植物生态学报 ›› 2018, Vol. 42 ›› Issue (6): 653-662.DOI: 10.17521/cjpe.2018.0025
收稿日期:
2018-01-16
修回日期:
2018-06-09
出版日期:
2018-06-20
发布日期:
2018-06-20
通讯作者:
赵秀海
基金资助:
MENG Ling-Jun,YAO Jie,QIN Jiang-Huan,FAN Chun-Yu,ZHANG Chun-Yu,ZHAO Xiu-Hai()
Received:
2018-01-16
Revised:
2018-06-09
Online:
2018-06-20
Published:
2018-06-20
Contact:
Xiu-Hai ZHAO
Supported by:
摘要:
以吉林蛟河次生针阔混交林42 hm 2固定监测样地中209个幼苗监测站内的乔木幼苗为研究对象, 基于2016和2017年幼苗调查数据, 探究幼苗物种组成、数量动态等特征, 并运用广义线性混合效应模型分析了幼苗密度与生物邻体及其生境因素的相关性。结果表明: (1)该样地内所有幼苗监测站共调查到幼苗4 245株, 分属10科12属18种, 新生幼苗的数量在物种和调查年份间均有明显差异, 其中水曲柳(Fraxinus mandschurica)和紫椴(Tilia amurensis)幼苗表现出大量出生和死亡的动态特征。(2)群落水平上, 幼苗密度与局域同种成体胸高断面积之和、土壤全磷和有效钾等养分含量显著正相关, 适宜大树生长的生境同样适宜幼苗的生长。(3)水曲柳幼苗密度的影响因素与群落水平一致, 红松(Pinus koraiensis)存在明显的生境偏好, 在湿度较小、土壤全磷、有效氮和有效磷含量较低的生境中密度更高。相对于多年生幼苗, 同种成年邻体对当年生幼苗密度影响更加显著。该研究证实了扩散限制和生境过滤共同影响幼苗密度格局, 生物邻体和生境异质性的相对重要性随幼苗物种种类和年龄级变化。
孟令君, 姚杰, 秦江环, 范春雨, 张春雨, 赵秀海. 吉林蛟河针阔混交林乔木幼苗组成及其密度格局影响因素. 植物生态学报, 2018, 42(6): 653-662. DOI: 10.17521/cjpe.2018.0025
MENG Ling-Jun, YAO Jie, QIN Jiang-Huan, FAN Chun-Yu, ZHANG Chun-Yu, ZHAO Xiu-Hai. Drivers of composition and density pattern of tree seedlings in a secondary mixed conifer and broad-leaved forest, Jiaohe, Jilin, China. Chinese Journal of Plant Ecology, 2018, 42(6): 653-662. DOI: 10.17521/cjpe.2018.0025
土壤变量 Soil variables | PC1 | PC2 | PC3 |
---|---|---|---|
全氮 Total nitrogen | 0.320 | -0.337 | 0.538 |
全磷 Total phosphorus | 0.450 | 0.182 | -0.218 |
全钾 Total potassium | -0.371 | -0.492 | - |
有机质 Organic matter | 0.378 | -0.523 | 0.233 |
有效氮 Available nitrogen | 0.421 | -0.319 | -0.359 |
有效磷 Available phosphorus | - | -0.258 | -0.688 |
有效钾 Available potassium | 0.480 | 0.411 | - |
变异解释 Proportion of variance | 34.224% | 18.990% | 16.428% |
表1 各土壤变量分别在3个主成分上的载荷值
Table 1 The loadings of the soil variables for each of the three PCA axes
土壤变量 Soil variables | PC1 | PC2 | PC3 |
---|---|---|---|
全氮 Total nitrogen | 0.320 | -0.337 | 0.538 |
全磷 Total phosphorus | 0.450 | 0.182 | -0.218 |
全钾 Total potassium | -0.371 | -0.492 | - |
有机质 Organic matter | 0.378 | -0.523 | 0.233 |
有效氮 Available nitrogen | 0.421 | -0.319 | -0.359 |
有效磷 Available phosphorus | - | -0.258 | -0.688 |
有效钾 Available potassium | 0.480 | 0.411 | - |
变异解释 Proportion of variance | 34.224% | 18.990% | 16.428% |
树种 Species | 幼苗数量 No. of seedlings | 新生幼苗数量(新生率) No. of recruitment (Recruitment rate (%)) | 死亡幼苗数量(死亡率) No. of mortality (Mortality rate (%)) | 幼苗密度 Seedling density (Ind.·m-2) | 分布的样方数 No. of stations occupied | 重要值 Important value | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
2016 | 2017 | 2016 | 2017 | 2016-2017 | 2016 | 2017 | 2016 | 2017 | 2016 | 2017 | |
