植物生态学报 ›› 2023, Vol. 47 ›› Issue (1): 114-122.DOI: 10.17521/cjpe.2022.0085
所属专题: 稳定同位素生态学
姚萌1,2, 康荣华1,3,*(), 王盎1,3, 马方园4, 李靳1, 台子晗1,2, 方运霆1,3
收稿日期:
2022-03-07
接受日期:
2022-04-22
出版日期:
2023-01-20
发布日期:
2022-08-26
通讯作者:
*康荣华(kangrh@iae.ac.cn)
基金资助:
YAO Meng1,2, KANG Rong-Hua1,3,*(), WANG Ang1,3, MA Fang-Yuan4, LI Jin1, TAI Zi-Han1,2, FANG Yun-Ting1,3
Received:
2022-03-07
Accepted:
2022-04-22
Online:
2023-01-20
Published:
2022-08-26
Contact:
*KANG Rong-Hua(kangrh@iae.ac.cn)
Supported by:
摘要:
大气氮氧化物(NOx = NO + NO2)随着干沉降进入森林生态系统时, 会首先接触森林冠层。森林乔木能通过叶片吸收多少NO2以及对吸收的NO2是如何分配的, 目前尚不清楚。该研究利用15N稳定同位素示踪技术, 对中国南方常见乔木树种木荷(Schima superba)和马尾松(Pinus massoniana)幼苗在黑暗和光照两种条件下进行了15NO2静态箱熏蒸实验, 检测并分析了两种植物的15N回收率以及吸收的NO2在植物各组织中的分配结果。结果显示: 植物主要通过气孔吸收NO2, 木荷和马尾松在黑暗条件下整体分别能回收10.3% ± 5.9%和20.4% ± 7.0% 15NO2, 在光照条件下整体分别能回收35.9% ± 5.4%和68.2% ± 7.6% 15NO2。两种植物各组织中的平均干质量15N回收率均表现为叶>枝>干>根, 大部分吸收的NO2在短时间内都留在叶片中, 木荷和马尾松叶片15N回收率占比在黑暗条件下分别为72%和49%, 在光照条件下分别为91%和96%。本研究的结果表明森林乔木对NO2的吸收不可忽略, 森林乔木吸收NO2这一过程在森林生态系统氮收支中起着十分重要的作用。
姚萌, 康荣华, 王盎, 马方园, 李靳, 台子晗, 方运霆. 利用15N示踪技术研究木荷与马尾松幼苗叶片对NO2的吸收与分配. 植物生态学报, 2023, 47(1): 114-122. DOI: 10.17521/cjpe.2022.0085
YAO Meng, KANG Rong-Hua, WANG Ang, MA Fang-Yuan, LI Jin, TAI Zi-Han, FANG Yun-Ting. Foliar assimilation and distribution of NO2 in Schima superba and Pinus massoniana seedlings using 15N stable isotope tracing technique. Chinese Journal of Plant Ecology, 2023, 47(1): 114-122. DOI: 10.17521/cjpe.2022.0085
组织 Tissue | 木荷 S. superba | 马尾松 P. massoniana | ||
---|---|---|---|---|
黑暗 Dark | 光照 Light | 黑暗 Dark | 光照 Light | |
叶 Leaf | 1.10 ± 0.05 | 1.03 ± 0.06 | 1.09 ± 0.03 | 1.08 ± 0.07 |
枝 Branch | 0.39 ± 0.03 | 0.39 ± 0.04 | 0.46 ± 0.05 | 0.46 ± 0.06 |
干 Stem | 0.20 ± 0.02 | 0.20 ± 0.01 | 0.34 ± 0.03 | 0.29 ± 0.02 |
根 Root | 0.34 ± 0.01 | 0.31 ± 0.01 | 0.52 ± 0.11 | 0.45 ± 0.01 |
表1 木荷和马尾松各组织氮含量(%) (平均值±标准误)
Table 1 Nitrogen content (%) of Schima superba and Pinus massoniana (mean ± SE)
组织 Tissue | 木荷 S. superba | 马尾松 P. massoniana | ||
---|---|---|---|---|
黑暗 Dark | 光照 Light | 黑暗 Dark | 光照 Light | |
叶 Leaf | 1.10 ± 0.05 | 1.03 ± 0.06 | 1.09 ± 0.03 | 1.08 ± 0.07 |
枝 Branch | 0.39 ± 0.03 | 0.39 ± 0.04 | 0.46 ± 0.05 | 0.46 ± 0.06 |
