植物生态学报 ›› 2008, Vol. 32 ›› Issue (6): 1268-1276.DOI: 10.3773/j.issn.1005-264x.2008.06.007
杨小林1,2,3, 张希明1,*(), 李义玲1,2, 李绍才3, 孙海龙3
收稿日期:
2007-10-29
接受日期:
2008-04-15
出版日期:
2008-10-29
发布日期:
2008-11-30
通讯作者:
张希明
作者简介:
*(zhxm@ms.xjb.ac.cn)基金资助:
YANG Xiao-Lin1,2,3, ZHANG Xi-Ming1,*(), LI Yi-Ling1,2, LI Shao-Cai3, SUN Hai-Long3
Received:
2007-10-29
Accepted:
2008-04-15
Online:
2008-10-29
Published:
2008-11-30
Contact:
ZHANG Xi-Ming
摘要:
在塔克拉玛干沙漠腹地, 采用挖掘法挖取塔克拉玛干柽柳(Tamarix taklamakanensis)、塔克拉玛干沙拐枣(Calligonum roborovskii)和罗布麻(Apocynum venetum)根系, 对根系的拓扑结构特征进行了测定与分析。结果表明: 1) 3种植物根系均以水平分布占优势, 根系浅层化。2) 3种植物根系结构的适应性不同, 表现为两种不同的根系分支模式, 塔克拉玛干柽柳根系为叉状分支结构(qa=0.15、qb=0.09、TI=0.658), 罗布麻(qa=0.43、qb=0.35、TI=0. 83)和沙拐枣(qa=0.52、qb=0.38、TI=0.86)根系趋向于鱼尾形分支结构。3) 3种植物根系的连接长度都较大, 最小也达1.12 m, 说明在塔克拉玛干沙漠腹地, 3种植物通过增加连接长度来扩大根系在土层中的分布范围, 从而提高根系的有效营养空间, 增加根系连接长度是根系对沙漠腹地贫瘠土壤环境的一个良好适应。4)研究验证了Leonardo da Vinci法则, 即根系分支前的横截面积等于根系分支后的横截面积之和, 3种植物根系分支前后的横截面积符合Leonardo da Vinci法则。研究表明沙漠腹地3种植物根系构型特征既有相似性又有差异性, 在相似的沙漠环境中具有不同的根系适应策略。
杨小林, 张希明, 李义玲, 李绍才, 孙海龙. 塔克拉玛干沙漠腹地3种植物根系构型 及其生境适应策略. 植物生态学报, 2008, 32(6): 1268-1276. DOI: 10.3773/j.issn.1005-264x.2008.06.007
YANG Xiao-Lin, ZHANG Xi-Ming, LI Yi-Ling, LI Shao-Cai, SUN Hai-Long. ANALYSIS OF ROOT ARCHITECTURE AND ROOT ADAPTIVE STRATEGY IN THE TAKLIMAKAN DESERT AREA OF CHINA. Chinese Journal of Plant Ecology, 2008, 32(6): 1268-1276. DOI: 10.3773/j.issn.1005-264x.2008.06.007
地理位置 Location | 年降水量 Mean annual precipitation (mm) | 年蒸发量 Mean annual evaporation (mm) | 极端气温 Extreme temperature (℃) | 矿化度 Degree of mineralization (g·L-1) | 地下水位 Ground-water Table (m) |
---|---|---|---|---|---|
83°39'51.21" E 38°57'26.91" N | 36.60 | 3638.60 | -22.20~45.60 | 4.75~17.54 | 1.20 |
表1 塔克拉玛干沙漠腹地环境特征
Table 1 The data of environmental factor in the hinterland of Taklimakan desert
地理位置 Location | 年降水量 Mean annual precipitation (mm) | 年蒸发量 Mean annual evaporation (mm) | 极端气温 Extreme temperature (℃) | 矿化度 Degree of mineralization (g·L-1) | 地下水位 Ground-water Table (m) |
---|---|---|---|---|---|
83°39'51.21" E 38°57'26.91" N | 36.60 | 3638.60 | -22.20~45.60 | 4.75~17.54 | 1.20 |
图1 根系分支示意图 根系分支示意图中, d前分支前直径, d1与d2分别为分支后直径 Schematic representation of root branching. The d前 is diameter before branching; d1and d2are diameters after branching.