水曲柳 Fraxinus mandschurica | 1 769 | 796 | 871 (49.2) | 213 (26.8) | 1 186 (67.0) | 2.116 | 0.952 | 498 | 317 | 52.28 | 42.11 |
色木槭 Acer mono | 199 | 177 | 7 (3.5) | 16 (9.0) | 38 (19.1) | 0.238 | 0.212 | 143 | 124 | 9.59 | 12.45 |
紫椴 Tilia amurensis | 306 | 124 | 274 (89.5) | 89 (71.8) | 271 (88.6) | 0.366 | 0.148 | 169 | 81 | 12.58 | 8.38 |
东北枫 Acer mandshuricum | 127 | 159 | 12 (9.4) | 44 (27.7) | 12 (9.4) | 0.152 | 0.19 | 100 | 120 | 6.5 | 11.68 |
红松 Pinus koraiensis | 192 | 121 | 156 (81.3) | 35 (28.9) | 106 (55.2) | 0.230 | 0.145 | 94 | 60 | 7.38 | 7.08 |
簇毛枫 Acer barbinerve | 101 | 107 | 17 (16.8) | 14 (13.1) | 8 (7.9) | 0.121 | 0.128 | 34 | 31 | 3.22 | 4.99 |
胡桃楸 Juglans mandshurica | 43 | 29 | 20 (46.5) | 14 (48.3) | 28 (65.1) | 0.051 | 0.035 | 40 | 25 | 2.46 | 2.31 |
杉松 Abies holophylla | 35 | 29 | 13 (37.1) | 5 (17.2) | 11 (31.4) | 0.042 | 0.035 | 28 | 24 | 1.81 | 2.25 |
蒙古栎 Quercus mongolica | 1 | 62 | 0 (0) | 62 (100) | 1 (100) | 0.001 | 0.074 | 1 | 27 | 0.06 | 3.41 |
千金榆 Carpinus cordata | 30 | 21 | 14 (46.7) | 6 (28.6) | 15 (50) | 0.036 | 0.025 | 26 | 19 | 1.64 | 1.72 |
裂叶榆 Ulmus laciniata | 24 | 21 | 0 (0) | 0 (0) | 3 (12.5) | 0.029 | 0.025 | 16 | 17 | 1.10 | 1.61 |
糠椴 Tilia mandshurica | 10 | 6 | 4 (40.0) | 1 (16.7) | 5 (50) | 0.012 | 0.007 | 8 | 5 | 0.52 | 0.47 |
春榆 Ulmus davidiana var. japonica | 9 | 5 | 3 (33.3) | 1 (20.0) | 5 (55.6) | 0.011 | 0.006 | 8 | 4 | 0.50 | 0.38 |
三花枫 Acer triflorum | 2 | 4 | 1 (50) | 2 (50) | 0 | 0.002 | 0.005 | 2 | 4 | 0.12 | 0.35 |
黄檗 Phellodendron amurense | 2 | 3 | 1 (50.0) | 3 (100) | 2 (100) | 0.002 | 0.004 | 2 | 3 | 0.12 | 0.26 |
青楷枫 Acer tegmentosum | 2 | 3 | 0 (0) | 3 (100) | 2 (100) | 0.002 | 0.004 | 2 | 2 | 0.12 | 0.21 |
毛榛 Corylus mandshurica | 0 | 4 | 0 | 4 (100) | 0 | 0 | 0.005 | 0 | 2 | 0 | 0.24 |
水榆花楸 Sorbus alnifolia | 0 | 1 | 0 | 1 (100) | 0 | 0 | 0.001 | 0 | 1 | 0 | 0.09 |
共计 Total | 2 852 | 1 672 | 1 393 (48.8) | 513 (30.7) | 1 693 (59.4) | 3.411 | 2.001 |
表2 幼苗物种数量组成
Table 2 Quantitative composition of seedling species
树种 Species | 幼苗数量 No. of seedlings | 新生幼苗数量(新生率) No. of recruitment (Recruitment rate (%)) | 死亡幼苗数量(死亡率) No. of mortality (Mortality rate (%)) | 幼苗密度 Seedling density (Ind.·m-2) | 分布的样方数 No. of stations occupied | 重要值 Important value | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
2016 | 2017 | 2016 | 2017 | 2016-2017 | 2016 | 2017 | 2016 | 2017 | 2016 | 2017 | |
水曲柳 Fraxinus mandschurica | 1 769 | 796 | 871 (49.2) | 213 (26.8) | 1 186 (67.0) | 2.116 | 0.952 | 498 | 317 | 52.28 | 42.11 |
色木槭 Acer mono | 199 | 177 | 7 (3.5) | 16 (9.0) | 38 (19.1) | 0.238 | 0.212 | 143 | 124 | 9.59 | 12.45 |
紫椴 Tilia amurensis | 306 | 124 | 274 (89.5) | 89 (71.8) | 271 (88.6) | 0.366 | 0.148 | 169 | 81 | 12.58 | 8.38 |
