异及其对环境变化响应的意义. 植物生态学报, 2020, 44(3): 277-286. DOI: 10.17521/cjpe.2019.0117
JI Ruo-Xuan, YU Xiao, CHANG Yuan, SHEN Chao, BAI Xue-Qia, XIA Xin-Li, YIN Wei-Lun, LIU Chao. Geographical provenance variation of leaf anatomical structure of Caryopteris mongholica and its significance in response to environmental changes. Chinese Journal of Plant Ecology, 2020, 44(3): 277-286. DOI: 10.17521/cjpe.2019.0117
种源地 Provenances | 纬度 Latitude (° N) | 经度 Longitude (° E) | 海拔 Altitude (m) | 年降水量 MAP (mm) | 年平均气温 MAT (℃) | 生长季降水量 GSP (mm) | 生长季平均气温 GST (℃) | 最冷月平均气温 TCM (℃) | 潜在蒸散量 PE (mm) |
---|---|---|---|---|---|---|---|---|---|
内蒙古阿巴嘎旗 Abaga Banner Nei Mongol | 43.90 | 115.35 | 1 177 | 224.03 | 2.9 | 434.71 | 17.74 | -19.85 | 588.04 |
内蒙古阿拉善左旗 Alxa Left Banner Nei Mongol | 38.88 | 105.72 | 1 670 | 162.54 | 9.90 | 315.52 | 21.05 | -7.51 | 712.81 |
内蒙古东乌旗 Dongwu Banner Nei Mongol | 45.73 | 116.79 | 1 017 | 200.72 | 2.46 | 415.46 | 17.76 | -20.52 | 531.06 |
内蒙古蒙西 Mengxi Nei Mongol | 40.08 | 106.92 | 1 193 | 118.00 | 8.92 | 243.64 | 20.95 | -9.58 | 702.17 |
内蒙古凉城 Liangcheng Nei Mongol | 40.66 | 112.30 | 1 429 | 313.75 | 5.18 | 611.46 | 17.13 | -13.17 | 580.80 |
陕西神木 Shenmu Shaanxi | 39.29 | 110.33 | 1 209 | 369.79 | 9.78 | 729.85 | 20.85 | -7.64 | 706.91 |
河北康保 Kangbao Hebei | 41.99 | 114.85 | 1 590 | 279.72 | 3.82 | 556.53 | 16.78 | -15.22 | 544.06 |
表1 蒙古莸种源地基本情况
Table 1 Basic conditions of Caryopteris mongholica provenances
种源地 Provenances | 纬度 Latitude (° N) | 经度 Longitude (° E) | 海拔 Altitude (m) | 年降水量 MAP (mm) | 年平均气温 MAT (℃) | 生长季降水量 GSP (mm) | 生长季平均气温 GST (℃) | 最冷月平均气温 TCM (℃) | 潜在蒸散量 PE (mm) |
---|---|---|---|---|---|---|---|---|---|
内蒙古阿巴嘎旗 Abaga Banner Nei Mongol | 43.90 | 115.35 | 1 177 | 224.03 | 2.9 | 434.71 | 17.74 | -19.85 | 588.04 |
内蒙古阿拉善左旗 Alxa Left Banner Nei Mongol | 38.88 | 105.72 | 1 670 | 162.54 | 9.90 | 315.52 | 21.05 | -7.51 | 712.81 |
内蒙古东乌旗 Dongwu Banner Nei Mongol | 45.73 | 116.79 | 1 017 | 200.72 | 2.46 | 415.46 | 17.76 | -20.52 | 531.06 |
内蒙古蒙西 Mengxi Nei Mongol | 40.08 | 106.92 | 1 193 | 118.00 | 8.92 | 243.64 | 20.95 | -9.58 | 702.17 |
内蒙古凉城 Liangcheng Nei Mongol | 40.66 | 112.30 | 1 429 | 313.75 | 5.18 | 611.46 | 17.13 | -13.17 | 580.80 |
陕西神木 Shenmu Shaanxi | 39.29 | 110.33 | 1 209 | 369.79 | 9.78 | 729.85 | 20.85 | -7.64 | 706.91 |
河北康保 Kangbao Hebei | 41.99 | 114.85 | 1 590 | 279.72 | 3.82 | 556.53 | 16.78 | -15.22 | 544.06 |
解剖结构指标 Anatomical indexes | 观测数目 Number of observations | 平均值 Average | 标准偏差 Standard deviation | 均值的95%置信区间 95% confidence interval of mean | 最大值 Maximum | 最小值 Minimum | 变异系数 Variation coefficient | 可塑性指数 Plasticity index |
---|---|---|---|---|---|---|---|---|
上角质层厚度 Cuticle thickness (μm) | 70 | 6.87 | 1.66 | 6.05-7.70 | 11.92 | 5.07 | 0.24 | 0.57 |
上表皮细胞厚度 UEC thickness (μm) | 70 | 18.53 | 5.37 | 15.86-21.20 | 26.46 | 9.87 | 0.29 | 0.63 |
下表皮细胞厚度 LEC thickness (μm) | 70 | 11.14 | 2.32 | 9.99-12.30 | 17.64 | 8.74 | 0.21 | 0.50 |
上栅栏组织厚度 UPT thickness (μm) | 70 | 106.35 | 17.94 | 97.43-115.27 | 146.64 | 89.24 | 0.17 | 0.39 |
下栅栏组织厚度 LPT thickness (μm) | 70 | 76.17 | 13.44 | 69.48-82.85 | 109.42 | 59.57 | 0.18 | 0.46 |
栅栏组织总厚度 PT thickness (μm) | 70 | 182.52 | 29.16 | 168.02-197.02 | 243.12 | 156.05 | 0.16 | 0.36 |