Fig. 1 The schematic view of root branching system
图2 根系拓扑结构示意图 以上示意图表示的是Fitter提出的两种典型拓扑结构。根系分支由连续的连接组成, 连接分为内部连接和外部连接, 两个分支点之间为内部连接, 分支与分生组织之间为外部连接,两个连续分支之间的长度为连接长度 The schematic representation indicates two Fitter’s root topological pattern. A link is defined as a piece of root between two branching points(interior link) or between a branch and a meristem (exterior link). The magnitude (M) of the overall root system represents the number of exterior links. The altitude of the overall root system (A) is the number of links in the longest path from an exterior link to the most basal link of the root system. The topological index (TI)of a root system may be defined as lg altitude/lg magnitude and the length between two branching points is link length.
Fig. 2 The schematic view of topology of root system
植物种 Species | 编号 Samples | 等级a(A) Altitude | 拓扑长度b Mean topological depth | 基部到终端所有连接总和Pe | 外部连接总和 v0 (M) | 修正拓扑指数 | 修正拓扑指数 | 拓扑指数TI |
---|---|---|---|---|---|---|---|---|
塔克拉玛干柽柳 Tamarix taklamakanensis | 101 | 7 | 5.47 | 82 | 15 | 0.207 | 0.139 | 0.719 |
102 | 9 | 6.67 | 200 | 30 | 0.128 | 0.072 | 0.646 | |
103 | 12 | 8.00 | 352 | 44 | 0.148 | 0.091 | 0.657 | |
104 | 10 | 6.96 | 181 | 26 | 0.212 | 0.144 | 0.706 | |
105 | 11 | 7.86 | 338 | 43 | 0.125 | 0.087 | 0.638 | |
106 | 12 | 8.23 | 576 | 70 | 0.077 | 0.037 | 0.585 | |
均值 Mean | | 10.167 | 7.198 | 288.167 | 38.000 | 0.150 | 0.095 | 0.659 |
塔克拉玛干沙拐枣 Calligonum roborovskii | 201 | 8 | 4.89 | 44 | 9 | 0.793 | 0.417 | 0.946 |
202 | 6 | 4.44 | 40 | 9 | 0.379 | 0.160 | 0.815 | |
203 | 6 | 4.38 | 35 | 8 | 0.500 | 0.273 | 0.862 | |
204 | 7 | 5.44 | 49 | 9 | 0.590 | 0.741 | 0.886 | |
205 | 9 | 6.59 | 112 | 17 | 0.328 | 0.309 | 0.775 | |
均值 Mean | 7.200 | 5.148 | 56.000 | 10.400 | 0.518 | 0.38 | 0.857 | |
罗布麻 Apocynum venetum | 301 | 9 | 6.33 | 114 | 18 | 0.299 | 0.221 | 0.760 |
302 | 6 | 4.43 | 31 | 7 | 0.687 | 0.592 | 0.921 | |
303 | 6 | 4.50 | 36 | 8 | 0.5 | 0.364 | 0.862 | |
304 | 9 | 6.00 | 72 | 12 | 0.595 | 0.500 | 0.884 | |
305 | 5 | 4.44 | 40 | 9 | 0.172 | 0.160 | 0.732 | |
306 | 9 | 6.59 | 112 | 17 | 0.328 | 0.309 | 0.813 | |
均值 Mean | 7.333 | 5.380 | 67.500 | 11.833 | 0.430 | 0.358 | 0.829 |
表2 根系拓扑结构参数
Table 2 The parameters of root system topology
植物种 Species | 编号 Samples | 等级a(A) Altitude | 拓扑长度b Mean topological depth | 基部到终端所有连接总和Pe | 外部连接总和 v0 (M) | 修正拓扑指数 | 修正拓扑指数 | 拓扑指数TI |
---|---|---|---|---|---|---|---|---|
塔克拉玛干柽柳 Tamarix taklamakanensis | 101 | 7 | 5.47 | 82 | 15 | 0.207 | 0.139 | 0.719 |
102 | 9 | 6.67 | 200 | 30 | 0.128 | 0.072 | 0.646 | |
103 | 12 | 8.00 | 352 | 44 | 0.148 | 0.091 | 0.657 | |
104 | 10 | 6.96 | 181 | 26 | 0.212 | 0.144 | 0.706 | |
105 | 11 | 7.86 | 338 | 43 | 0.125 | 0.087 | 0.638 | |