干 Stem | 0.20 ± 0.02 | 0.20 ± 0.01 | 0.34 ± 0.03 | 0.29 ± 0.02 |
根 Root | 0.34 ± 0.01 | 0.31 ± 0.01 | 0.52 ± 0.11 | 0.45 ± 0.01 |
组织 Tissue | 木荷 S. superba | 马尾松 P. massoniana | ||
---|---|---|---|---|
黑暗 Dark | 光照 Light | 黑暗 Dark | 光照 Light | |
叶 Leaf | 5.08 ± 3.54b | 4.69 ± 1.21b | 24.50 ± 2.81a | 25.00 ± 3.26a |
枝 Branch | 2.24 ± 0.63a | 1.76 ± 0.26a | 2.88 ± 1.77a | 3.58 ± 1.10a |
干 Stem | 10.38 ± 1.40b | 12.69 ± 0.79b | 17.56 ± 1.52a | 16.00 ± 3.88ab |
根 Root | 17.64 ± 3.26a | 33.21 ± 1.97a | 8.66 ± 0.27ab | 7.48 ± 1.55b |
表2 木荷和马尾松各组织干质量(g) (平均值±标准误)
Table 2 Dry mass (g) of Schima superba and Pinus massoniana (mean ± SE)
组织 Tissue | 木荷 S. superba | 马尾松 P. massoniana | ||
---|---|---|---|---|
黑暗 Dark | 光照 Light | 黑暗 Dark | 光照 Light | |
叶 Leaf | 5.08 ± 3.54b | 4.69 ± 1.21b | 24.50 ± 2.81a | 25.00 ± 3.26a |
枝 Branch | 2.24 ± 0.63a | 1.76 ± 0.26a | 2.88 ± 1.77a | 3.58 ± 1.10a |
干 Stem | 10.38 ± 1.40b | 12.69 ± 0.79b | 17.56 ± 1.52a | 16.00 ± 3.88ab |
根 Root | 17.64 ± 3.26a | 33.21 ± 1.97a | 8.66 ± 0.27ab | 7.48 ± 1.55b |
树种 Species | 黑暗 Dark | 光照 Light |
---|---|---|
木荷 S. superba | 738.69 ± 348.00b | 783.67 ± 160.37b |
马尾松 P. massoniana | 5138.45 ± 629.32a | 6 895.78 ± 1255.28a |
表3 木荷和马尾松叶片表面积(cm2) (平均值±标准误)
Table 3 Leave area (cm2) of Schima superba and Pinus massoniana (mean ± SE)
树种 Species | 黑暗 Dark | 光照 Light |
---|---|---|
木荷 S. superba | 738.69 ± 348.00b | 783.67 ± 160.37b |
马尾松 P. massoniana | 5138.45 ± 629.32a | 6 895.78 ± 1255.28a |
图3 对照、黑暗条件、光照条件下15NO2脉冲熏蒸后木荷(A)、马尾松(B)各组织的15N同位素丰度(δ15N) (平均值±标准误, n = 3)。不同小写字母表示不同处理下相同组织中δ15N差异显著(p < 0.05)。
Fig. 3 15N isotopic abundance (δ15N) in Schima superba (A) and Pinus massoniana (B) under natural, dark and light conditions after 15NO2 fumigation (mean ± SE, n = 3). Different lewercase letters indicate significant differences in δ15N of same tissue under different treatments (p < 0.05).
图4 黑暗和光照条件下木荷、马尾松各组织15N回收率(平均值±标准误, n = 3)。
Fig. 4 15N recovery in different tissues in Schima superba and Pinus massoniana under dark and light condition (mean ± SE, n = 3).
图5 黑暗和光照条件下木荷、马尾松各组织15N回收率所占比例。
Fig. 5 Proportion of 15N recovery in different tissues in Schima superba and Pinus massoniana under dark and light condition.
