植物生态学报 ›› 2015, Vol. 39 ›› Issue (8): 816-824.DOI: 10.17521/cjpe.2015.0078
收稿日期:
2015-02-03
接受日期:
2015-05-20
出版日期:
2015-08-01
发布日期:
2015-08-17
通讯作者:
赵成章
作者简介:
*作者简介:E-mail:
基金资助:
SONG Qing-Hua, ZHAO Cheng-Zhang*(), SHI Yuan-Chun, DU Jing, WANG Ji-Wei, CHEN Jing
Received:
2015-02-03
Accepted:
2015-05-20
Online:
2015-08-01
Published:
2015-08-17
Contact:
Cheng-Zhang ZHAO
About author:
# Co-first authors
摘要:
根系分形结构是植物根系构型应对环境异质性的表型可塑性结果, 可反映植物对生长环境的适应策略。利用ArcGIS建立研究区域的数字高程模型, 并提取坡向数据, 采用全根挖掘和Win-RHIZO根系分析仪相结合的方法, 研究了祁连山北坡高寒退化草地不同坡向甘肃臭草(Melica przewalskyi)的根系分形结构。结果表明: 随着坡向由北坡向东坡、西坡、南坡转变, 草地群落的密度、高度和土壤含水量逐渐减小, 甘肃臭草种群的密度、高度以及根系分形丰度呈逐渐增大的趋势、分形维数逐渐减小; 不同坡向甘肃臭草根系分形维数和分形丰度间的相关性存在差异(p < 0.05), 南坡和北坡甘肃臭草根系分形维数分形丰度之间存在极显著负相关关系(p < 0.01), 东坡和西坡之间存在显著负相关关系(p < 0.05), 甘肃臭草根系分形维数和分形丰度存在着“此消彼长”的权衡关系; 随着坡向由北坡向东坡、西坡、南坡转变, 甘肃臭草根系分形维数和分形丰度回归方程的标准化主轴(SMA)斜率逐渐增大(p < 0.05), 说明在干旱的南坡, 根系所开发利用的相同体积的土壤内, 根系分支更少、更稀疏。不同坡向甘肃臭草合理权衡根系分形维数和分形丰度的资源配置模式, 体现了植物根系构型构建的资源投资权衡机制。
宋清华, 赵成章, 史元春, 杜晶, 王继伟, 陈静. 高寒草地甘肃臭草根系分形结构的坡向差异性. 植物生态学报, 2015, 39(8): 816-824. DOI: 10.17521/cjpe.2015.0078
SONG Qing-Hua,ZHAO Cheng-Zhang,SHI Yuan-Chun,DU Jing,WANG Ji-Wei,CHEN Jing. Fractal root system of Melica przewalskyi along different aspect in degraded grassland. Chinese Journal of Plant Ecology, 2015, 39(8): 816-824. DOI: 10.17521/cjpe.2015.0078
坡向 Aspect | 群落特征 Community properties | 土壤水分含量 Soil moisture content (%) | ||
---|---|---|---|---|
密度 Density (plant·m-2) | 高度 Height (cm) | 地上生物量 Aboveground biomass (g·m-2) | ||
北 North | 261 ± 18.54a | 34.50 ± 1.74a | 100.18 ± 2.13a | 12.30 ± 0.56a |
东 East | 214 ± 17.42b | 27.80 ± 1.32b | 97.66 ± 2.28b | 8.90 ± 0.38b |
西 West | 192 ± 16.17c | 25.80 ± 1.16b | 94.78 ± 1.49c | 8.50 ± 0.37b |
南 South | 147 ± 12.46d | 21.80 ± 0.87c | 92.23 ± 1.74d | 6.70 ± 0.24c |
表1 不同坡向草地群落特征(平均值±标准误差)
Table 1 Community characteristics among different aspects (mean ± SE)
坡向 Aspect | 群落特征 Community properties | 土壤水分含量 Soil moisture content (%) | ||
---|---|---|---|---|
密度 Density (plant·m-2) | 高度 Height (cm) | 地上生物量 Aboveground biomass (g·m-2) | ||
北 North | 261 ± 18.54a | 34.50 ± 1.74a | 100.18 ± 2.13a | 12.30 ± 0.56a |
东 East | 214 ± 17.42b | 27.80 ± 1.32b | 97.66 ± 2.28b | 8.90 ± 0.38b |
西 West | 192 ± 16.17c | 25.80 ± 1.16b | 94.78 ± 1.49c | 8.50 ± 0.37b |
南 South | 147 ± 12.46d | 21.80 ± 0.87c | 92.23 ± 1.74d | 6.70 ± 0.24c |
图1 甘肃臭草根系分形维数和分形丰度沿坡向梯度的变化(平均值±标准误差)。不同小写字母表示坡向间差异显著(p < 0.05)。
Fig. 1 Changes in fractal dimension and fractal abundance of Melica przewalskyi along the aspect gradient (mean ± SE). Different lowercase letters indicate significant difference among aspects (p < 0.05).