叶厚度 LT (μm) | 70 | 220.02 | 25.71 | 207.24-232.80 | 270.30 | 192.34 | 0.12 | 0.29 |
叶片结构紧密度 Tight (%) | 70 | 0.83 | 0.04 | 0.80-0.85 | 0.90 | 0.74 | 0.05 | 0.18 |
表2 蒙古莸叶片解剖结构指标
Table 2 Leaf anatomical indices of Caryopteris mongholica
解剖结构指标 Anatomical indexes | 观测数目 Number of observations | 平均值 Average | 标准偏差 Standard deviation | 均值的95%置信区间 95% confidence interval of mean | 最大值 Maximum | 最小值 Minimum | 变异系数 Variation coefficient | 可塑性指数 Plasticity index |
---|---|---|---|---|---|---|---|---|
上角质层厚度 Cuticle thickness (μm) | 70 | 6.87 | 1.66 | 6.05-7.70 | 11.92 | 5.07 | 0.24 | 0.57 |
上表皮细胞厚度 UEC thickness (μm) | 70 | 18.53 | 5.37 | 15.86-21.20 | 26.46 | 9.87 | 0.29 | 0.63 |
下表皮细胞厚度 LEC thickness (μm) | 70 | 11.14 | 2.32 | 9.99-12.30 | 17.64 | 8.74 | 0.21 | 0.50 |
上栅栏组织厚度 UPT thickness (μm) | 70 | 106.35 | 17.94 | 97.43-115.27 | 146.64 | 89.24 | 0.17 | 0.39 |
下栅栏组织厚度 LPT thickness (μm) | 70 | 76.17 | 13.44 | 69.48-82.85 | 109.42 | 59.57 | 0.18 | 0.46 |
栅栏组织总厚度 PT thickness (μm) | 70 | 182.52 | 29.16 | 168.02-197.02 | 243.12 | 156.05 | 0.16 | 0.36 |
叶厚度 LT (μm) | 70 | 220.02 | 25.71 | 207.24-232.80 | 270.30 | 192.34 | 0.12 | 0.29 |
叶片结构紧密度 Tight (%) | 70 | 0.83 | 0.04 | 0.80-0.85 | 0.90 | 0.74 | 0.05 | 0.18 |
图1 蒙古莸叶片横切面。A, 叶肉结构。B, 主脉结构。C, 主脉及叶肉结构。Co, 厚角组织; Cuticle, 上角质层; LEC, 下表皮细胞; LPT, 下栅栏组织; MVP, 主脉韧皮部; MVX, 主脉木质部; St, 孔下室; UEC, 上表皮细胞; UPT, 上栅栏组织。
Fig. 1 Leaf cross section of Caryopteris mongholica. A, Mesophyll structure. B, Main vein structure. C, Mesophyll and main vein structure. Co, collenchyma; LEC, lower epidermal cell; LPT, lower palisade tissue; MVP, main vein phloem; MVX, main vein xylem; St, stomatal chamber; UEC, upper epidermal cell; UPT, upper palisade tissue.
种源地 Provenance | 上角质层厚度 Cuticle thickness (μm) | 上表皮 细胞厚度 UEC thickness (μm) | 下表皮 细胞厚度 LEC thickness (μm) | 上栅栏 组织厚度 UPT thickness (μm) | 下栅栏 组织厚度 LPT thickness (μm) | 栅栏组织总厚度 PT thickness (μm) | 叶厚度 LT (μm) | 叶片结构紧密度 Tight (%) |
---|---|---|---|---|---|---|---|---|
内蒙古阿巴嘎旗 Abaga Banner, Nei Mongol | 8.44 ± 1.74ab | 19.63 ± 1.33ab | 13.98 ± 2.08a | 95.13 ± 1.52cd | 63.87 ± 2.15d | 159.01 ± 2.07d | 200.23 ± 0.56c | 0.797 ± 0.012c |
内蒙古阿拉善左旗 Alxa Left Banner, Nei Mongol | 5.92 ± 0.76bc | 13.35 ± 1.21c | 9.81 ± 0.54a | 137.94 ± 4.35a | 102.50 ± 4.58a | 240.44 ± 1.56a | 269.52 ± 0.60a | 0.893 ± 0.006a |
内蒙古东乌旗 Dongwu Banner, Nei Mongol | 5.83 ± 0.97bc | 22.76 ± 1.23a | 12.81 ± 2.04a | 100.62 ± 6.13cd | 70.81 ± 2.13bc | 171.43 ± 7.51cd | 212.83 ± 7.49bc | 0.803 ± 0.009bc |
内蒙古蒙西 Mengxi, Nei Mongol | 5.09 ± 0.20c | 16.19 ± 2.17bc | 10.61 ± 0.69a | 115.80 ± 7.09b | 72.99 ± 0.51bc | 188.79 ± 7.59c | 220.67 ± 8.06b | 0.857 ± 0.007ab |
内蒙古凉城 Liangcheng, Nei Mongol | 8.82 ± 0.35a | 23.69 ± 1.27a | 11.29 ± 0.08a | 104.91 ± 3.71bc | 67.20 ± 7.11bc | 172.11 ± 10.46cd | 224.58 ± 2.62b | 0.767 ± 0.038c |
陕西神木 Shenmu, Shaanxi | 6.45 ± 0.69abc | 12.42 ± 2.39c | 10.09 ± 1.50a | 90.30 ± 1.11d | 78.22 ± 4.04b | 168.52 ± 4.57d | 197.48 ± 5.33c | 0.853 ± 0.001ab |
河北康保 Kangbao, Hebei | 6.73 ± 0.80abc | 23.08 ± 1.74a | 10.34 ± 0.85a | 96.90 ± 3.03cd | 68.08 ± 0.17bc | 164.98 ± 2.90d | 211.67 ± 5.12bc | 0.780 ± 0.023c |
表3 7个种源蒙古莸叶片解剖结构特征参数(平均值±标准误差)