东北枫 Acer mandshuricum | 127 | 159 | 12 (9.4) | 44 (27.7) | 12 (9.4) | 0.152 | 0.19 | 100 | 120 | 6.5 | 11.68 |
红松 Pinus koraiensis | 192 | 121 | 156 (81.3) | 35 (28.9) | 106 (55.2) | 0.230 | 0.145 | 94 | 60 | 7.38 | 7.08 |
簇毛枫 Acer barbinerve | 101 | 107 | 17 (16.8) | 14 (13.1) | 8 (7.9) | 0.121 | 0.128 | 34 | 31 | 3.22 | 4.99 |
胡桃楸 Juglans mandshurica | 43 | 29 | 20 (46.5) | 14 (48.3) | 28 (65.1) | 0.051 | 0.035 | 40 | 25 | 2.46 | 2.31 |
杉松 Abies holophylla | 35 | 29 | 13 (37.1) | 5 (17.2) | 11 (31.4) | 0.042 | 0.035 | 28 | 24 | 1.81 | 2.25 |
蒙古栎 Quercus mongolica | 1 | 62 | 0 (0) | 62 (100) | 1 (100) | 0.001 | 0.074 | 1 | 27 | 0.06 | 3.41 |
千金榆 Carpinus cordata | 30 | 21 | 14 (46.7) | 6 (28.6) | 15 (50) | 0.036 | 0.025 | 26 | 19 | 1.64 | 1.72 |
裂叶榆 Ulmus laciniata | 24 | 21 | 0 (0) | 0 (0) | 3 (12.5) | 0.029 | 0.025 | 16 | 17 | 1.10 | 1.61 |
糠椴 Tilia mandshurica | 10 | 6 | 4 (40.0) | 1 (16.7) | 5 (50) | 0.012 | 0.007 | 8 | 5 | 0.52 | 0.47 |
春榆 Ulmus davidiana var. japonica | 9 | 5 | 3 (33.3) | 1 (20.0) | 5 (55.6) | 0.011 | 0.006 | 8 | 4 | 0.50 | 0.38 |
三花枫 Acer triflorum | 2 | 4 | 1 (50) | 2 (50) | 0 | 0.002 | 0.005 | 2 | 4 | 0.12 | 0.35 |
黄檗 Phellodendron amurense | 2 | 3 | 1 (50.0) | 3 (100) | 2 (100) | 0.002 | 0.004 | 2 | 3 | 0.12 | 0.26 |
青楷枫 Acer tegmentosum | 2 | 3 | 0 (0) | 3 (100) | 2 (100) | 0.002 | 0.004 | 2 | 2 | 0.12 | 0.21 |
毛榛 Corylus mandshurica | 0 | 4 | 0 | 4 (100) | 0 | 0 | 0.005 | 0 | 2 | 0 | 0.24 |
水榆花楸 Sorbus alnifolia | 0 | 1 | 0 | 1 (100) | 0 | 0 | 0.001 | 0 | 1 | 0 | 0.09 |
共计 Total | 2 852 | 1 672 | 1 393 (48.8) | 513 (30.7) | 1 693 (59.4) | 3.411 | 2.001 |
变量 Variables | 数据 Data | ||||
---|---|---|---|---|---|
最小值 Min. | 最大值 Max. | 平均值 Mean | |||
生物邻体变量 Biotic neighbors variables | |||||
同种成体胸高断面积 Conspecific adult basal area (ConBa) | 0 | 2.466 1 | 0.407 2 | ||
异种成体胸高断面积 Heterospecific adult basal area (HetBa) | 1.233 | 8.151 | 3.56 | ||
生境变量 Habitat variables | |||||
林冠开阔度 Canopy openness | 0.989 | 3.982 | 2.148 | ||
土壤含水量 Moisture (%) | 13 | 76.4 | 26.74 | ||
土壤pH值 Soil pH value | 3.96 | 5.44 | 4.603 | ||
第一主成分 The first principal component (PC1) | -3.140 6 | 4.209 1 | 0.188 2 | ||
第二主成分 The second principal component (PC2) | -6.833 9 | 3.225 3 | 0.312 3 | ||
第三主成分 The third principal component (PC3) | -4.091 0 | 2.157 4 | 0.176 6 |
表3 幼苗密度模型中使用的参数
Table 3 Parameters used in models of seedling density
变量 Variables | 数据 Data | ||||
---|---|---|---|---|---|
最小值 Min. | 最大值 Max. | 平均值 Mean | |||
生物邻体变量 Biotic neighbors variables | |||||
同种成体胸高断面积 Conspecific adult basal area (ConBa) | 0 | 2.466 1 | 0.407 2 | ||
异种成体胸高断面积 Heterospecific adult basal area (HetBa) | 1.233 | 8.151 | 3.56 | ||