图2 不同坡向甘肃臭草根系分形维数和分形丰度的关系。I, 北坡; II, 东坡; III, 西坡; IV, 南坡。
Fig. 2 Relationship between fractal dimension and fractal abundance of Melica przewalskyi among aspects. I, north slope; II, east slope; III, west slope; IV, south slope.
坡向Aspect | 密度 Density (plant·m-2) | 高度 Height (cm) | 总生物量 Total biomass (g·m-2) | 根系生物量 Root biomass (g·m-2) |
---|---|---|---|---|
北坡 North slope | 56 ± 4.31c | 15.61 ± 0.14c | 96.02 ± 4.61c | 17.39 ± 0.83c |
东坡 East slope | 94 ± 8.17b | 18.30 ± 0.26b | 210.68 ± 10.24b | 58.27 ± 2.92b |
西坡 West slope | 98 ± 8.21b | 18.63 ± 0.32b | 209.75 ± 11.05b | 61.83 ± 3.08b |
南坡 South slope | 141 ± 12.27a | 21.80 ± 0.87a | 242.51 ± 14.94a | 88.02 ± 4.41a |
表2 甘肃臭草生长特征随坡向梯度的变化(平均值±标准误差)
Table 2 Growth characteristics of Melica przewalskyi among the aspect gradient (mean ± SE)
坡向Aspect | 密度 Density (plant·m-2) | 高度 Height (cm) | 总生物量 Total biomass (g·m-2) | 根系生物量 Root biomass (g·m-2) |
---|---|---|---|---|
北坡 North slope | 56 ± 4.31c | 15.61 ± 0.14c | 96.02 ± 4.61c | 17.39 ± 0.83c |
东坡 East slope | 94 ± 8.17b | 18.30 ± 0.26b | 210.68 ± 10.24b | 58.27 ± 2.92b |
西坡 West slope | 98 ± 8.21b | 18.63 ± 0.32b | 209.75 ± 11.05b | 61.83 ± 3.08b |
南坡 South slope | 141 ± 12.27a | 21.80 ± 0.87a | 242.51 ± 14.94a | 88.02 ± 4.41a |
37 | [杨小林, 张希明, 李义玲, 李绍才, 孙海龙 (2008). 塔克拉玛干沙漠腹地3种植物根系构型及其生境适应策略. 植物生态学报, 32, 1268-1276.] |
38 | Yang XL, Zhang XM, Li YL, Xie TT, Wang WH (2009). Root fractal characteristics at the hinterland of Taklimakan Desert.Arid Land Geography, 32, 249-254.(in Chinese with English abstract) |
[杨小林, 张希明, 李义玲, 解婷婷, 王伟华 (2009). 塔克拉玛干沙漠腹地几种植物根系分形特征. 干旱区地理, 32, 249-254.] | |
39 | Yin XQ (2004). Biogeography. Higher Education Press, Beijing. 26-28.(in Chinese) |
[殷秀琴 (2004). 生物地理学. 高等教育出版社, 北京. 26-28.] | |
40 | Zhang XQ, Wu KH, Murach D (2000). A review of methods for fine-root production and turnover of trees.Acta Ecologica Sinica, 20, 875-883.(in Chinese with English abstract) |
1 | Bennie J, Huntley B, Wiltshire A, Hill MO, Baxter R (2008). Slope, aspect and climate: Spatially explicit and implicit models of topographic microclimate in chalk grassland.Ecological Modelling, 216, 47-59. |
2 | Bingham IJ, Wu LH (2011). Simulation of wheat growth using the 3D root architecture model SPACSYS: Validation and sensitivity analysis.European Journal of Agronomy, 34, 181-189. |
3 | Chang XL, Lü SH, Feng ZY, Ye SX (2015). Impact of topography on the spatial distribution pattern of net primary productivity in a meadow.Acta Ecologica Sinica, 35, 3339-3348.(in Chinese with English abstract) |
[常学礼, 吕世海, 冯朝阳, 叶生星 (2015). 地形对草甸草原植被生产力分布格局的影响. 生态学报, 35, 3339-3348.] | |