106 | 12 | 8.23 | 576 | 70 | 0.077 | 0.037 | 0.585 | |
均值 Mean | | 10.167 | 7.198 | 288.167 | 38.000 | 0.150 | 0.095 | 0.659 |
塔克拉玛干沙拐枣 Calligonum roborovskii | 201 | 8 | 4.89 | 44 | 9 | 0.793 | 0.417 | 0.946 |
202 | 6 | 4.44 | 40 | 9 | 0.379 | 0.160 | 0.815 | |
203 | 6 | 4.38 | 35 | 8 | 0.500 | 0.273 | 0.862 | |
204 | 7 | 5.44 | 49 | 9 | 0.590 | 0.741 | 0.886 | |
205 | 9 | 6.59 | 112 | 17 | 0.328 | 0.309 | 0.775 | |
均值 Mean | 7.200 | 5.148 | 56.000 | 10.400 | 0.518 | 0.38 | 0.857 | |
罗布麻 Apocynum venetum | 301 | 9 | 6.33 | 114 | 18 | 0.299 | 0.221 | 0.760 |
302 | 6 | 4.43 | 31 | 7 | 0.687 | 0.592 | 0.921 | |
303 | 6 | 4.50 | 36 | 8 | 0.5 | 0.364 | 0.862 | |
304 | 9 | 6.00 | 72 | 12 | 0.595 | 0.500 | 0.884 | |
305 | 5 | 4.44 | 40 | 9 | 0.172 | 0.160 | 0.732 | |
306 | 9 | 6.59 | 112 | 17 | 0.328 | 0.309 | 0.813 | |
均值 Mean | 7.333 | 5.380 | 67.500 | 11.833 | 0.430 | 0.358 | 0.829 |
植物种 Species | | | TI |
---|---|---|---|
塔克拉玛干柽柳 Tamarix taklamakanensis | 0.150a | 0.095a | 0.659a |
罗布麻 Apocynum venetum | 0.430b | 0.358b | 0.829b |
塔克拉玛干沙拐枣Calligonum roborovskii | 0.518b | 0.380b | 0.857b |
表3 不同植物根系拓扑结构差异性比较
Table 3 The otherness comparison of root system topology with different species
植物种 Species | | | TI |
---|---|---|---|
塔克拉玛干柽柳 Tamarix taklamakanensis | 0.150a | 0.095a | 0.659a |
罗布麻 Apocynum venetum | 0.430b | 0.358b | 0.829b |
塔克拉玛干沙拐枣Calligonum roborovskii | 0.518b | 0.380b | 0.857b |
[1] | Berntson GM (1997). Topological scaling and plant root system architecture: developmental and functional hierarchies. New Phytologist, 135,621-634. |
[2] | Biondini ME, Grygiel CE (1994). Landscape distribution of organisms and the scaling of soil resources. American Naturalist, 143,1026-1054. |
[3] | Bouma TJ, Nielsen KL, Vanhal J, Koutstaal B (2001). Root system topology and diameter distribution of species from habitats differing in inundation frequency. Functional Ecology, 15,360-369. |
[4] | Dannowski M, Block A (2005). Fractal geometry and root system structures of heterogeneous plant communities. Plant and Soil, 272,61-76. |
[5] | Eduardo S, Harry OL, Pekka N (2004). A fractal root model applied for estimating the root biomass and architecture in two tropical legume tree species. Annals of Forest Science, 61,337-345. |
[6] | Fitter AH (1986). The topology and geometry of plant root systems: influence of watering rate on root system topology in Trifolium pratense. Annals of Botany, 58,91-101. |
[7] | Fitter AH (1987). An architectural approach to comparative ecology of plant root systems. New Phytologist, 106,61-77. |
[8] | Fitter AH, Sticklabd TR (1991). Architectural analysis of plant root systems.2. Influence of nutrient supply on architectural contrasting plant species. New Phytologist, 118,383-389. |