Table 3 Leaf anatomical parameters of Caryopteris mongholica from seven provenances (mean ± SE)
种源地 Provenance | 上角质层厚度 Cuticle thickness (μm) | 上表皮 细胞厚度 UEC thickness (μm) | 下表皮 细胞厚度 LEC thickness (μm) | 上栅栏 组织厚度 UPT thickness (μm) | 下栅栏 组织厚度 LPT thickness (μm) | 栅栏组织总厚度 PT thickness (μm) | 叶厚度 LT (μm) | 叶片结构紧密度 Tight (%) |
---|---|---|---|---|---|---|---|---|
内蒙古阿巴嘎旗 Abaga Banner, Nei Mongol | 8.44 ± 1.74ab | 19.63 ± 1.33ab | 13.98 ± 2.08a | 95.13 ± 1.52cd | 63.87 ± 2.15d | 159.01 ± 2.07d | 200.23 ± 0.56c | 0.797 ± 0.012c |
内蒙古阿拉善左旗 Alxa Left Banner, Nei Mongol | 5.92 ± 0.76bc | 13.35 ± 1.21c | 9.81 ± 0.54a | 137.94 ± 4.35a | 102.50 ± 4.58a | 240.44 ± 1.56a | 269.52 ± 0.60a | 0.893 ± 0.006a |
内蒙古东乌旗 Dongwu Banner, Nei Mongol | 5.83 ± 0.97bc | 22.76 ± 1.23a | 12.81 ± 2.04a | 100.62 ± 6.13cd | 70.81 ± 2.13bc | 171.43 ± 7.51cd | 212.83 ± 7.49bc | 0.803 ± 0.009bc |
内蒙古蒙西 Mengxi, Nei Mongol | 5.09 ± 0.20c | 16.19 ± 2.17bc | 10.61 ± 0.69a | 115.80 ± 7.09b | 72.99 ± 0.51bc | 188.79 ± 7.59c | 220.67 ± 8.06b | 0.857 ± 0.007ab |
内蒙古凉城 Liangcheng, Nei Mongol | 8.82 ± 0.35a | 23.69 ± 1.27a | 11.29 ± 0.08a | 104.91 ± 3.71bc | 67.20 ± 7.11bc | 172.11 ± 10.46cd | 224.58 ± 2.62b | 0.767 ± 0.038c |
陕西神木 Shenmu, Shaanxi | 6.45 ± 0.69abc | 12.42 ± 2.39c | 10.09 ± 1.50a | 90.30 ± 1.11d | 78.22 ± 4.04b | 168.52 ± 4.57d | 197.48 ± 5.33c | 0.853 ± 0.001ab |
河北康保 Kangbao, Hebei | 6.73 ± 0.80abc | 23.08 ± 1.74a | 10.34 ± 0.85a | 96.90 ± 3.03cd | 68.08 ± 0.17bc | 164.98 ± 2.90d | 211.67 ± 5.12bc | 0.780 ± 0.023c |
相关系数 Correlation coefficient | 上角质层 厚度 Cuticle thickness (μm) | 上表皮 细胞厚度 UEC thickness (μm) | 下表皮 细胞厚度 LEC thickness (μm) | 上栅栏 组织厚度 UPT thickness (μm) | 下栅栏 组织厚度 LPT thickness (μm) | 栅栏组织 总厚度 PT thickness (μm) | 叶厚度 LT (μm) | 叶片结构 紧密度 Tight (%) |
---|---|---|---|---|---|---|---|---|
上角质层厚度 Cuticle thickness (μm) | ||||||||
上表皮细胞厚度 UEC thickness (μm) | 0.201 | |||||||
下表皮细胞厚度 LEC thickness (μm) | 0.590** | 0.107 | ||||||
上栅栏组织厚度 UPT thickness (μm) | -0.246 | -0.355 | -0.203 | |||||
下栅栏组织厚度 LPT thickness (μm) | -0.434 | -0.545* | -0.436 | 0.721** | ||||
栅栏组织总厚度 PT thickness (μm) | -0.351 | -0.470* | -0.326 | 0.948** | 0.904** | |||
叶厚度 LT (μm) | -0.260 | -0.268 | -0.259 | 0.945** | 0.825** | 0.962** | ||
叶片结构紧密度 Tight (%) | -0.432 | -0.770* | -0.391 | 0.683** | 0.806** | 0.792** | 0.595** |
表4 蒙古莸叶片解剖性状相关性分析
Table 4 Correlation analyses of Caryopteris mongholica leaf anatomical characters
相关系数 Correlation coefficient | 上角质层 厚度 Cuticle thickness (μm) | 上表皮 细胞厚度 UEC thickness (μm) | 下表皮 细胞厚度 LEC thickness (μm) | 上栅栏 组织厚度 UPT thickness (μm) | 下栅栏 组织厚度 LPT thickness (μm) | 栅栏组织 总厚度 PT thickness (μm) | 叶厚度 LT (μm) | 叶片结构 紧密度 Tight (%) |
---|---|---|---|---|---|---|---|---|
上角质层厚度 Cuticle thickness (μm) | ||||||||
上表皮细胞厚度 UEC thickness (μm) | 0.201 | |||||||
下表皮细胞厚度 LEC thickness (μm) | 0.590** | 0.107 | ||||||
上栅栏组织厚度 UPT thickness (μm) | -0.246 | -0.355 | -0.203 | |||||
下栅栏组织厚度 LPT thickness (μm) | -0.434 | -0.545* | -0.436 | 0.721** | ||||
栅栏组织总厚度 PT thickness (μm) | -0.351 | -0.470* | -0.326 | 0.948** | 0.904** | |||
叶厚度 LT (μm) | -0.260 | -0.268 | -0.259 | 0.945** | 0.825** | 0.962** | ||
叶片结构紧密度 Tight (%) | -0.432 | -0.770* | -0.391 | 0.683** | 0.806** | 0.792** | 0.595** |