组织 Tissue | 木荷 S. superba | 马尾松 P. massoniana | ||
---|---|---|---|---|
黑暗 Dark | 光照 Light | 黑暗 Dark | 光照 Light | |
叶 Leaf | 1.878 | 9.009 | 0.498 | 2.690 |
枝 Branch | 0.374 | 0.142 | 0.912 | 0.159 |
干 Stem | 0.138 | 0.064 | 0.485 | 0.112 |
根 Root | 0.020 | 0.059 | 0.019 | 0.006 |
表4 木荷和马尾松各组织平均干质量15N回收率(g-1)
Table 4 15N recovery per dry mass (g-1) in different tissues of Schima superba and Pinus massoniana
组织 Tissue | 木荷 S. superba | 马尾松 P. massoniana | ||
---|---|---|---|---|
黑暗 Dark | 光照 Light | 黑暗 Dark | 光照 Light | |
叶 Leaf | 1.878 | 9.009 | 0.498 | 2.690 |
枝 Branch | 0.374 | 0.142 | 0.912 | 0.159 |
干 Stem | 0.138 | 0.064 | 0.485 | 0.112 |
根 Root | 0.020 | 0.059 | 0.019 | 0.006 |
[1] |
Bortolazzi A, da Ros L, Rodeghiero M, Tognetti R, Tonon G, Ventura M (2021). The canopy layer, a biogeochemical actor in the forest N-cycle. Science of the Total Environment, 776, 146024. DOI: 10.1016/j.scitotenv.2021.146024.
DOI |
[2] |
Bryan Dail D, Hollinger DY, Davidson EA, Fernandez I, Sievering HC, Scott NA, Gaige E (2009). Distribution of nitrogen- 15 tracers applied to the canopy of a mature spruce- hemlock stand, Howland, Maine, USA. Oecologia, 160, 589-599.
DOI PMID |
[3] |
Chaparro-Suarez IG, Meixner FX, Kesselmeier J (2011). Nitrogen dioxide (NO2) uptake by vegetation controlled by atmospheric concentrations and plant stomatal aperture. Atmospheric Environment, 45, 5742-5750.
DOI URL |
[4] |
Dong SF, Cheng LL, Scagel CF, Fuchigami LH (2002). Nitrogen absorption, translocation and distribution from urea applied in autumn to leaves of young potted apple (Malus domestica) trees. Tree Physiology, 22, 1305-1310.
PMID |
[5] | Eller ASD, Sparks JP (2006). Predicting leaf-level fluxes of O3 and NO2: the relative roles of diffusion and biochemical processes. Plant, Cell & Environment, 29, 1742-1750. |
[6] |
Galloway JN, Dentener FJ, Capone DG, Boyer EW, Howarth RW, Seitzinger SP, Asner GP, Cleveland CC, Green PA, Holland EA, Karl DM, Michaels AF, Porter JH, Townsend AR, Vöosmarty CJ (2004). Nitrogen cycles: past, present, and future. Biogeochemistry, 70, 153-226.
DOI URL |
[7] |
Galloway JN, Townsend AR, Erisman JW, Bekunda M, Cai ZC, Freney JR, Martinelli LA, Seitzinger SP, Sutton MA (2008). Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science, 320, 889-892.
DOI PMID |
[8] |
Geßler A, Rienks M, Rennenberg H (2002). Stomatal uptake and cuticular adsorption contribute to dry deposition of NH3 and NO2 to needles of adult spruce (Picea abies) trees. New Phytologist, 156, 179-194.
DOI URL |
[9] |
Jensen ES, Pilegaard K (1993). Absorption of nitrogen dioxide by barley in open-top chambers. New Phytologist, 123, 359-364.
DOI URL |
[10] |
Ke PP, Yu Q, Luo Y, Kang RH, Duan L (2020). Fluxes of nitrogen oxides above a subtropical forest canopy in China. Science of the Total Environment, 715, 136993. DOI: 10.1016/j.scitotenv.2020.136993.