4 | Chen JH, Yu XX, You XL, Liu P, Zhang CD, Xie G (2006). Fractal characteristics of Tilia tomentosa’s root system under different water conditions.Science of Soil and Water Conservation, 4(2), 71-74.(in Chinese with English abstract) |
[陈吉虎, 余新晓, 有祥亮, 刘苹, 张长达, 谢港 (2006). 不同水分条件下银叶椴根系的分形特征. 中国水土保持科学, 4(2), 71-74.] | |
40 | [张小全, 吴可红, Murach D (2000). 树木细根生产与周转研究方法评述. 生态学报, 20, 875-883.] |
41 | Zhao CZ, Gao FY, Shi FX, Ren H, Sheng YP (2011). Melica przewalskyi population spatial pattern and response to soil moisture in degraded alpine grassland.Acta Ecologica Sinica, 31, 6688-6695.(in Chinese with English abstract) |
5 | Chen Y, Xu X, Zhang DR, Wei Y (2006). Correlations between vegetation distribution and topographical factors in the northwest of Longmen Mountain, Sichuan Province.Chinese Journal of Ecology, 25, 1052-1055.(in Chinese with English abstract) |
[陈瑶, 胥晓, 张德然, 魏勇 (2006). 四川龙门山西北部植被分布与地形因子的相关性. 生态学杂志, 25, 1052-1055.] | |
6 | Dang JJ, Zhao CZ, Li Y, Hou ZJ, Dong XG (2014). Variations with slope in stem and leaf traits of Melica przewalskyi in alpine grassland.Chinese Journal of Plant Ecology, 38, 1307-1314.(in Chinese with English abstract) |
[党晶晶, 赵成章, 李钰, 侯兆疆, 董小刚 (2014). 高寒草地甘肃臭草茎-叶性状的坡度差异性. 植物生态学报, 38, 1307-1314.] | |
7 | Dannowski M, Block A (2005). Fractal geometry and root system structures of heterogeneous plant communities.Plant and Soil, 272, 61-76. |
8 | Dong M (2011). Ecology of Cloned Plant. Science Press, Beijing. 35-40.(in Chinese) |
41 | [赵成章, 高福元, 石福习, 任珩, 盛亚萍 (2011). 高寒退化草地甘肃臭草种群分布格局及其对土壤水分的响应. 生态学报, 31, 6688-6695.] |
42 | Zhao CZ, Long RJ (2008). Rehabilitation process of degraded Melica przewalskyi grassland in the upper reaches of Shiyang River.Journal of Mountain Science, 26, 286-292.(in Chinese with English abstract) |
8 | [董鸣 (2011). 克隆植物生态学. 科学出版社, 北京. 35-40.] |
9 | Feng B, Yang PL (2000). Simulation of the root growth by using the image and fractal growth technology.Journal of China Agricultural University, 5(2), 96-99.(in Chinese with English abstract) |
[冯斌, 杨培岭 (2000). 植物根系的分形及计算机模拟. 中国农业大学学报, 5(2), 96-99.] | |
10 | Fitter AH, Stickland TR, Harvey ML, Wilson GW (1991). Architectural analysis of plant root systems 1. Architectural correlates of exploitation efficiency.New Phytologist, 118, 375-382. |
11 | Gao FY, Zhao CZ (2012). In the process of grassland degradation the spatial pattern and spatial association of dominant species.Acta Ecologica Sinica, 32, 6661-6669.(in Chinese with English abstract) |
[高福元, 赵成章 (2012). 甘肃臭草型退化草地优势种群空间格局及其关联性. 生态学报, 32, 6661-6669.] | |