相关系数 Correlation coefficient | 上角质层厚度 Cuticle thickness (μm) | 上表皮 细胞厚度 UEC thickness (μm) | 下表皮 细胞厚度 LEC thickness (μm) | 上栅栏 组织厚度 UPT thickness (μm) | 下栅栏 组织厚度 LPT thickness (μm) | 栅栏组织 总厚度 PT thickness (μm) | 叶厚度 LT (μm) | 叶片结构 紧密度 Tight (%) |
---|---|---|---|---|---|---|---|---|
纬度 Latitude (°N) | 0.328 | 0.638** | 0.451 | -0.526* | -0.694** | -0.643** | -0.529* | -0.724** |
经度 Longitude (°E) | 0.437 | 0.704** | 0.366 | -0.787** | -0.801** | -0.854** | -0.730** | -0.886** |
海拔 Altitude (m) | -0.124 | -0.034 | -0.358 | 0.547* | 0.579* | 0.604** | 0.690** | 0.237 |
年降水量 MAP (mm) | 0.261 | 0.074 | -0.103 | -0.671** | -0.250 | -0.528* | -0.555* | -0.307 |
生长季降水量 GSP (mm) | 0.244 | 0.085 | -0.110 | -0.689** | -0.269 | -0.548* | -0.575* | -0.321 |
降水年较差 ARP (mm) | 0.348 | 0.195 | -0.064 | -0.640** | -0.236 | -0.503* | -0.495* | -0.365 |
年平均气温 MAT (℃) | -0.446 | -0.803** | -0.421 | 0.534* | 0.735** | 0.668** | 0.495* | 0.860** |
生长季平均气温 GST (℃) | -0.476* | -0.863* | -0.290 | 0.512* | 0.672** | 0.625** | 0.424 | 0.880** |
气温年较差 ART (℃) | 0.338 | 0.503* | 0.529* | -0.426 | -0.626** | -0.551* | -0.465 | -0.597** |
表5 种源地环境因素与蒙古莸叶片解剖结构参数的相关系数
Table 5 Correlation coefficient of environmental conditions in provenances and leaf anatomical characters of Caryopteris mongholica
相关系数 Correlation coefficient | 上角质层厚度 Cuticle thickness (μm) | 上表皮 细胞厚度 UEC thickness (μm) | 下表皮 细胞厚度 LEC thickness (μm) | 上栅栏 组织厚度 UPT thickness (μm) | 下栅栏 组织厚度 LPT thickness (μm) | 栅栏组织 总厚度 PT thickness (μm) | 叶厚度 LT (μm) | 叶片结构 紧密度 Tight (%) |
---|---|---|---|---|---|---|---|---|
纬度 Latitude (°N) | 0.328 | 0.638** | 0.451 | -0.526* | -0.694** | -0.643** | -0.529* | -0.724** |
经度 Longitude (°E) | 0.437 | 0.704** | 0.366 | -0.787** | -0.801** | -0.854** | -0.730** | -0.886** |
海拔 Altitude (m) | -0.124 | -0.034 | -0.358 | 0.547* | 0.579* | 0.604** | 0.690** | 0.237 |
年降水量 MAP (mm) | 0.261 | 0.074 | -0.103 | -0.671** | -0.250 | -0.528* | -0.555* | -0.307 |
生长季降水量 GSP (mm) | 0.244 | 0.085 | -0.110 | -0.689** | -0.269 | -0.548* | -0.575* | -0.321 |
降水年较差 ARP (mm) | 0.348 | 0.195 | -0.064 | -0.640** | -0.236 | -0.503* | -0.495* | -0.365 |
年平均气温 MAT (℃) | -0.446 | -0.803** | -0.421 | 0.534* | 0.735** | 0.668** | 0.495* | 0.860** |
生长季平均气温 GST (℃) | -0.476* | -0.863* | -0.290 | 0.512* | 0.672** | 0.625** | 0.424 | 0.880** |
气温年较差 ART (℃) | 0.338 | 0.503* | 0.529* | -0.426 | -0.626** | -0.551* | -0.465 | -0.597** |
气候因子 Climate factor | 上角质层厚度 Cuticle thickness | 上表皮细胞厚度 UEC thickness | 下表皮细胞厚度 LEC thickness | 叶厚度 LT | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
df | %SS | Sig. | df | %SS | Sig. | df | %SS | Sig. | df | %SS | Sig. | |
年降水量 MAP | 1 | 10.13 | 0.147 | 1 | 0.12 | 0.804 | 1 | 0.98 | 0.646 | 1 | 31.40 | 6.8 × 10-6*** |
年平均气温 MAT | 1 | 20.77 | 0.049* | 1 | 65.82 | 2.3 × 10-4*** | 1 | 16.78 | 0.082* | 1 | 21.69 | 3.0 × 10-5*** |
潜在蒸散量 PE | 1 | 4.08 | 0.339 | 1 | 9.20 | 0.055* | 1 | 16.33 | 0.085 | 1 | 14.34 | 1.5 × 10-4*** |
海拔 Alt | 1 | 2.74 | 0.430 | 1 | 0.00 | 0.999 | 1 | 0.08 | 0.894 | 1 | 16.76 | 8.3 × 10-5*** |
位置 Site | 4 | 26.20 | 0.248 | 4 | 7.86 | 0.438 | 4 | 26.52 | 0.276 | 4 | 12.50 | 0.004** |