生境变量 Habitat variables | |||||
林冠开阔度 Canopy openness | 0.989 | 3.982 | 2.148 | ||
土壤含水量 Moisture (%) | 13 | 76.4 | 26.74 | ||
土壤pH值 Soil pH value | 3.96 | 5.44 | 4.603 | ||
第一主成分 The first principal component (PC1) | -3.140 6 | 4.209 1 | 0.188 2 | ||
第二主成分 The second principal component (PC2) | -6.833 9 | 3.225 3 | 0.312 3 | ||
第三主成分 The third principal component (PC3) | -4.091 0 | 2.157 4 | 0.176 6 |
水平 Level | 零模型Null | 生物模型Biotic | 非生物模型Habitat | 全模型 Biotic + Habitat | ||||
---|---|---|---|---|---|---|---|---|
AIC | ΔAIC | AIC | ΔAIC | AIC | ΔAIC | AIC | ΔAIC | |
群落 Community | 3 758.3 | 19.5 | 3 738.8 | 0.0 | 3 760.8 | 22.0 | 3 740.3 | 1.5 |
龄级 Age class | ||||||||
当年生 One year old | 1 152.7 | 6.5 | 1 147.1 | 0.9 | 1 153.6 | 7.4 | 1 146.2 | 0.0 |
多年生 Over one year old | 2 503.5 | 13.0 | 2 507.2 | 14.7 | 2 492.5 | 0.0 | 2 500.1 | 7.6 |
物种 Tree species | ||||||||
水曲柳 Fraxinus mandschurica | 1 330.2 | 9.2 | 1 321.0 | 0.0 | 1 328.9 | 7.9 | 1 321.8 | 0.8 |
色木槭 Acer mono | 425.6 | 1.5 | 424.1 | 0.0 | 433.5 | 9.4 | 431.5 | 7.4 |
紫椴 Tilia amurensis | 533.6 | 0.0 | 539.6 | 6.0 | 543.0 | 9.4 | 542.0 | 8.4 |
东北枫 Acer mandshuricum | 329.8 | 0.0 | 333.3 | 3.5 | 333.9 | 4.1 | 333.4 | 3.6 |
红松 Pinus koraiensis | 337.9 | 10.1 | 340.3 | 12.5 | 327.8 | 0.0 | 328.8 | 1.0 |
表4 个体水平幼苗密度模型的赤池信息量准则(AIC)和ΔAIC值
Table 4 Akaike’s information criteria (AIC) and ΔAIC values of the models for individual-level seedling density
水平 Level | 零模型Null | 生物模型Biotic | 非生物模型Habitat | 全模型 Biotic + Habitat | ||||
---|---|---|---|---|---|---|---|---|
AIC | ΔAIC | AIC | ΔAIC | AIC | ΔAIC | AIC | ΔAIC | |
群落 Community | 3 758.3 | 19.5 | 3 738.8 | 0.0 | 3 760.8 | 22.0 | 3 740.3 | 1.5 |
龄级 Age class | ||||||||
当年生 One year old | 1 152.7 | 6.5 | 1 147.1 | 0.9 | 1 153.6 | 7.4 | 1 146.2 | 0.0 |
多年生 Over one year old | 2 503.5 | 13.0 | 2 507.2 | 14.7 | 2 492.5 | 0.0 | 2 500.1 | 7.6 |
物种 Tree species | ||||||||
水曲柳 Fraxinus mandschurica | 1 330.2 | 9.2 | 1 321.0 | 0.0 | 1 328.9 | 7.9 | 1 321.8 | 0.8 |
色木槭 Acer mono | 425.6 | 1.5 | 424.1 | 0.0 | 433.5 | 9.4 | 431.5 | 7.4 |
紫椴 Tilia amurensis | 533.6 | 0.0 | 539.6 | 6.0 | 543.0 | 9.4 | 542.0 | 8.4 |
东北枫 Acer mandshuricum | 329.8 | 0.0 | 333.3 | 3.5 | 333.9 | 4.1 | 333.4 | 3.6 |
红松 Pinus koraiensis | 337.9 | 10.1 | 340.3 | 12.5 | 327.8 | 0.0 | 328.8 | 1.0 |
图4 群落水平上乔木幼苗密度最优模型各参数估计值(± 2 ×标准误差)。 显著的参数估计值用实心圆表示, 不显著的用空心圆表示, 参数缩写见表3。
Fig. 4 Estimates of the coefficients (± 2 × SE) of the best models for seedling density over two years at the community level. Solid symbols indicate parameters significantly different from zero (p < 0.05), and hollow symbols indicate no significant difference from zero (p > 0.05). See Table 3 for variable abbreviations.