[9] | Fitter AH, Stickland TR, Harvey ML, Wilson GW (1991). Architectural analysis of plant root systems 1. Architectural correlates of exploitation efficiency. New Phytologist, 118,375-382. |
[10] | Glimskär A (2000). Estimates of root system topology of five plant species grown at steady-state nutrition. Plant and Soil, 227,249-256. |
[11] | He XD (何兴东) (1997). Study on the natural plant community in the hinterland of taklimakan desert. Journal of Desert Research(中国沙漠), 12,144-148. (in Chinese with English abstract) |
[12] | Li HT (李海涛) (1996). The primary analysis of the relationship between the environment and the root system of Calligonum leucocladum. Journal of Xinjiang Agricultural University(新疆农业大学学报), 19,56-60. (in Chinese with English abstract) |
[13] | MacDonald N (1983). Trees and Networks in Biological Models. Wiley, Chichester, UK, 215. |
[14] | Martínez-Sánchez JJ, Ferrandis P, Trabaud L, Galindo R, Franco JA, Herranz JM (2003). Comparative root system structure of post-fire Pinus halepensis Mill. and Cistus monspeliensis L. saplings. Plant Ecology, 168,309-320. |
[15] | Oppelt AL, Kurth W, Dzierzonb H, Jentschke G, Godbold D (2000). Structure and fractal dimensions of root systems of four co-occurring fruit tree species from Botswana. Annals of Forest Science, 57,463-475. |
[16] |
Oppelt AL, Kurth W, Godbold DL (2001). Topology, scaling relations and Leonardo’s rule in root systems from African tree species. Tree Physiology, 21,117-128.
DOI URL PMID |
[17] | Oppelt AL, Kurth W, Godbold DL (2005). Contrasting rooting patterns of some arid-zone fruit tree species from Botswana-II. Coarse root distribution. Agroforestry Systems, 64,1-11. |
[18] | Richter JP (1970). The notebooks of Leonardo da Vinci (1452-1519),compiled and edited from the original manuscripts. Dover, New York (Reprint of a work originally published by Sampson Low, Marston Searle and Rivington, London 1883), 367. |
[19] | Shan LS (单立山), Zhang XM (张希明), Chai ZP (柴仲平), Wei J (魏疆), Yan HL (闫海龙), Xu H (许皓) (2007a). Response of the distribution of roots of Tamarix ramosissima seedlings to irrigation with different volumes. Arid Zone Research (干旱区研究), 24,213-218. (in Chinese with English abstract) |
[20] | Shan LS (单立山), Zhang XM (张希明), Hua YH (花永辉), Wei J (魏疆), Yan HL (闫海龙), Xie TT (解婷婷) (2007b). Response of root distribution Haloxylon ammodendron seedlings to irrigation amounts in the Taklmakan desert,China. Journal of Plant Ecology (Chinese Version) (植物生态学报), 31,769-777. (in Chinese with English abstract) |
[21] | Spek LY,van Noordwijk M (1994). Proximal root diameter as predictor of total root size for fractal branching models. II. Numerical model. Plant and Soil, 164,119-127. |