残差 Residuals | 9 | 36.09 | 9 | 17 | 9 | 39.30 | 9 | 3.31 | ||||
气候因子 Climate factor | 上栅栏组织厚度 UPT thickness | 下栅栏组织厚度 LPT thickness | 栅栏组织总厚度 PT thickness | 叶片结构紧密度 Tight | ||||||||
df | %SS | Sig. | df | %SS | Sig. | df | %SS | Sig. | df | %SS | Sig. | |
年降水量 MAP | 1 | 45.93 | 4.7 × 10-6*** | 1 | 4.78 | 0.023* | 1 | 27.38 | 1.6 × 10-7*** | 1 | 8.93 | 0.028* |
年平均气温 MAT | 1 | 24.59 | 5.8 × 10-5*** | 1 | 57.74 | 5.5 × 10-6*** | 1 | 44.37 | 1.9 × 10-8*** | 1 | 71.89 | 4.1 × 10-5*** |
潜在蒸散量 PE | 1 | 6.28 | 0.006** | 1 | 5.48 | 0.017* | 1 | 6.78 | 5.2 × 10-5*** | 1 | 0.61 | 0.514 |
海拔 Alt | 1 | 8.65 | 0.002** | 1 | 8.33 | 0.006** | 1 | 9.66 | 1.3 × 10-5*** | 1 | 0.12 | 0.772 |
位置 Site | 4 | 10.13 | 0.019* | 4 | 17.91 | 0.008** | 4 | 10.62 | 1.6 × 10-4*** | 4 | 6.65 | 0.097* |
残差 Residuals | 9 | 4.41 | 9 | 5.76 | 9 | 1.18 | 9 | 11.81 |
表6 种源地气候(年降水量、年平均气温、潜在蒸散量、海拔、位置)对蒙古莸叶片各个解剖结构参数的GLM分析
Table 6 Summary of general linear models for the effect of climate variations in different provenances (MAP, MAT, PE, Alt, Site) on individual leaf anatomical characters of Caryopteris mongholica
气候因子 Climate factor | 上角质层厚度 Cuticle thickness | 上表皮细胞厚度 UEC thickness | 下表皮细胞厚度 LEC thickness | 叶厚度 LT | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
df | %SS | Sig. | df | %SS | Sig. | df | %SS | Sig. | df | %SS | Sig. | |
年降水量 MAP | 1 | 10.13 | 0.147 | 1 | 0.12 | 0.804 | 1 | 0.98 | 0.646 | 1 | 31.40 | 6.8 × 10-6*** |
年平均气温 MAT | 1 | 20.77 | 0.049* | 1 | 65.82 | 2.3 × 10-4*** | 1 | 16.78 | 0.082* | 1 | 21.69 | 3.0 × 10-5*** |
潜在蒸散量 PE | 1 | 4.08 | 0.339 | 1 | 9.20 | 0.055* | 1 | 16.33 | 0.085 | 1 | 14.34 | 1.5 × 10-4*** |
海拔 Alt | 1 | 2.74 | 0.430 | 1 | 0.00 | 0.999 | 1 | 0.08 | 0.894 | 1 | 16.76 | 8.3 × 10-5*** |
位置 Site | 4 | 26.20 | 0.248 | 4 | 7.86 | 0.438 | 4 | 26.52 | 0.276 | 4 | 12.50 | 0.004** |
残差 Residuals | 9 | 36.09 | 9 | 17 | 9 | 39.30 | 9 | 3.31 | ||||
气候因子 Climate factor | 上栅栏组织厚度 UPT thickness | 下栅栏组织厚度 LPT thickness | 栅栏组织总厚度 PT thickness | 叶片结构紧密度 Tight | ||||||||
df | %SS | Sig. | df | %SS | Sig. | df | %SS | Sig. | df | %SS | Sig. | |
年降水量 MAP | 1 | 45.93 | 4.7 × 10-6*** | 1 | 4.78 | 0.023* | 1 | 27.38 | 1.6 × 10-7*** | 1 | 8.93 | 0.028* |
年平均气温 MAT | 1 | 24.59 | 5.8 × 10-5*** | 1 | 57.74 | 5.5 × 10-6*** | 1 | 44.37 | 1.9 × 10-8*** | 1 | 71.89 | 4.1 × 10-5*** |
潜在蒸散量 PE | 1 | 6.28 | 0.006** | 1 | 5.48 | 0.017* | 1 | 6.78 | 5.2 × 10-5*** | 1 | 0.61 | 0.514 |
海拔 Alt | 1 | 8.65 | 0.002** | 1 | 8.33 | 0.006** | 1 | 9.66 | 1.3 × 10-5*** | 1 | 0.12 | 0.772 |
位置 Site | 4 | 10.13 | 0.019* | 4 | 17.91 | 0.008** | 4 | 10.62 | 1.6 × 10-4*** | 4 | 6.65 | 0.097* |
残差 Residuals | 9 | 4.41 | 9 | 5.76 | 9 | 1.18 | 9 | 11.81 |
[1] | Bai XQ, Liu C, Ji RX, Shen C, Wang XP (2018). Effects of origin climate on light response characteristics of Caryopteris mongholica. Acta Ecologica Sinica, 38, 8425-8433. |
[ 白雪卡, 刘超, 纪若璇, 沈超, 王襄平 (2018). 种源地气候对蒙古莸光响应特性的影响. 生态学报, 38, 8425-8433.] | |
[2] |
Barboni D, Harrison SP, Bartlein PJ, Jalut G, New M, Prentice IC, Sanchez-Goñi MF, Spessa A, Davis B, Stevenson AC (2004). Relationships between plant traits and climate in the mediterranean region: a pollen data analysis. Journal of Vegetation Science, 15, 635-646.