42 | [赵成章, 龙瑞军 (2008). 石羊河上游甘肃臭草型退化草地植被恢复过程. 山地学报, 26, 286-292.] |
43 | Zhou YS, Wang LQ (2011). Ecological adaptation of root architecture to grassland degradation in Potentilla acaulis.Chinese Journal of Plant Ecology, 35, 490-499.(in Chinese with English abstract) |
12 | Gong X, Brueck H, Giese KM, Zhang L, Sattelmacher B, Lin S (2008). Slope aspect has effects on productivity and species composition of hilly grassland in the Xilin River Basin, Inner Mongolia, China.Journal of Arid Environments, 72, 483-493. |
13 | Guo JH, Zeng FJ, Li CJ, Zhang B (2014). Root architecture and ecological adaptation strategies in three shelterbelt plant species in the southern Taklimakan Desert.Chinese Journal of Plant Ecology, 38, 36-44.(in Chinese with English abstract) |
[郭京衡, 曾凡江, 李尝君, 张波 (2014). 塔克拉玛干沙漠南缘三种防护林植物根系构型及其生态适应策略. 植物生态学报, 38, 36-44.] | |
14 | Guswa AJ (2010). Effect of plant uptake strategy on the water- optimal root depth.Water Resources Research, 46, W09601, doi: 10.1029/2010WR009122. |
15 | Huang JJ, Jing JL, Cao DC, Zhang N, Li JW, Xia YG, Lü S (2013). Cloning root system distribution and architecture of different forest age Populus euphratica in Ejina Oasis.Acta Ecologica Sinica, 33, 4331-4342.(in Chinese with English abstract) |
[黄晶晶, 井家林, 曹德昌, 张楠, 李景文, 夏延国, 吕爽 (2013). 不同林龄胡杨克隆繁殖根系分布特征及其构型. 生态学报, 33, 4331-4342.] | |
16 | Huang YM, Liu D, An SS (2015). Effects of slope aspect on soil nitrogen and microbial properties in the Chinese Loess region.Catena, 125, 135-145. |
17 | Kong XP, Zhang ML, de Smet I, Ding ZJ (2014). Designer crops: Optimal root system architecture for nutrient acquisition.Trends in Biotechnology, 32, 597-598. |
18 | Ma XM, Xi L, Xiong SP, Yang J (2006). Dynamic changes of morphological parameters of tobacco root in field.Chinese Journal of Applied Ecology, 17, 373-376.(in Chinese with English abstract) |
[马新明, 席磊, 熊淑萍, 杨娟 (2006). 大田期烟草根系构型参数的动态变化. 应用生态学报, 17, 373-376.] | |
19 | Malamy JE (2005). Intrinsic and environmental response pathways that regulate root system architecture.Plant, Cell & Environment, 28, 67-77. |
20 | Oppelt AL, Kurth W, Godbold DL (2001). Topology, scaling relations and Leonardo’s rule in root systems from African tree species.Tree Physiology, 21, 117-128. |
21 | Oppelt AL, Kurth W, Godbold DL (2005). Contrasting rooting patterns of some arid-zone fruit tree species from Botswana II. Coarse root distribution.Agroforestry Systems, 64, 13-24. |
22 | Plaza-Bonilla D, Álvaro-Fuentes J, Hansen NC, Lampurlanés J, Cantero-Martínez C (2014). Winter cereal root growth and aboveground-belowground biomass ratios as affected by site and tillage system in dryland Mediterranean conditions.Plant and Soil, 374, 925-939. |
