植物生态学报 ›› 2010, Vol. 34 ›› Issue (9): 1025-1032.DOI: 10.3773/j.issn.1005-264x.2010.09.003
朱军涛1,2,3, 李向义1,2,*(), 张希明1,2, 林丽莎1,2, 杨尚功1,2,3
收稿日期:
2010-02-08
接受日期:
2010-05-07
出版日期:
2010-02-08
发布日期:
2010-10-08
通讯作者:
李向义
作者简介:
* E-mail: lixy@ms.xjb.ac.cn
ZHU Jun-Tao1,2,3, LI Xiang-Yi1,2,*(), ZHANG Xi-Ming1,2, LIN Li-Sha1,2, YANG Shang-Gong1,2,3
Received:
2010-02-08
Accepted:
2010-05-07
Online:
2010-02-08
Published:
2010-10-08
Contact:
LI Xiang-Yi
摘要:
在豆科与非豆科植物光合特性的研究中发现, 非豆科植物具有更高的光合速率, 与其低的叶氮含量相矛盾。在沙漠中氮素是限制植物生长的关键因子之一, 考虑到豆科植物的生物固氮作用和叶氮大部分分配于光合系统, 我们假设: (1)非豆科植物具有更低的叶氮含量; (2)分配更少的叶氮于光合系统; (3)具有更高的最大净光合速率(Pmax)和光合氮素利用效率(PNUE)。为了验证这些假设, 以塔克拉玛干沙漠南缘的豆科植物骆驼刺(Alhagi sparsifolia)和非豆科植物柽柳(Tamarix ramosissima)、花花柴(Karelinia caspica)为研究对象, 比较了它们的叶氮含量、氮分配、Pmax和PNUE等。结果表明: (1)非豆科植物比豆科植物确实有更低的叶氮含量, 且差异达到显著水平; (2)非豆科植物分配更少的叶氮于光合系统, 但在光合系统内部具有更高效的氮分配机制; (3)非豆科植物具有更高的Pmax和PNUE。在光合系统内部, 非豆科植物分配更多的叶氮于羧化系统, 而豆科植物分配更多的叶氮于捕光系统。对于非豆科植物而言, 其更高的Pmax、PNUE、水分利用效率和表观量子产量, 取决于将更多的叶氮投入到羧化和电子传递系统中。这些生理优势决定了塔克拉玛干沙漠南缘非豆科植物高效的资源捕捉和利用能力。
朱军涛, 李向义, 张希明, 林丽莎, 杨尚功. 塔克拉玛干沙漠南缘豆科与非豆科植物的氮分配. 植物生态学报, 2010, 34(9): 1025-1032. DOI: 10.3773/j.issn.1005-264x.2010.09.003
ZHU Jun-Tao, LI Xiang-Yi, ZHANG Xi-Ming, LIN Li-Sha, YANG Shang-Gong. Nitrogen allocation and partitioning within a leguminous and two non-leguminous plant species growing at the southern fringe of China’s Taklamakan Desert. Chinese Journal of Plant Ecology, 2010, 34(9): 1025-1032. DOI: 10.3773/j.issn.1005-264x.2010.09.003
变量 Variables | 花花柴 Karelinia caspica | 柽柳 Tamarix ramosissima | 骆驼刺 Alhagi sparsifolia | F值 F value |
---|---|---|---|---|
表观量子产额 Apparent quantum requirement (AQY) (mol·mol-1) | 0.038 ± 0.003a | 0.034 ± 0.004a | 0.029 ± 0.002b | 3.625* |
最大净光合速率 Maximum net photosynthetic rate (Pmax) (μmol·m-2·s-1) | 11.7 ± 2.3a | 9.5 ± 3.0a | 6.9 ± 1.3b | 12.724** |
最大电子传递速率 Maximum electron transport rate (Jmax) (μmol·m-2·s-1) | 105.2 ± 10.1a | 94.8 ± 7.5b | 87.8 ± 6.3b | 5.615* |
最大羧化速率 Maximum carboxylation efficiency (Vcmax) (μmol·m-2·s-1) | 62.5 ± 3.7a | 38.7 ± 4.6b | 30.8 ± 2.5c | 10.082** |
叶氮在羧化系统的比例 The fraction of the total leaf nitrogen allocated to carboxylation (PC) (g·g-1) | 0.23 ± 0.04a | 0.11 ± 0.03b | 0.07 ± 0.02c | 5.579*** |
叶氮在生物力能学组分的比例 The fraction of the total leaf nitrogen allocated to bioenergetics (PB) (g·g-1) | 0.04 ± 0.003 | 0.03 ± 0.003 | 0.03 ± 0.002 | 3.832 |