DOI URL |
[3] |
Chartzoulakis K, Patakas A, Kofidis G, Bosabalidis A, Nastou A (2002). Water stress affects leaf anatomy, gas exchange, water relations and growth of two avocado cultivars. Scientia Horticulturae, 95, 39-50.
DOI URL |
[4] | Chen JJ, Yu H, Xu CB, Zhong QL (2019). Effects of provenance and common garden environment on leaf functional traits of Machilus pauhoi seedlings. Chinese Journal of Applied and Environmental Biology, 25, 648-654. |
[ 陈嘉静, 余华, 徐朝斌, 钟全林 (2019). 种源与同质园环境对刨花楠幼苗叶功能性状的影响. 应用与环境生物学报, 25, 648-654.] | |
[5] | Chen X, Liu HK, Wang Q, Zou HY, Zhu QL, Wang YP (2019). Leaf anatomical characteristics of 11 tree species in the homogeneous habitats of eastern Shandong Province hills. Chinese Journal of Applied and Environmental Biology, 25, 655-664. |
[ 陈旭, 刘洪凯, 王强, 邹红阳, 朱启良, 王延平 (2019). 鲁东丘陵同质生境中11个树种叶解剖学特性比较. 应用与环境生物学报, 25, 655-664.] | |
[6] |
de Lima Silva A, da Silva Alves MV, Coan AI (2014). Importance of anatomical leaf features for characterization of three species of Mapania(Mapanioideae, Cyperaceae) from the Amazon Forest, Brazil. Acta Amazonica, 44, 447-456.
DOI URL |
[7] |
de Villemereuil P, Gaggiotti OE, Mouterde M, Till-Bottraud I (2016). Common garden experiments in the genomic era: new perspectives and opportunities. Heredity, 116, 249-254.
DOI URL |
[8] |
Delzon S (2015). New insight into leaf drought tolerance. Functional Ecology, 29, 1247-1249.
DOI URL |
[9] | Feng YQ, Qin L, Ma HP (2008). The discussion on efficiency and quality of paraffin section in plant microscopy technique course. Experimental Technology and Management, 25, 160-162. |
[ 冯永庆, 秦岭, 马焕普 (2008). 植物显微技术课程中石蜡制片实验教学效率和质量的探讨. 实验技术与管理, 25, 160-162.] | |
[10] | Fu YR, Ma BL, Wang ZL, Yang W (2005). Characteristics of 4 native tree species adapted to arid environment in northern Shaanxi sand-blown area and utilization prospect. Journal of Desert Research, 25, 386-390. |
[ 符亚儒, 麻保林, 王子玲, 杨伟 (2005). 陕北风沙区4种乡土树种适应干旱环境的特性及利用前景. 中国沙漠, 25, 386-390.] | |
[11] | Guo GG, Feng B, Ma BL, Zhang YL, Guo CH, Jing ZB (2013). Leaf anatomical structures of different regional Amygdalus pedunculata Pall. and their drought resistance analysis. Acta Botanica Boreali-Occidentalia Sinica, 33, 720-728. |
[ 郭改改, 封斌, 麻保林, 张应龙, 郭春会, 井赵斌 (2013). 不同区域长柄扁桃叶片解剖结构及其抗旱性分析. 西北植物学报, 33, 720-728.] | |
[12] | Guo JY (2018). Difference on Leaf Morphology Anatomical Structure and Environmental Heterogeneous of Three Psammophytes. Master degree dissertation, Inner Mongolia Agricultural University, Hohhot. |
[ 郭婧宇 (2018). 三种沙生植物叶形态、结构差异性及环境分异. 硕士学位论文, 内蒙古农业大学, 呼和浩特.] | |
[13] | Han L, He KN, Lu XJ, Wang ZL (2008). Changes and environmental effects of leaf water potential of Caryopteris mongolica in Qinghai alpine semi-arid area. Bulletin of Soil and Water Conservation, 28, 1-5. |
[ 韩磊, 贺康宁, 芦新建, 王占林 (2008). 青海高寒半干旱区蒙古莸叶水势变化及其与环境因素的关系. 水土保持通报, 28, 1-5.] | |
[14] |
He JS, Wang XP, Flynn DFB, Wang L, Schmid B, Fang JY (2009). Taxonomic, phylogenetic, and environmental trade-offs between leaf productivity and persistence. Ecology, 90, 2779-2791.
DOI URL |
[15] | He YM (2018). Studies on Ecological Adaptation and Reproductive Strategy of Caryopteris mongolica. PhD dissertation, Inner Mongolia Agricultural University, Hohhot. |
[ 贺一鸣 (2018). 蒙古莸种群生态适应及繁殖更新策略. 博士学位论文, 内蒙古农业大学, 呼和浩特.] | |
[16] |
Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005). Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25, 1965-1978.
DOI URL |
[17] |
Hu MY, Zhang L, Luo TX, Shen W (2012). Variations in leaf functional traits of Stipa purpurea along a rainfall gradient in Xizang, China. Chinese Journal of Plant Ecology, 36, 136-143.
DOI URL |
[ 胡梦瑶, 张林, 罗天祥, 沈维 (2012). 西藏紫花针茅叶功能性状沿降水梯度的变化. 植物生态学报, 36, 136-143.]
DOI URL |
|
[18] |
Ji ZJ, Quan XK, Wang CK (2013). Variations in leaf anatomy of Larix gmelinii reflect adaptation of its photosynthetic capacity to climate changes. Acta Ecologica Sinica, 33, 6967-6974.
DOI URL |
[ 季子敬, 全先奎, 王传宽 (2013). 兴安落叶松针叶解剖结构变化及其光合能力对气候变化的适应性. 生态学报, 33, 6967-6974.]