23 | Quijano-Guerta C, Kirk GJD, Portugal AM, Bartolome VI, McLaren GC (2002). Tolerance of rice germplasm to zinc deficiency.Field Crops Research, 76, 123-130. |
24 | Rogers ED, Benfey PN (2015). Regulation of plant root system architecture: Implications for crop advancement.Current Opinion in Biotechnology, 32, 93-98. |
25 | Salehi MH, Esfandiarpour I, Sarshogh M (2011). The effect of aspect on soil spatial variability in Central Zagros, Iran.Procedia Environmental Sciences, 7, 293-298. |
26 | Sardans J, Peñuelas J, Estiarte M (2008). Changes in soil en- zymes related to C and N cycle and in soil C and N content under prolonged warming and drought in a Mediterranean shrubland.Applied Soil Ecology, 39, 223-235. |
27 | Shan LS, Li Y, Dong QL, Geng DM (2012). Ecological adaptation of Reaumuria soongorica root system architecture to arid environment.Journal of Desert Research, 32, 1283-1290.(in Chinese with English abstract) |
[单立山, 李毅, 董秋莲, 耿东梅 (2012). 红砂根系构型对干旱的生态适应. 中国沙漠, 32, 1283-1290.] | |
28 | Shan LS, Li Y, Ren W, Su SP, Dong QL, Geng DM (2013). Root architecture of two desert plants in central Hexi Corridor of Northwest China.Chinese Journal of Applied Ecology, 24, 25-31.(in Chinese with English abstract) |
[单立山, 李毅, 任伟, 苏世平, 董秋莲, 耿东梅 (2013). 河西走廊中部两种荒漠植物根系构型特征. 应用生态学报, 24, 25-31.] | |
29 | Shi LL, Zhao CZ, Fan JP, Zhang J, Zhang JX (2013). Spatial patterns of soil moisture and vegetation coverage in Melica przewalskyi patches in degraded alpine grassland of Qilian Mountains, Northwest China.Chinese Journal of Ecology, 32, 285-291.(in Chinese with English abstract) |
[史丽丽, 赵成章, 樊洁平, 张静, 张军霞 (2013). 祁连山地甘肃臭草斑块土壤水分与植被盖度空间格局. 生态学杂志, 32, 285-291.] | |
30 | Szoboszlay M, Lambers J, Chappell J, Kupper JV, Moe LA, McNear Jr DH (2015). Comparison of root system architecture and rhizosphere microbial communities of Balsas teosinte and domesticated corn cultivars.Soil Biology & Biochemistry, 80, 34-44. |
31 | Tang GA, Li FY, Liu XJ (2010). Tutorial of Digital Elevation Model. 2nd edn. Science Press, Beijing. 149.(in Chinese) |
[汤国安, 李发源, 刘学军 (2010). 数字高程模型教程 (第二版). 科学出版社, 北京. 149.] | |
32 | Villordon AQ, Ginzberg I, Firon N (2014). Root architecture and root and tuber crop productivity.Trends in Plant Science, 19, 419-425. |
33 | Walk TC, van Erp E, Lynch JP (2004). Modelling applicability of fractal analysis to efficiency of soil exploration by roots.Annals of Botany, 94, 119-128. |