PC、PB之和 The sum of PC and PB (PC + B) (g·g-1) | 0.27 ± 0.05a | 0.14 ± 0.03b | 0.10 ± 0.02c | 6.215*** |
叶氮在捕光系统的比例 The fraction of the total leaf nitrogen allocated to light-harvesting components (PL) (g·g-1) | 0.16 ± 0.02b | 0.20 ± 0.02b | 0.29 ± 0.04a | 8.232** |
叶氮在光合系统的比例 The fraction of the total leaf nitrogen allocated to all components of the photosynthetic apparatus (PT) (g·g-1) | 0.43 ± 0.03a | 0.39 ± 0.05b | 0.38 ± 0.05b | 10.253** |
叶氮在羧化系统的数量 Nitrogen content in carboxylation (NC) (g·m-2) | 0.48 ± 0.04a | 0.31 ± 0.02b | 0.23 ± 0.03c | 12.325*** |
叶氮在生物力能学组分的数量 Nitrogen content in bioenergetics (NB) (g·m-2) | 0.08 ± 0.005 | 0.08 ± 0.003 | 0.07 ± 0.005 | 2.323 |
NC、NB之和 The sum of NC and NB (NC + B) (g·m-2) | 0.55 ± 0.03a | 0.39 ± 0.02b | 0.31 ± 0.03c | 14.536*** |
叶氮在捕光系统的数量 Nitrogen content in light-harvesting components (NL) (g·m-2) | 0.43 ± 0.02b | 0.56 ± 0.03b | 0.97 ± 0.02a | 8.752*** |
叶氮在光合系统的数量 Nitrogen content in all components of the photosynthetic apparatus (NP) (g·m-2) | 0.89 ± 0.06b | 0.96 ± 0.05b | 1.27 ± 0.07a | 5.672** |
NC、NP 之比 The fraction of the photosynthetic nitrogen partitioned to carboxylation (NC/NP) | 0.54 ± 0.04a | 0.32 ± 0.05b | 0.18 ± 0.07c | 10.517*** |
NB、NP 之比 The fraction of the photosynthetic nitrogen partitioned to bioenergetics (NB/NP) | 0.09 ± 0.01a | 0.08 ± 0.01a | 0.06 ± 0.01b | 4.265* |
NL、NP 之比 The fraction of the photosynthetic nitrogen partitioned to light-harvesting components (NL/NP) | 0.37 ± 0.02c | 0.58 ± 0.04b | 0.76 ± 0.05a | 13.360*** |
单位面积叶氮含量 Leaf nitrogen content per area (NA) (g·m-2) | 2.07 ± 0.10c | 2.81 ± 0.09b | 3.33 ± 0.13a | 9.226** |
光合氮素利用效率 Photosynthetic nitrogen-use efficiency (PNUE) (μmol·g-1·s-1) | 9.50 ± 0.93a | 8.89 ± 0.75a | 5.82 ± 0.28b | 6.054** |
Pmax、NP 之比 Photosynthetic-use efficiency of the photosynthetic nitrogen (Pmax/NP) (μmol·g-1·s-1) | 13.15 ± 1.55a | 9.86 ± 1.24b | 5.43 ± 1.15c | 4.835*** |
气孔导度 Stomatal conductance (Gs) (mol·m-2·s-1) | 0.26 ± 0.02 | 0.25 ± 0.02 | 0.24 ± 0.03 | 3.324 |
胞间 CO2 浓度 Intercellular CO2 concentration (Ci) (μmol·mol-1) | 220.5 ± 7.2 | 230.6 ± 5.5 | 237.8 ± 7.0 | 4.458 |
叶绿素含量 Leaf chlorophyll content (Chl) (μmol·m-2) | 0.24 ± 0.04b | 0.22 ± 0.03b | 0.46 ± 0.05a | 5.725** |
叶生物量分数 Leaf mass fraction (LMF) (g·g-1) | 0.65 ± 0.03a | 0.58 ± 0.04a | 0.35 ± 0.03b | 16.535*** |