DOI URL |
|
[19] | Kolattukudy PE (1996). Biosynthetic pathways of cutin and waxes, and their sensitivity to environmental stresses. Plant Cuticles, 83-108. |
[20] | Li AP, Wang XJ, Yang XY, Zhang L (2010). Evaluation of drought resistance capacity of desert shrubs in Hobq desert based on characteristics of leaf anatomical structure. Journal of Desert Research, 30, 1405-1410. |
[ 李爱平, 王晓江, 杨小玉, 张雷 (2010). 库布齐沙漠几种沙生灌木叶解剖结构耐旱特征研究. 中国沙漠, 30, 1405-1410.] | |
[21] | Li FL, Bao WK (2005). Responses of the morphological and anatomical structure of the plant leaf to environmental change. Chinese Bulletin of Botany, 40, 118-127. |
[ 李芳兰, 包维楷 (2005). 植物叶片形态解剖结构对环境变化的响应与适应. 植物学通报, 40, 118-127.] | |
[22] | Li YJ, Li XR, Yang XL (1991). A study on the character of ecology and physiology of aromatic plant— Caryopteris mongolica Bge. Journal of Desert Research, 11, 53-59. |
[ 李玉俊, 李新荣, 杨喜林 (1991). 芳香植物——蒙古莸的生态生理特性及其栽培技术. 中国沙漠, 11, 53-59.] | |
[23] | Liu MY, Liu GL, Kang YX, Zhang S, Wu Y, Wang Y (2018). Responses of leaf morphological and anatomical structure to elevation in an alpine plant Meconopsis integrifolia. Chinese Journal of Ecology, 37, 35-42. |
[ 刘梦颖, 刘光立, 康永祥, 张硕, 吴云, 王玉 (2018). 高山植物全缘叶绿绒蒿叶片形态及解剖结构对海拔的响应. 生态学杂志, 37, 35-42.] | |
[24] | Ma XF, Wang XF, Li Q, He X (2013). The analysis of drought resistance and the comparison of anatomical structures of the leave of Xanthoceras sorbifolia Bunge introduced from different regions. Journal of Arid Land Resources and Environment, 27, 92-96. |
[ 马小芬, 王兴芳, 李强, 贺晓 (2013). 不同种源地文冠果叶片解剖结构比较及抗旱性分析. 干旱区资源与环境, 27, 92-96.] | |
[25] |
Pigliucci M (2006). Phenotypic plasticity and evolution by genetic assimilation. Journal of Experimental Biology, 209, 2362-2367.
DOI URL |
[26] |
Qin FF, Li Q, Cui ZM, Li HP, Yang ZR (2012). Leaf anatomical structures and ecological adaptabilities to light of three alfalfa cultivars with different fall dormancies under shading during overwintering. Chinese Journal of Plant Ecology, 36, 333-345.
DOI URL |
[ 覃凤飞, 李强, 崔棹茗, 李洪萍, 杨智然 (2012). 越冬期遮阴条件下3个不同秋眠型紫花苜蓿品种叶片解剖结构与其光生态适应性. 植物生态学报, 36, 333-345.]
DOI URL |
|
[27] |
Smith WK, Vogelmann TC, DeLucia EH, Bell DT, Shepherd KA (1997). Leaf form and photosynthesis. BioScience, 47, 785-793.
DOI URL |
[28] | Tian LL, Li J, Lin HY, Huang JA, Liu ZH (2019). Response of leaf anatomical structure of dayezhong tea germplasm to latitude. Molecular Plant Breeding, 17, 7262-7268. |
[ 田丽丽, 李娟, 林海燕, 黄建安, 刘仲华 (2019). 大叶种茶树叶片解剖结构对纬度的响应. 分子植物育种, 17, 7262-7268.] | |
[29] | Tian Y, Ni XL, Yu HN, Shen XD, Peng L (2010). Studies on drought resistance on morphology anatomical structure of leave of six species shrubs. Chinese Agricultural Science Bulletin, 26, 113-117. |
[ 田英, 倪细炉, 于海宁, 沈效东, 彭励 (2010). 6种抗旱灌木叶片形态解剖学特征. 中国农学通报, 26, 113-117.] | |
[30] | Wang XJ, Li AP, Ning MS, Zhang JG (2006). Study on the biological and ecological characteristics and economic value of the ecological shrub of Caryopteris mongolica. Journal of Arid Land Resources and Environment, 20, 191-194. |
[ 王晓江, 李爱平, 宁明世, 张纪刚 (2006). 生态灌木蒙古莸的生物生态学特性及其经济价值评价. 干旱区资源与环境, 20, 191-194.] | |
[31] |
Wang XQ, Wang CK, Han Y (2015). Effects of tree species on soil organic carbon density: a common garden experiment of five temperate tree species. Chinese Journal of Plant Ecology, 39, 1033-1043.
DOI URL |
[ 王薪琪, 王传宽, 韩轶 (2015). 树种对土壤有机碳密度的影响: 5种温带树种同质园试验. 植物生态学报, 39, 1033-1043.]
DOI URL |
|
[32] |
Wright IJ, Reich PB, Westoby M (2001). Strategy shifts in leaf physiology, structure and nutrient content between species of high- and low-rainfall and high- and low-nutrient habitats. Functional Ecology, 15, 423-434.
DOI URL |
[33] |
Wright IJ, Reich PB, Westoby M (2004). The worldwide leaf economics spectrum. Nature, 428, 821-827.