DOI |
[11] | Luo YZ, Cheng ZY (2011). Impact of water stress on leaf water potential, transpiration rate (Tr) and stomatal conductance (Gs) of alfalfa. Acta Agrestia Sinica, 19, 215-221. |
[ 罗永忠, 成自勇 (2011). 水分胁迫对紫花苜蓿叶水势、蒸腾速率和气孔导度的影响. 草地学报, 19, 215-221.]
DOI |
|
[12] | Morikawa H, Higaki A, Nohno M, Takahashi M, Kamada M, Nakata M, Toyohara G, Okamura Y, Matsui K, Kitani S, Fujita K, Irifune K, Goshima N (1998). More than a 600- fold variation in nitrogen dioxide assimilation among 217 plant taxa. Plant, Cell & Environment, 21, 180-190. |
[13] |
Nair RKF, Perks MP, Weatherall A, Baggs EM, Mencuccini M (2016). Does canopy nitrogen uptake enhance carbon sequestration by trees? Global Change Biology, 22, 875-888.
DOI PMID |
[14] |
Patrick JW (1997). PHLOEM UNLOADING: sieve element unloading and post-sieve element transport. Annual Review of Plant Physiology and Plant Molecular Biology, 48, 191-222.
PMID |
[15] | Ping XY, Zhou GS, Sun JS (2010). Advances in the study of photosynthate allocation and its controls. Chinese Journal of Plant Ecology, 34, 100-111. |
[ 平晓燕, 周广胜, 孙敬松 (2010). 植物光合产物分配及其影响因子研究进展. 植物生态学报, 34, 100-111.]
DOI |
|
[16] | Rennenberg H, Gessler A (1999). Consequences of N deposition to forest ecosystems—Recent results and future research needs. Water, Air, & Soil Pollution, 116, 47-64. |
[17] | Shi ZM, Tang JC, Cheng RM, Luo D, Liu SR (2015). A review of nitrogen allocation in leaves and factors in its effects. Acta Ecologica Sinica, 35, 5909-5919. |
[ 史作民, 唐敬超, 程瑞梅, 罗达, 刘世荣 (2015). 植物叶片氮分配及其影响因子研究进展. 生态学报, 35, 5909-5919.] | |
[18] | Si JH, Feng Q, Yu TF, Zhao CY (2014). Research advances in nighttime transpiration and its eco-hydrological implications. Advances in Water Science, 25, 907-914. |
[ 司建华, 冯起, 鱼腾飞, 赵春彦 (2014). 植物夜间蒸腾及其生态水文效应研究进展. 水科学进展, 25, 907-914.] | |
[19] |
Siegwolf RTW, Matyssek R, Saurer M, Maurer S, Günthardt- Goerg MS, Schmutz P, Bucher JB (2001). Stable isotope analysis reveals differential effects of soil nitrogen and nitrogen dioxide on the water use efficiency in hybrid poplar leaves. New Phytologist, 149, 233-246.
DOI PMID |
[20] |
Sparks JP (2009). Ecological ramifications of the direct foliar uptake of nitrogen. Oecologia, 159, 1-13.
DOI PMID |
[21] |
Sparks JP, Monson RK, Sparks KL, Lerdau M (2001). Leaf uptake of nitrogen dioxide (NO2) in a tropical wet forest: implications for tropospheric chemistry. Oecologia, 127, 214-221.
DOI PMID |
[22] |
Takahashi M, Higaki A, Nohno M, Kamada M, Okamura Y, Matsui K, Kitani S, Morikawa H (2005). Differential assimilation of nitrogen dioxide by 70 taxa of roadside trees at an urban pollution level. Chemosphere, 61, 633-639.
PMID |
[23] |
Templer PH, Mack MC, Chapin III FS, Christenson LM, Compton JE, Crook HD, Currie WS, Curtis CJ, Bryan Dail D, D’Antonio CM, Emmett BA, Epstein HE, Goodale CL, Gundersen P, Hobbie SE, et al. (2012). Sinks for nitrogen inputs in terrestrial ecosystems: a meta-analysis of 15N tracer field studies. Ecology, 93, 1816-1829.