图5 不同年龄级乔木幼苗密度最优模型各参数估计值(± 2 ×标准误差)。 显著的参数估计值用实心圆表示, 不显著的用空心圆表示, 参数缩写见表3。
Fig. 5 Estimates of the coefficients (± 2 × SE) of the best models for seedling density at different age classes. Solid symbols indicate parameters significantly different from zero (p < 0.05), and hollow symbols indicate no significant difference from zero (p > 0.05). See Table 3 for variable abbreviations.
图6 不同物种乔木幼苗密度最优模型各参数估计值(± 2 ×标准误差)。显著的参数估计值用实心圆表示, 不显著的用空心圆表示, 参数缩写见表3。
Fig. 6 Estimates of the coefficients (± 2 × SE) of the best models for the seedling density of different species. Solid symbols indicate parameters significantly different from zero (p < 0.05), and hollow symbols indicate no significant difference from zero (p > 0.05). See Table 3 for variable abbreviations.
[1] |
Bai X, Queenborough SA, Wang X, Zhang J, Li B, Yuan Z, Xing D, Lin F, Ye J, Hao Z ( 2012). Effects of local biotic neighbors and habitat heterogeneity on tree and shrub seedling survival in an old-growth temperate forest. Oecologia, 170, 755-765.
DOI URL |
[2] | Bin Y, Ye WH, Cao HL, Huang ZL, Lian JY ( 2011). Seedlings distribution in a subtropical evergreen broad-leaved forest plot in the Dinghu Mountain. Biodiversity Science, 19, 127-133. |
[ 宾粤, 叶万辉, 曹洪麟, 黄忠良, 练琚愉 ( 2011). 鼎湖山南亚热带常绿阔叶林20公顷样地幼苗的分布. 生物多样性, 19, 127-133.] | |
[3] |
Brewer SW, Webb M ( 2001). Ignorant seed predators and factors affecting the seed survival of a tropical palm. Oikos, 93, 32-41.
DOI URL |
[4] | Burnham KP, Anderson DR ( 2002). Model Selection and Inference: A Practical Information-Theoretic Approach. Springer Science & Business Media, New York. |
[5] |
Canham CD, LePage PT, Coates KD ( 2004). A neighborhood analysis of canopy tree competition: Effects of shading versus crowding. Canadian Journal of Forest Research, 34, 778-787.
DOI URL |
[6] |
Chen L, Mi X, Comita LS, Zhang L, Ren H ( 2010). Community-?level consequences of density dependence and habitat association in a subtropical broad-leaved forest. Ecology Letters, 13, 695-704.
DOI URL |
[7] |
Clark JS, Silman M, Kern R, Macklin E, HilleRisLambers J ( 1999). Seed dispersal near and far: Patterns across temperate and tropical forests. Ecology, 80, 1475-1494.
DOI URL |
[8] |
Comita LS, Hubbell SP ( 2009). Local neighborhood and species’ shade tolerance influence survival in a diverse seedling bank. Ecology, 90, 328-334.
DOI URL |
[9] |
Comita LS, Queenborough SA, Murphy SJ, Eck JL, Xu K, Krishnadas M, Beckman N, Zhu Y ( 2014). Testing predictions of the Janzen-Connell hypothesis: A meta-analysis of experimental evidence for distance- and density-dependent seed and seedling survival. Journal of Ecology, 102, 845-856.
DOI URL |
[10] | Connell JH ( 1971). On the role of natural enemies in preventing competitive exclusion in some marine animals and in rain forest trees. In: den Boer PJ, Gradwell GR eds. Dynamics of Population. Center for Agricultural Publishing and Documentation, Wageningen, The Netherlands. 289-312. |
[11] |
Connell JH, Green PT ( 2000). Seedling dynamics over thirty-two years in a tropical rain forest tree. Ecology, 568-584.
DOI URL |
[12] | Fan HB, Zang RG, Li DZ ( 1996). Natural regeneration of Mongolian oak population. Chinese Journal of Ecology, 15(3), 15-20. |
[ 樊后保, 臧润国, 李德志 ( 1996). 蒙古栎种群天然更新的研究. 生态学杂志, 15(3), 15-20.] | |
[13] |
Janzen DH ( 1970). Herbivores and the number of tree species in tropical forests. The American Society of Naturalists, 104, 501-528.
DOI URL |
[14] |
Johnson DJ, Beaulieu WT, Bever JD, Clay K ( 2012). Conspecific negative density dependence and forest diversity. Science, 336, 904-907.