叶面积比 Leaf area ratio (LAR) (cm2·g-1) | 97.5 ± 5.8a | 88.7 ± 7.5a | 58.5 ± 5.5b | 10.336** |
比叶面积 Specfic leaf area (SLA) (cm2·g-1) | 153.4 ± 18.3a | 145.2 ± 22.7b | 141.5 ± 17.8b | 2.415** |
表1 塔克拉玛干沙漠南缘3种灌木各指标的平均值和标准偏差(n = 8)
Table 1 Means and SD of the variables of the three shrubs growing at the southern fringe of the Taklamakan Desert (n = 8)
变量 Variables | 花花柴 Karelinia caspica | 柽柳 Tamarix ramosissima | 骆驼刺 Alhagi sparsifolia | F值 F value |
---|---|---|---|---|
表观量子产额 Apparent quantum requirement (AQY) (mol·mol-1) | 0.038 ± 0.003a | 0.034 ± 0.004a | 0.029 ± 0.002b | 3.625* |
最大净光合速率 Maximum net photosynthetic rate (Pmax) (μmol·m-2·s-1) | 11.7 ± 2.3a | 9.5 ± 3.0a | 6.9 ± 1.3b | 12.724** |
最大电子传递速率 Maximum electron transport rate (Jmax) (μmol·m-2·s-1) | 105.2 ± 10.1a | 94.8 ± 7.5b | 87.8 ± 6.3b | 5.615* |
最大羧化速率 Maximum carboxylation efficiency (Vcmax) (μmol·m-2·s-1) | 62.5 ± 3.7a | 38.7 ± 4.6b | 30.8 ± 2.5c | 10.082** |
叶氮在羧化系统的比例 The fraction of the total leaf nitrogen allocated to carboxylation (PC) (g·g-1) | 0.23 ± 0.04a | 0.11 ± 0.03b | 0.07 ± 0.02c | 5.579*** |
叶氮在生物力能学组分的比例 The fraction of the total leaf nitrogen allocated to bioenergetics (PB) (g·g-1) | 0.04 ± 0.003 | 0.03 ± 0.003 | 0.03 ± 0.002 | 3.832 |
PC、PB之和 The sum of PC and PB (PC + B) (g·g-1) | 0.27 ± 0.05a | 0.14 ± 0.03b | 0.10 ± 0.02c | 6.215*** |
叶氮在捕光系统的比例 The fraction of the total leaf nitrogen allocated to light-harvesting components (PL) (g·g-1) | 0.16 ± 0.02b | 0.20 ± 0.02b | 0.29 ± 0.04a | 8.232** |
叶氮在光合系统的比例 The fraction of the total leaf nitrogen allocated to all components of the photosynthetic apparatus (PT) (g·g-1) | 0.43 ± 0.03a | 0.39 ± 0.05b | 0.38 ± 0.05b | 10.253** |
叶氮在羧化系统的数量 Nitrogen content in carboxylation (NC) (g·m-2) | 0.48 ± 0.04a | 0.31 ± 0.02b | 0.23 ± 0.03c | 12.325*** |
叶氮在生物力能学组分的数量 Nitrogen content in bioenergetics (NB) (g·m-2) | 0.08 ± 0.005 | 0.08 ± 0.003 | 0.07 ± 0.005 | 2.323 |
NC、NB之和 The sum of NC and NB (NC + B) (g·m-2) | 0.55 ± 0.03a | 0.39 ± 0.02b | 0.31 ± 0.03c | 14.536*** |
叶氮在捕光系统的数量 Nitrogen content in light-harvesting components (NL) (g·m-2) | 0.43 ± 0.02b | 0.56 ± 0.03b | 0.97 ± 0.02a | 8.752*** |
叶氮在光合系统的数量 Nitrogen content in all components of the photosynthetic apparatus (NP) (g·m-2) | 0.89 ± 0.06b | 0.96 ± 0.05b | 1.27 ± 0.07a | 5.672** |