DOI URL |
[34] | Yang XY (2008). Study on Drought Resistance Characteristics of Leaf Anatomical Structure of Five Psammophilic Shrub Species. Master degree dissertation, Inner Mongolia Agricultural University, Hohhot. |
[ 杨小玉 (2008). 5种沙生灌木叶片解剖结构与抗旱性研究. 硕士学位论文, 内蒙古农业大学, 呼和浩特.] | |
[35] | Yu HY, Hu XY, He CX, Cui YF, Fan SQ, Bi QX, Wang LB (2019). Differential response of water stress on leaf morphological anatomical structures of varied provenances Xanthocera sorbifolium. Journal of Beijing Forestry University, 41(1), 57-63. |
[ 于海燕, 胡潇予, 何春霞, 崔艺凡, 范思琪, 毕泉鑫, 王利兵 (2019). 文冠果不同种源叶片结构对水分胁迫的差异性响应. 北京林业大学学报, 41(1), 57-63.] | |
[36] | Zhang YR, Dong RC, Mai S, Mei SG (1999). Protection and utilization of Caryopteris mongolica Bunge., one of drought enduring shrub resources. Journal of Arid Land Resources and Environment, 13, 91-94. |
[ 张源润, 董仁才, 麦硕, 梅曙光 (1999). 耐旱灌木蒙古莸花的资源及保护利用. 干旱区资源与环境, 13, 91-94. ] | |
[37] | Zhao XX, Li Y, Su SP, Bai X (2015). Anatomical structure of assimilating shoots of Calligonum mongolicum from six populations and its relationship with geo-ecological factors. Journal of Arid Land Resources and Environment, 29, 55-60. |
[ 赵小仙, 李毅, 苏世平, 白潇 (2015). 6个种群蒙古沙拐枣同化枝解剖结构及与地理生态因子的关系. 干旱区资源与环境, 29, 55-60.] | |
[38] | Zhong YM, Dong FY, Wang WJ, Wang JM, Li JW, Wu B, Jia XH (2017). Anatomical characteristics and adaptability plasticity of Populus euphratica in different habitats. Journal of Beijing Forestry University, 39(10), 53-61. |
[ 钟悦鸣, 董芳宇, 王文娟, 王健铭, 李景文, 吴波, 贾晓红 (2017). 不同生境胡杨叶片解剖特征及其适应可塑性. 北京林业大学学报, 39(10), 53-61.] |
[1] | 萨其拉, 张霞, 朱琳, 康萨如拉. 长期不同放牧强度下荒漠草原优势种无芒隐子草叶片解剖结构变化[J]. 植物生态学报, 2024, 48(3): 331-340. |
[2] | 杜旭龙, 黄锦学, 杨智杰, 熊德成. 增温对植物叶片和细根氧化损伤与防御特征及其相互关联影响的研究进展[J]. 植物生态学报, 2024, 48(2): 135-146. |
[3] | 陈雨婷, 马松梅, 张丹, 张林, 王春成. 新疆同域分布梭梭和白梭梭多样性格局及其形成机制[J]. 植物生态学报, 2024, 48(1): 56-67. |
[4] | 于笑, 纪若璇, 任天梦, 夏新莉, 尹伟伦, 刘超. 中国北方蒙古莸群落的分布、特征和分类[J]. 植物生态学报, 2023, 47(8): 1182-1192. |
[5] | 张慧玲, 张耀艺, 彭清清, 杨静, 倪祥银, 吴福忠. 中亚热带同质园不同生活型树种微量元素重吸收效率的差异[J]. 植物生态学报, 2023, 47(7): 978-987. |
[6] | 周莹莹, 林华. 不同水热梯度下冠层优势树种叶片热力性状及适应策略的变化趋势[J]. 植物生态学报, 2023, 47(5): 733-744. |
[7] | 刘婧, 缑倩倩, 王国华, 赵峰侠. 晋西北丘陵风沙区柠条锦鸡儿叶片与土壤生态化学计量特征[J]. 植物生态学报, 2023, 47(4): 546-558. |
[8] | 王文伟, 韩伟鹏, 刘文文. 滨海湿地入侵植物互花米草叶片功能性状对潮位的短期响应[J]. 植物生态学报, 2023, 47(2): 216-226. |
[9] | 安凡, 李宝银, 钟全林, 程栋梁, 徐朝斌, 邹宇星, 张雪, 邓兴宇, 林秋燕. 不同种源刨花楠苗木生长与主要功能性状对氮添加的响应[J]. 植物生态学报, 2023, 47(12): 1693-1707. |
[10] | 叶洁泓, 于成龙, 卓少菲, 陈新兰, 杨科明, 文印, 刘慧. 木兰科植物叶片光合系统耐热性与叶片形态及温度生态位的关系[J]. 植物生态学报, 2023, 47(10): 1432-1440. |
[11] | 林马震, 黄勇, 李洋, 孙建. 高寒草地植物生存策略地理分布特征及其影响因素[J]. 植物生态学报, 2023, 47(1): 41-50. |
[12] | 姚萌, 康荣华, 王盎, 马方园, 李靳, 台子晗, 方运霆. 利用15N示踪技术研究木荷与马尾松幼苗叶片对NO2的吸收与分配[J]. 植物生态学报, 2023, 47(1): 114-122. |
[13] | 李一丁, 桑清田, 张灏, 刘龙昌, 潘庆民, 王宇, 刘伟, 袁文平. 内蒙古半干旱地区空气和土壤加湿对幼龄樟子松生长的影响[J]. 植物生态学报, 2022, 46(9): 1077-1085. |
[14] | 袁春阳, 李济宏, 韩鑫, 洪宗文, 刘宣, 杜婷, 游成铭, 李晗, 谭波, 徐振锋. 树种对土壤微生物生物量碳氮的影响: 同质园实验[J]. 植物生态学报, 2022, 46(8): 882-889. |
[15] | 李露, 金光泽, 刘志理. 阔叶红松林3种阔叶树种柄叶性状变异与相关性[J]. 植物生态学报, 2022, 46(6): 687-699. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 2910
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 1393
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19 51La