DOI URL |
[15] |
Johnson DJ, Bourg NA, Howe R, McShea WJ, Wolf A, Clay K ( 2014). Conspecific negative density-dependent mortality and the structure of temperate forests. Ecology, 95, 2493-2503.
DOI URL |
[16] |
Kammesheidt L ( 1998). The role of tree sprouts in the restoration of stand structure and species diversity in tropical moist forest after slash-and-burn agriculture in Eastern Paraguay. Plant Ecology, 139, 155-165.
DOI URL |
[17] |
Kitajima K, Augspurger CK ( 1989). Seed and seedling ecology of a monocarpic tropical tree. Ecology, 70, 1102-1114.
DOI URL |
[18] | Li SF, Liu WD, Su JR, Zhang ZJ, Liu QY ( 2008). Woody seedling regeneration in secondary succession of monsoon broad-leaved evergreen forest in Puer, Yunnan, Southwest China. Acta Ecologica Sinica, 18, 5653-5662. |
[ 李帅锋, 刘万德, 苏建荣, 张志钧, 刘庆云 ( 2008). 普洱季风常绿阔叶林次生演替中木本植物幼苗更新特征. 生态学报, 18, 5653-5662.] | |
[19] | Li SG, Bai B, Lu CH ( 2010). Seed rain and seed bank of Chinese yew ( Taxus chinensis var. mairei) population in Tianmu Mountain. Acta Ecologica Sinica, 30, 276-279. |
[20] | Li XL, Wang H, Zheng Z, Lin LX, Deng XB, Cao M ( 2009). Composition, spatial distribution and survival during the dry season of tree seedlings in a tropical forest in Xishuang-Banna, SW China. Chinese Journal of Plant Ecology, 33, 658-671. |
[ 李晓亮, 王洪, 郑征, 林露湘, 邓晓保, 曹敏 ( 2009). 西双版纳热带森林树种幼苗的组成、空间分布和旱季存活. 植物生态学报, 33, 658-671.] | |
[21] | Li XS, Peng MC, Dang CL ( 2007). Research progress on natural regeneration of plants. Chinese Journal of Ecology, 26, 2081-2088. |
[ 李小双, 彭明春, 党承林 ( 2007). 植物自然更新研究进展. 生态学杂志, 26, 2081-2088.] | |
[22] |
Lin F, Comita LS, Wang XG, Bai XJ, Yuan ZQ, Xing DL, Hao ZQ ( 2014). The contribution of understory light availability and biotic neighborhood to seedling survival in secondary versus old-growth temperate forest. Plant Ecology, 215, 795-807.
DOI URL |
[23] | Liu S, Jin GZ ( 2008). Spatiotemporal dynamics of seed rain in a broadleaved-Korean pine mixed forest in Xiaoxing’an Mountains, China. Acta Ecologica Sinica, 28, 5731-5740. |
[ 刘双, 金光泽 ( 2008). 小兴安岭阔叶红松(Pinus koraiensis)林种子雨的时空动态. 生态学报, 28, 5731-5740.] | |
[24] |
Liu S, Liao JX, Xiao C, Fan XH ( 2016). Effects of biotic neighbors and habitat heterogeneity on tree seedling survival in a secondary mixed conifer and broad-leaved forest in Changbai Mountain. Chinese Journal of Plant Ecology, 40, 711-722.
DOI URL |
[ 刘帅, 廖嘉星, 肖翠, 范秀华 ( 2016). 长白山次生针阔混交林乔木幼苗存活的影响因素分析. 植物生态学报, 40, 711-722.]
DOI URL |
|
[25] | Luo YQ, Yu MS, Yu JJ, Zheng SL, Liu JJ, Yu MJ ( 2017). Effects of plant traits and the relative abundance of common woody species on seedling herbivory in the Thousand Island Lake region. Chinese Journal of Plant Ecology, 41, 1033-1040. |
[ 骆杨青, 余梅生, 余晶晶, 郑诗璐, 刘佳佳, 于明坚 ( 2017). 千岛湖地区常见木本植物性状和相对多度对幼苗植食作用的影响. 植物生态学报, 41, 1033-1040.] | |
[26] |
Makana J, Thomas SC ( 2004). Dispersal limits natural recruitment of African mahoganies. Oikos, 106, 67-72.
DOI URL |
[27] |
Mangan SA, Schnitzer SA, Herre EA, Mack KM, Valencia MC, Sanchez EI, Bever JD ( 2010). Negative plant-soil feedback predicts tree-species relative abundance in a tropical forest. Nature, 466, 752-755.