NC、NP 之比 The fraction of the photosynthetic nitrogen partitioned to carboxylation (NC/NP) | 0.54 ± 0.04a | 0.32 ± 0.05b | 0.18 ± 0.07c | 10.517*** |
NB、NP 之比 The fraction of the photosynthetic nitrogen partitioned to bioenergetics (NB/NP) | 0.09 ± 0.01a | 0.08 ± 0.01a | 0.06 ± 0.01b | 4.265* |
NL、NP 之比 The fraction of the photosynthetic nitrogen partitioned to light-harvesting components (NL/NP) | 0.37 ± 0.02c | 0.58 ± 0.04b | 0.76 ± 0.05a | 13.360*** |
单位面积叶氮含量 Leaf nitrogen content per area (NA) (g·m-2) | 2.07 ± 0.10c | 2.81 ± 0.09b | 3.33 ± 0.13a | 9.226** |
光合氮素利用效率 Photosynthetic nitrogen-use efficiency (PNUE) (μmol·g-1·s-1) | 9.50 ± 0.93a | 8.89 ± 0.75a | 5.82 ± 0.28b | 6.054** |
Pmax、NP 之比 Photosynthetic-use efficiency of the photosynthetic nitrogen (Pmax/NP) (μmol·g-1·s-1) | 13.15 ± 1.55a | 9.86 ± 1.24b | 5.43 ± 1.15c | 4.835*** |
气孔导度 Stomatal conductance (Gs) (mol·m-2·s-1) | 0.26 ± 0.02 | 0.25 ± 0.02 | 0.24 ± 0.03 | 3.324 |
胞间 CO2 浓度 Intercellular CO2 concentration (Ci) (μmol·mol-1) | 220.5 ± 7.2 | 230.6 ± 5.5 | 237.8 ± 7.0 | 4.458 |
叶绿素含量 Leaf chlorophyll content (Chl) (μmol·m-2) | 0.24 ± 0.04b | 0.22 ± 0.03b | 0.46 ± 0.05a | 5.725** |
叶生物量分数 Leaf mass fraction (LMF) (g·g-1) | 0.65 ± 0.03a | 0.58 ± 0.04a | 0.35 ± 0.03b | 16.535*** |
叶面积比 Leaf area ratio (LAR) (cm2·g-1) | 97.5 ± 5.8a | 88.7 ± 7.5a | 58.5 ± 5.5b | 10.336** |
比叶面积 Specfic leaf area (SLA) (cm2·g-1) | 153.4 ± 18.3a | 145.2 ± 22.7b | 141.5 ± 17.8b | 2.415** |
图1 塔克拉玛干沙漠南缘3种植物的Vcmax (A、B、C)、Jmax (D、E、F)、Pmax (G、H、I)分别与各自的NC、NB、NC+B的相关分析及线性拟合。根据协方差分析结果, 如果植物间差异显著, 则分别给出每种植物的直线拟合, 否则3种植物仅有一条拟合直线。其中★为花花柴, ■为柽柳, ●为骆驼刺。
Fig. 1 Maximum carboxylation rate (Vcmax) (A, B and C), maximum electron transport rate (Jmax) (D, E and F) and maximum net photosynthetic rate (Pmax) (G, H and I) as a function of N content in carboxylation (NC), bioenergetics (NB) and both carboxylation and bioenergetics (NC+B) of two non-leguminous species Karelinia caspica (★) and Tamarix ramosissima (■) and leguminous species Alhagi sparsifolia (●) growing at the southern fringe of the Taklamakan Desert. Lines fitted for the three species were given, respectively, if the difference between leguminous and non-leguminous species was significant according to the results of ANCOVA. Otherwise, only one line fitted for all the three studied species was given.