34 | Wang H, Jin JY, Yamauchi A (2008). Fractal analysis of root system architecture by box-counting method and its relationship with Zn accumulation in rice (Oryza sativa L.).Acta Agronomica Sinica, 34, 1637-1643.(in Chinese with English abstract) |
[汪洪, 金继运, 山内章 (2008). 以盒维数法分形分析水稻根系形态特征及初探其与锌吸收积累的关系. 作物学报, 34, 1637-1643.] | |
35 | Wang YQ, Zhang HJ, Bai KZ, Sun YR (1999). Application of fractal geometry in the studies of plant root systems.Nature Magazine, 21, 143-146.(in Chinese with English abstract) |
[王义琴, 张慧娟, 白克智, 孙勇如 (1999). 分形几何在植物根系研究中的应用. 自然杂志, 21, 143-146.] | |
36 | Yang Q, Zhao CZ, Shi LL, Dang JJ, Zha GD (2014). Spatial autocorrelation analysis on soil moisture of Melica przewalskyi patch in a degraded alpine grassland of Qilian Mountains, Northwest China.Chinese Journal of Ecology, 33, 716-722.(in Chinese with English abstract) |
[杨泉, 赵成章, 史丽丽, 党晶晶, 查高德 (2014). 祁连山地甘肃臭草斑块土壤水分的空间自相关分析. 生态学杂志, 33, 716-722.] | |
37 | Yang XL, Zhang XM, Li YL, Li SC, Sun HL (2008). Analysis of root architecture and root adaptive in the Taklimakan desert area of China. Journal of Plant Ecology (Chinese Version), 32, 1268-1276.(in Chinese with English abstract) |
43 | [周艳松, 王立群 (2011). 星毛委陵菜根系构型对草原退化的生态适应. 植物生态学报, 35, 490-499.] |
[1] | 臧永新 马剑英 周晓兵 陶冶 尹本丰 沙亚古丽·及格尔 张元明. 极端干旱和降水对沙垄不同坡位、坡向短命植物地上生产力的影响[J]. 植物生态学报, 2022, 46(12): 1537-1550. |
[2] | 董楠, 唐明明, 崔文倩, 岳梦瑶, 刘洁, 黄玉杰. 不同根系分隔方式对栗和茶幼苗生长的影响[J]. 植物生态学报, 2022, 46(1): 62-73. |
[3] | 李全弟, 刘旻霞, 夏素娟, 南笑宁, 蒋晓轩. 甘南高寒草甸群落的物种-多度关系沿坡向的变化[J]. 植物生态学报, 2019, 43(5): 418-426. |
[4] | 祝维, 余立璇, 赵德海, 贾黎明. 基于根系发育分级的砂壤土下成熟林木根系构型分析[J]. 植物生态学报, 2019, 43(2): 119-130. |
[5] | 车应弟, 刘旻霞, 李俐蓉, 焦骄, 肖卫. 基于功能性状及系统发育的亚高寒草甸群落构建[J]. 植物生态学报, 2017, 41(11): 1157-1167. |
[6] | 段贝贝, 赵成章, 徐婷, 郑慧玲, 冯威, 韩玲. 兰州北山不同坡向刺槐叶脉密度与气孔性状的关联性分析[J]. 植物生态学报, 2016, 40(12): 1289-1297. |
[7] | 宋清华, 赵成章, 史元春, 杜晶, 王继伟, 陈静. 不同坡向甘肃臭草根系分叉数和连接长度的权衡关系[J]. 植物生态学报, 2015, 39(6): 577-585. |
[8] | 史元春, 赵成章, 宋清华, 杜晶, 陈静, 王继伟. 兰州北山刺槐枝叶性状的坡向差异性[J]. 植物生态学报, 2015, 39(4): 362-370. |
[9] | 郑慧玲, 赵成章, 徐婷, 段贝贝, 韩玲, 冯威. 红砂根系分叉数和分支角度权衡关系的坡向差异[J]. 植物生态学报, 2015, 39(11): 1062-1070. |
[10] | 党晶晶, 赵成章, 李钰, 侯兆疆, 董小刚. 祁连山高寒草地甘肃臭草叶性状与坡向间的关系[J]. 植物生态学报, 2015, 39(1): 23-31. |
[11] | 侯兆疆, 赵成章, 李钰, 张茜, 马小丽. 不同坡向高寒退化草地狼毒株高和枝条数的权衡关系[J]. 植物生态学报, 2014, 38(3): 281-288. |
[12] | 党晶晶, 赵成章, 李钰, 侯兆疆, 董小刚. 高寒草地甘肃臭草茎-叶性状的坡度差异性[J]. 植物生态学报, 2014, 38(12): 1307-1314. |
[13] | 郭京衡, 曾凡江, 李尝君, 张波. 塔克拉玛干沙漠南缘三种防护林植物根系构型及其生态适应策略[J]. 植物生态学报, 2014, 38(1): 36-44. |
[14] | 周艳松, 王立群. 星毛委陵菜根系构型对草原退化的生态适应[J]. 植物生态学报, 2011, 35(5): 490-499. |
[15] | 彭剑峰, 勾晓华, 陈发虎, 方克艳, 张芬. 坡向对海拔梯度上祁连圆柏树木生长的影响[J]. 植物生态学报, 2010, 34(5): 517-525. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19