DOI URL |
[28] | Masaki T, Nakashizuka T ( 2002). Seedling demography of Swida controversa: Effect of light and distance to conspecifics. Ecology, 83, 3497-3507. |
[29] |
Montgomery RA, Chazdon RL ( 2002). Light gradient partitioning by tropical tree seedlings in the absence of canopy gaps. Oecologia, 131, 165-174.
DOI URL |
[30] |
Norden N, Chazdon RL, Chao A, Jiang YH, Vílchez-Alvarado B ( 2009). Resilience of tropical rain forests: Tree community reassembly in secondary forests. Ecology Letters, 12, 385-394.
DOI URL PMID |
[31] |
Norghauer JM, Newbery DM ( 2014). Herbivores differentially limit the seedling growth and sapling recruitment of two dominant rain forest trees. Oecologia, 174, 459-469.
DOI URL |
[32] |
Oshima C, Tokumoto Y, Nakagawa M ( 2015). Biotic and abiotic drivers of dipterocarp seedling survival following mast fruiting in Malaysian Borneo. Journal of Tropical Ecology, 31, 129-137.
DOI URL |
[33] |
Paine CT, Harms KE ( 2009). Quantifying the effects of seed arrival and environmental conditions on tropical seedling community structure. Oecologia, 160, 139-150.
DOI URL |
[34] |
Pasquini SC, Santiago LS ( 2012). Nutrients limit photosynthesis in seedlings of a lowland tropical forest tree species. Oecologia, 168, 311-319
DOI URL PMID |
[35] |
Poorter L, Rose SA ( 2005). Light-dependent changes in the relationship between seed mass and seedling traits: A meta-analysis for rain forest tree species. Oecologia, 142, 378-387.
DOI URL |
[36] |
Qian H ( 2009). Beta diversity in relation to dispersal ability for vascular plants in North America. Global Ecology and Biogeography, 18, 327-332.
DOI URL |
[37] |
Record S, Kobe RK, Vriesendorp CF, Finley AO ( 2016). Seedling survival responses to conspecific density, soil nutrients, and irradiance vary with age in a tropical forest. Ecology, 97, 2406-2415.
DOI URL |
[38] |
Shi LL, Luo ZR, Xia JT, Zhao WJ, Wu YG, Ding BY ( 2014). Woody seedling dynamics and the correlation between habitat and regeneration/mortality in a subtropical evergreen broad-leaved forest in China. Acta Ecologica Sinica, 34, 6510-6518.
DOI URL |
[ 施璐璐, 骆争荣, 夏家天, 赵文娟, 吴友贵, 丁炳扬 ( 2014). 亚热带中山常绿阔叶林木本植物幼苗数量动态及其与生境的相关性. 生态学报, 2014,34, 6510-6518.]
DOI URL |
|
[39] | Song B, St?cklin J, Gao YQ, Zhang ZQ, Yang Y, Li ZM, Sun H ( 2013). Habitat-specific responses of seed germination and seedling establishment to soil water condition in two Rheum species in the high Sino-Himalayas. Ecological research, 28, 643-651. |
[40] |
Su Y, Jiao JY, Wang ZJ ( 2014). Characteristics of seedling survival in habitats of hill and gully slopes in hill-gully Loess Plateau region of northern Shaanxi. Chinese Journal of Plant Ecology, 38, 694-709.
DOI URL |
[ 苏嫄, 焦菊英, 王志杰 ( 2014). 陕北黄土丘陵沟壑区坡沟立地环境下幼苗的存活特征. 植物生态学报, 38, 694-709.]
DOI URL |
|
[41] | Wang CH, Li JQ, Chen FQ, Yang Y ( 2011). Factors affecting seedling regeneration of Liquidambar formosana in the L. formosana forests in hilly regions of Southeast Hubei, China. Chinese Journal of Plant Ecology, 35, 187-194. |
[ 王传华, 李俊清, 陈芳清, 杨莹 ( 2011). 鄂东南低丘地区枫香林下枫香幼苗更新限制因子. 植物生态学报, 35, 187-194.] | |
[42] |
Wang X, Wiegand T, Hao Z, Li B, Ye J, Lin F ( 2010). Species associations in an old-growth temperate forest in north-eastern China. Journal of Ecology, 98, 674-686.
DOI URL |
[43] |
Wright SJ ( 2002). Plant diversity in tropical forests: A review of mechanisms of species coexistence. Oecologia, 130, 1-14.
DOI URL PMID |
[44] |
Wright SJ, Yavitt JB, Wurzburger N, Turner BL, Tanner EV, Sayer EJ, Santiago LS, Kaspari M, Hedin LO, Harms KE, Garcia MN, Corre MD ( 2011). Potassium, phosphorus, or nitrogen limit root allocation, tree growth, or litter production in a lowland tropical forest. Ecology, 92, 1616-1625.