图2 塔克拉玛干沙漠南缘3种植物的最大净光合速率Pmax分别与各自的Gs (A)、Rd (B)及叶片建成消耗(CC)与SLA (C)的相关分析及线性拟合。根据协方差分析结果, 如果植物间差异显著, 则分别给出每种植物的直线拟合, 否则3种植物仅有一条拟合直线。其中★为花花柴, ■为柽柳, ●为骆驼刺。
Fig. 2 Maximum net photosynthetic rate (Pmax) as a function of stomatal conductance (Gs) (A) and dark respiration rate (Rd) (B) and leaf construction cost (CC) as a function of specific leaf area (SLA) (C) of two non-leguminous species Karelinia caspica (★) and Tamarix ramosissima (■) and leguminous species Alhagi sparsifolia (●) growing at the southern fringe of the Taklamakan Desert. Lines fitted for the three species were given, respectively, if the difference between leguminous and non-leguminous species was significant according to the results of ANCOVA. Otherwise, only one line fitted for all the three studied species was given.
图3 塔克拉玛干沙漠南缘3种植物的PNUE分别与各自的NC (A)、NB (B)、NC+B (C)、Pmax (D)、PC (E)及PC+B (F)的相关分析及线性拟合。
Fig. 3 Photosynthetic nitrogen-use efficiency (PNUE) as a function of N content in carboxylation (NC) (A), bioenergetics (NB) (B) and both carboxylation and bioenergetics (NC+B) (C), and maximum net photosynthetic rate (Pmax) (D), the fractions of total leaf N allocated to carboxylation (PC) (E) and both carboxylation and bioenergetics (PC+B) (F) of the three species growing at the southern fringe of the Taklamakan Desert.
[1] | Bruelheide H, Jandt U, Gries D, Thomas FM, Foetzki A, Buerkert A, Wang G, Zhang XM, Runge M (2003). Vegetation changes in a river oasis on the southern rim of the Taklamakan Desert in China between 1956 and 2000. Phytocoenologia, 33, 801-818. |
[2] |
Burns AE, Gleadow RM, Woodrow IE (2002). Light alters the allocation of nitrogen to cyanogenic glycosides in Eucalyptus cladocalyx. Oecologia, 133, 288-294.
URL PMID |
[3] | Cai SQ (蔡时青), Xu DQ (许大全) (2000). Relationship between the CO2 compensation point and photorespiration in soybean leaves. Acta Phytophysiology Sinica (植物生理学报), 26, 545-550. (in Chinese with English abstract) |
[4] | Erley GSA, Wijaya KA, Ulas A (2007). Leaf senescence and N uptake parameters as selection traits for nitrogen efficiency of oilseed rape cultivars. Physiologia Plantarum, 130, 519-531. |
[5] |
Evans JR (1989). Photosynthesis and nitrogen relationships in leaves of C3 plants. Oecologia, 78, 9-19.
URL PMID |
[6] | Ewe SML, Sternberg LSL (2003). Seasonal exchange characteristics of Schinus terebinthifolius in a native and disturbed upland community in Everglade National Park, Florida. Forest Ecology and Management, 179, 27-36. |
[7] | Farquhar GD, Sharkey TD (1982). Stomatal conductance and photosynthesis. Annual Review of Plant Physiology and Plant Molecular Biology, 11, 191-210. |
[8] | Feng YL, Wang JF, Sang WG (2007). Biomass allocation, morphology and photosynthesis of invasive and noninvasive exotic species grown at four irradiance levels. Acta Oecologica, 31, 40-47. |
[9] | Gutierrez JR, Whitford WG (1987). Chihuahuan desert annuals: importance of water and nitrogen. Ecology, 68, 409-418. |
[10] | Hikosaka K, Terashima I (1995). A model of the acclimation of photosynthesis in the leaves of C3 plants to sun and shade with respect to nitrogen use. Plant, Cell and Environment, 18, 605-618. |
[11] | Hikosaka K, Hanba YT, Hirose T, Terashima I (1998). Photosynthetic nitrogen-use efficiency in leaves of woody and herbaceous species. Functional Ecology, 12, 896-905. |
[12] | Jiang GM, Zhu GJ (2001). Different patterns of gas exchange and photochemical efficiency in three desert shrub species under two natural temperatures and irradiances in Mu Us Sandy Area of China. Photosynthetica, 39, 257-262. |
[13] |
Jordan DB, Ogren WL (1984). The CO2/O2 specificity of Rubulose 1,5-bisphosphate carboxylase/oxygenase dependence on ribulose bisphosphate concentration, pH and temperature. Planta, 161, 308-313.