[22] | van Noordwijk M, Purnomosidhi P (1995). Root architecture in relation to tree-crop-soil interactions and shoot pruning in agroforestry. Agroforestry Systems, 30,161-173. |
[23] | van Noordwijk M, Spek LY, de Willigen P (1994). Proximal root diameter as predictor of total root size for fractal branching models. I. Theory. Plant and Soil, 164,107-117. |
[24] | Wahid PA (2000). A system of classification of woody perennials based on their root activity patterns. Agroforestry Systems, 49,123-130. |
[25] | Xu H (许皓), Li Y (李彦) (2005). Water use strategies and corresponding leaf physiological performance of three desert shrubs. Acta Botanica Borali-Occidentalia Sinica (西北植物学报), 25,1309-1316. (in Chinese with English abstract) |
[26] | Zhang YQ (张宇清), Qi S (齐实), Sun LD (孙立达), Zou Q (邹青), Sun XY (孙秀云) (2002). Root system characteristics of Tamarix romosissima Ldb on terrace embankments in two types of stand condition. Journal of Beijing Forestry University (北京林业大学学报), 24(2),44-47. (in Chinese with English abstract) |
[27] | Zhang YQ (张宇清), Qi S (齐实), Wen MX (文妙霞) (2003). Primary study on root system foraging space and rooting pattern of plants on the terrace embankments. Science of Soil and Water Conservation (水土保持科学), 3(1),31-36. (in Chinese with English abstract) |
[1] | 陈雪纯, 刘虹, 朱少琦, 孙铭遥, 宇振荣, 王庆刚. 漓江流域不同弃耕年限下4种常见草本植物功能性状种内变化及其影响因素[J]. 植物生态学报, 2023, 47(4): 559-570. |
[2] | 王雪梅, 闫帮国, 史亮涛, 刘刚才. 车桑子幼苗生物量分配与叶性状对氮磷浓度的响应差异[J]. 植物生态学报, 2020, 44(12): 1247-1261. |
[3] | 祝维, 余立璇, 赵德海, 贾黎明. 基于根系发育分级的砂壤土下成熟林木根系构型分析[J]. 植物生态学报, 2019, 43(2): 119-130. |
[4] | 董正武, 赵英, 雷加强, 喜银巧. 塔克拉玛干沙漠不同区域柽柳沙包土壤盐分分布特征及其影响因素[J]. 植物生态学报, 2018, 42(8): 873-884. |
[5] | 周玮, 李洪波, 曾辉. 西藏高寒草原群落植物根系属性在降水梯度下的变异格局[J]. 植物生态学报, 2018, 42(11): 1094-1102. |
[6] | 颉洪涛, 虞木奎, 成向荣. 光照强度变化对5种耐阴植物氮磷养分含量、分配以及限制状况的影响[J]. 植物生态学报, 2017, 41(5): 559-569. |
[7] | 宋清华, 赵成章, 史元春, 杜晶, 王继伟, 陈静. 高寒草地甘肃臭草根系分形结构的坡向差异性[J]. 植物生态学报, 2015, 39(8): 816-824. |
[8] | 宋清华, 赵成章, 史元春, 杜晶, 王继伟, 陈静. 不同坡向甘肃臭草根系分叉数和连接长度的权衡关系[J]. 植物生态学报, 2015, 39(6): 577-585. |
[9] | 郑慧玲, 赵成章, 徐婷, 段贝贝, 韩玲, 冯威. 红砂根系分叉数和分支角度权衡关系的坡向差异[J]. 植物生态学报, 2015, 39(11): 1062-1070. |
[10] | 郭京衡, 曾凡江, 李尝君, 张波. 塔克拉玛干沙漠南缘三种防护林植物根系构型及其生态适应策略[J]. 植物生态学报, 2014, 38(1): 36-44. |
[11] | 叶学华,胡宇坤,刘志兰,高树琴,董鸣. 水分异质性影响两种根茎型克隆植物赖草和假苇拂子茅的水分存储能力[J]. 植物生态学报, 2013, 37(5): 427-435. |
[12] | 刘会良, 张永宽, 张道远, 尹林克, 张元明. 不同居群准噶尔无叶豆果实和种子特性及种子萌发差异[J]. 植物生态学报, 2012, 36(8): 802-811. |
[13] | 刘富俊, 黎云祥, 廖咏梅, 陈劲松, 权秋梅, 龚新越. 异质性重金属镉胁迫下克隆整合对匍匐茎草本植物积雪草生长的影响[J]. 植物生态学报, 2011, 35(8): 864-871. |
[14] | 周艳松, 王立群. 星毛委陵菜根系构型对草原退化的生态适应[J]. 植物生态学报, 2011, 35(5): 490-499. |
[15] | 国红, 雷相东, Veronique LETORT, 陆元昌. 基于GreenLab原理构建油松成年树的结构-功能 模型[J]. 植物生态学报, 2011, 35(4): 422-430. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19