DOI URL |
[45] | Yan XF, Cao M ( 2007). Effects of light intensity on seed germination and seedling early growth of Shorea wantianshuea. Chinese Journal of Applied Ecology, 18, 23-29. |
[ 闫兴富, 曹敏 ( 2007). 不同光照对望天树种子萌发和幼苗早期生长的影响. 应用生态学报, 18, 23-29.] | |
[46] |
Yan Y, Zhang C, Wang Y, Zhao X, von Gadow K ( 2015). Drivers of seedling survival in a temperate forest and their relative importance at three stages of succession. Ecology and Evolution, 5, 4287-4299.
DOI URL |
[47] |
Yan Y, Zhang XN, Yao J, Zhang CY, Zhao XH ( 2016). Composition and temporal dynamics of tree seedlings at different successional stages of conifer and broad-leaved mixed forests in Jiaohe, Jilin Province, China. Chinese Journal of Plant Ecology, 40, 127-139.
DOI URL |
[ 闫琰, 张新娜, 姚杰, 张春雨, 赵秀海 ( 2016). 吉林蛟河不同演替阶段针阔混交林乔木幼苗数量组成及其时间动态. 植物生态学报, 40, 127-139.]
DOI URL |
|
[48] |
Yao J, Yan Y, Zhang CY, Pi TH, Zhao XH ( 2015). Composition and monthly dynamics of tree seedlings in a coniferous and broad-leaved mixed forest in Jiaohe, Jilin Province, China. Chinese Journal of Plant Ecology, 39, 717-725.
DOI URL |
[ 姚杰, 闫琰, 张春雨, 邳田辉, 赵秀海 ( 2015). 吉林蛟河针阔混交林乔木幼苗组成与月际动态. 植物生态学报, 39, 717-725.]
DOI URL |
|
[49] |
Yin HJ, Cheng XY, Lai T, Lin B, Liu Q ( 2011). Seed rain, soil seed bank and seedling regeneration in a 65-year Picea asperata plantation in subalpine coniferous, western Sichuan, China. Chinese Journal of Plant Ecology, 35, 35-44.
DOI URL |
[ 尹华军, 程新颖, 赖挺, 林波, 刘庆 ( 2011). 川西亚高山65年人工云杉林种子雨、种子库和幼苗定居研究. 植物生态学报, 35, 35-44.]
DOI URL |
|
[50] | Yu F, Shi XX, Chen LL, Huang QP, Song B ( 2013). Species composition and regeneration characteristics of main woody plant seedlings in a pine-oak mixed forest in Qinling Mountains. Acta Botanica Boreali-Occidentalia Sinica, 33, 592-598. |
[ 于飞, 史晓晓, 陈莉莉, 黄青平, 宋彬 ( 2013). 秦岭山地松栎混交林主要木本植物组成及更新特征. 西北植物学报, 33, 592-598.] | |
[51] |
Zhang J, Li BH, Bai XJ, Yuan ZQ, Wang XG, Ye J ( 2009). Composition and interannual dynamics of tree seedlings in broad-leaved Korean pine ( Pinus koraiensis) mixed forest in Changbai Mountain. Biodiversity Science, 17, 385-396.
DOI URL |
[ 张健, 李步杭, 白雪娇, 原作强, 王绪高, 叶吉 ( 2009). 长白山阔叶红松林乔木树种幼苗组成及其动态. 生物多样性, 17, 385-396.]
DOI URL |
|
[52] | Zhu Y, Mi XC, Ma KP ( 2009). A mechanism of plant species coexistence: The negative density-dependent hypothesis. Biodiversity Science, 17, 594-604. |
[ 祝燕, 米湘成, 马克平 ( 2009). 植物群落物种共存机制:负密度制约假说. 生物多样性, 17, 594-604.] |
[1] | 刘帅, 廖嘉星, 肖翠, 范秀华. 长白山次生针阔混交林乔木幼苗存活的影响因素分析[J]. 植物生态学报, 2016, 40(7): 711-722. |
[2] | 陈云, 王婷, 李培坤, 姚成亮, 袁志良, 叶永忠. 河南木札岭温带落叶阔叶林群落特征及主要乔木空间分布格局[J]. 植物生态学报, 2016, 40(11): 1179-1188. |
[3] | 郭柯, 刘长成, 董鸣. 我国西南喀斯特植物生态适应性与石漠化治理[J]. 植物生态学报, 2011, 35(10): 991-999. |
[4] | 李元恒, 王正文, 马晖玲. 生境斑块对比度对鹅绒委陵菜克隆内分工的影响[J]. 植物生态学报, 2008, 32(5): 1166-1174. |
[5] | 董鸣. 异质性生境中的植物克隆生长:风险分摊[J]. 植物生态学报, 1996, 20(6): 543-548. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19