DOI URL PMID |
[14] | Kazda M, Salzer J, Reiter I (2000). Photosynthetic capacity in relation to nitrogen in the canopy of a Quercus robur, Fraxinus angustifolia and Tilia cordata flood plain forest. Tree Physiology, 20, 2029-2037. |
[15] | Kelllomaki S, Wang KY (1997). Effects of elevated O3 and CO2 concentrations on photosynthesis and stomatal conductance in Scots pine. Plant, Cell and Environment, 20, 995-1006. |
[16] |
Killingbeck KT, Whitford WG (2001). Nutrient resorption in shrubs growing by design, and by default in Chihuahuan Desert arroyos. Oecologia, 128, 351-359.
URL PMID |
[17] | Laisk A (1977). Kinetika fotosinteza fotodyhaniya C3-rastenii [Kinetics of photosynthesis and photorespiration in C3 plants]. In: Junk W ed. Plants of the Wet Tropics Nauka, Moscow. 113-128. |
[18] | Lambers H, Poorter H (1992). Inherent variation in growth rate between higher plants: a search for physiological causes and ecological consequences. Advances in Ecological Research, 23, 188-261. |
[19] | Lichtenthaler HK, Wellburn AR (1983). Determination of total carotenoids and chlorophyll a and b of leaf extracts in different solvents. Biochemical Society Transactions, 603, 591-592. |
[20] | Loomis RS (1997). Commentary on the utility of nitrogen in leaves. Proceedings of National Academy of Sciences of the United States of America, 94, 13378-13379. |
[21] |
McDowell SCL (2002). Photosynthetic characteristics of invasive and noninvasive species of Rubus (Rosaceae). American Journal of Botany, 89, 1431-1438.
URL PMID |
[22] | Niinemets Ü, Tenhunen JD (1997). A model separating leaf structural and physiological effects on carbon gain along light gradients for the shade-tolerant species Acer saccharum. Plant, Cell and Environment, 20, 845-866. |
[23] |
Niinemets Ü, Valladares F, Ceulemans R (2003). Leaf-level phenotypic variability and plasticity of invasive Rhododendron ponticum and non-invasive Ilex aquifolium co-occurring at two contrasting European sites. Plant, Cell and Environment, 26, 941-956.
DOI URL PMID |
[24] | Niu SL, Jiang GM, Li YG, Gao LM, Liu MZ, Peng Y, Ding L (2003). Comparison of photosynthetic traits between two typical shrubs: legume and non-legume in Hunshandak Sandland. Photosynthetica, 41, 111-116. |
[25] |
Nolan WG, Smille RM (1976). Multitemperature effects on Hill reaction activity of barley chloroplasts. Biochimica et Biophysica Acta, 440, 461-475.
DOI URL PMID |
[26] | Noy-Meir I (1973). Desert ecosystems, environment and producers. Annual Review of Ecology and Systematics, 4, 25-41. |
[27] | Onoda Y, Hikosaka K, Hirose T (2004). Allocation of nitrogen to cell walls decreases photosynthetic nitrogen-use efficiency. Functional Ecology, 18, 419-425. |
[28] |
Pattison RR, Goldstein G, Ares A (1998). Growth, biomass allocation and photosynthesis of invasive and native Hawaiian rain-forest species. Oecologia, 117, 449-459.
DOI URL PMID |
[29] |
Poorter H, Evans JR (1998). Photosynthetic nitrogen-use efficiency of species that differ inherently in specific leaf area. Oecologia, 116, 26-37.
URL PMID |
[30] |
Reich PB, Walters MB, Ellsworth DS, Vose JM, Volin JC, Gresham C, Bowman WD (1998). Relationship of leaf dark respiration to leaf-nitrogen specific leaf area and leaf life span: a test across biomes and functional groups. Oecologia, 114, 471-482.