PMID |
[24] |
Tomaszewski T, Sievering H (2007). Canopy uptake of atmospheric N deposition at a conifer forest: part II—Response of chlorophyll fluorescence and gas exchange parameters. Tellus B: Chemical and Physical Meteorology, 59, 493-501.
DOI URL |
[25] |
Vallano DM, Sparks JP (2008). Quantifying foliar uptake of gaseous nitrogen dioxide using enriched foliar δ15N values. New Phytologist, 177, 946-955.
DOI PMID |
[26] | Wang W, Ganzeveld L, Rossabi S, Hueber J, Helmig D (2020). Measurement report:leaf-scale gas exchange of atmospheric reactive trace species (NO2, NO, O3) at a northern hardwood forest in Michigan. Atmospheric Chemistry and Physics, 20, 11287-11304. |
[27] |
Wang X, Wang B, Wang CZ, Wang ZH, Li J, Jia Z, Yang S, Li P, Wu YT, Pan SN, Liu LL (2021). Canopy processing of N deposition increases short-term leaf N uptake and photosynthesis, but not long-term N retention for aspen seedlings. New Phytologist, 229, 2601-2610.
DOI PMID |
[28] | Wang Y, Teng ZY, Zhang XL, Che YH, Sun GY (2019). Research progress on the effects of atmospheric nitrogen dioxide on plant growth and metabolism. Chinese Journal of Applied Ecology, 30, 316-324. |
[ 王月, 滕志远, 张秀丽, 车延辉, 孙广玉 (2019). 大气NO2影响植物生长与代谢的研究进展. 应用生态学报, 30, 316-324.]
DOI |
|
[29] |
Yu GR, Jia YL, He NP, Zhu JX, Chen Z, Wang QF, Piao SL, Liu XJ, He HL, Guo XB, Wen Z, Li P, Ding GA, Goulding K (2019). Stabilization of atmospheric nitrogen deposition in China over the past decade. Nature Geoscience, 12, 424-429.
DOI |
[30] | Zhang YJ, Feng YL (2004). The relationships between photosynthetic capacity and lamina mass per unit area, nitrogen content and partitioning in seedlings of two Ficus species grown under different irradiance. Acta Photophysiologica Sinica, 30, 269-276. |
[ 张亚杰, 冯玉龙 (2004). 不同光强下生长的两种榕树叶片光合能力与比叶重、氮含量及分配的关系. 植物生理与分子生物学学报, 30, 269-276.] | |
[31] |
Zhao YH, Zhang L, Chen YF, Liu XJ, Xu W, Pan YP, Duan L (2017). Atmospheric nitrogen deposition to China: a model analysis on nitrogen budget and critical load exceedance. Atmospheric Environment, 153, 32-40.
DOI URL |
[1] | 林夏珍, 刘林, 董婷婷, 方琦博, 郭庆学. 非结构性碳水化合物与氮分配对美洲黑杨和青杨耐盐能力的影响[J]. 植物生态学报, 2021, 45(9): 961-971. |
[2] | 孟令君, 姚杰, 秦江环, 范春雨, 张春雨, 赵秀海. 吉林蛟河针阔混交林乔木幼苗组成及其密度格局影响因素[J]. 植物生态学报, 2018, 42(6): 653-662. |
[3] | 刘帅, 廖嘉星, 肖翠, 范秀华. 长白山次生针阔混交林乔木幼苗存活的影响因素分析[J]. 植物生态学报, 2016, 40(7): 711-722. |
[4] | 朱军涛, 李向义, 张希明, 林丽莎, 杨尚功. 塔克拉玛干沙漠南缘豆科与非豆科植物的氮分配[J]. 植物生态学报, 2010, 34(9): 1025-1032. |
[5] | 孙谷畴, 赵平, 蔡锡安, 曾小平, 饶兴权. 空气NH3增高情况下不同形式氮源对荫香光合作用和氮利用的影响[J]. 植物生态学报, 2004, 28(4): 539-546. |
[6] | 林丰平, 陈章和, 陈兆平, 张德明. 高CO2浓度下豆科4种乔木幼苗的生理生化反应[J]. 植物生态学报, 1999, 23(3): 220-227. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19