DOI URL PMID |
[31] | Schieving F, Poorter H (1999). Carbon gain in a multisoecies canopy: the role of specific leaf area and photosynthetic nitrogen-use efficiency in the tragedy of the commons. New Phytologist, 143, 201-21. |
[32] | Shinano T, Osake M, Tadano T (1995). Comparison of growth efficiency between rice and soybean at the vegetative growth stage. Soil Science and Plant Nutrition, 42, 471-480. |
[33] | Takashima T, Hikosaka K, Hirose T (2004). Photosynthesis or persistence: nitrogen allocation in leaves of evergreen and deciduous Quercus species. Plant, Cell and Environment, 27, 1047-1054. |
[34] | Thomas FM, Arndt SK, Bruelheide H (2000). Ecological basis for a sustainable management of the indigenous vegetation in a Central-Asian desert: presentation and first results. Journal of Applied Botany, 74, 212-219. |
[35] | Warembourg FR, Roumel C (1989). Why and how to estimate the cost of symbiotic N2 fixation? A progressive approach based on the use of 14C and 15N isotopes. Plant and Soil, 115, 167-177. |
[36] | Warren CR, Dreyer E, Tausz M, Adams MA (2006). Ecotype adaptation and acclimation of leaf traits to rainfall in 29 species of 16-year-old Eucalyptus at two common gardens. Functional Ecology, 20, 929-940. |
[37] | Xia XC (夏训诚), Li CS (李崇舜), Zhou XJ (周兴佳) (1991). Desertification and Control of Blown Sand Disasters in Xinjiang (新疆沙漠化与风沙灾害治理). Science Press, Beijing. (in Chinese) |
[1] | 姚萌, 康荣华, 王盎, 马方园, 李靳, 台子晗, 方运霆. 利用15N示踪技术研究木荷与马尾松幼苗叶片对NO2的吸收与分配[J]. 植物生态学报, 2023, 47(1): 114-122. |
[2] | 林夏珍, 刘林, 董婷婷, 方琦博, 郭庆学. 非结构性碳水化合物与氮分配对美洲黑杨和青杨耐盐能力的影响[J]. 植物生态学报, 2021, 45(9): 961-971. |
[3] | 苏华, 许宏, 苏本营, 李永庚. 养分添加对退化草地豆科植物草木犀功能性状的影响[J]. 植物生态学报, 2020, 44(9): 926-938. |
[4] | 董正武, 赵英, 雷加强, 喜银巧. 塔克拉玛干沙漠不同区域柽柳沙包土壤盐分分布特征及其影响因素[J]. 植物生态学报, 2018, 42(8): 873-884. |
[5] | 王树林, 鲁为华, 陈乙实, 景鹏成. 北疆地区15种豆科植物种子对绵羊消化道作用的响应[J]. 植物生态学报, 2018, 42(2): 185-194. |
[6] | 刘双娥, 李义勇, 方熊, 黄文娟, 龙凤玲, 刘菊秀. 不同氮添加量和添加方式对南亚热带4个主要树种幼苗生长的影响[J]. 植物生态学报, 2015, 39(10): 950-961. |
[7] | 丑敏霞, 魏新元. 豆科植物共生结瘤的分子基础和调控研究进展[J]. 植物生态学报, 2010, 34(7): 876-888. |
[8] | 杨小林, 张希明, 李义玲, 李绍才, 孙海龙. 塔克拉玛干沙漠腹地3种植物根系构型 及其生境适应策略[J]. 植物生态学报, 2008, 32(6): 1268-1276. |
[9] | 孙谷畴, 赵平, 蔡锡安, 曾小平, 饶兴权. 空气NH3增高情况下不同形式氮源对荫香光合作用和氮利用的影响[J]. 植物生态学报, 2004, 28(4): 539-546. |
[10] | 牛书丽, 蒋高明. 豆科固氮植物对CO2加富的生理响应[J]. 植物生态学报, 2003, 27(6): 844-851. |
[11] | 李向义, Frank M. THOMAS, Andrea FOETZKI, 曾凡江, 张希明, 何兴元. 自然状况下头状沙拐枣对水分条件变化的响应[J]. 植物生态学报, 2003, 27(4): 516-521. |
[12] | 曾小平, 赵平, 彭少麟, 余作岳. 5种木本豆科植物的光合特性研究[J]. 植物生态学报, 1997, 21(6): 539-544. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19