植物生态学报 ›› 2015, Vol. 39 ›› Issue (6): 577-585.DOI: 10.17521/cjpe.2015.0055
收稿日期:
2014-12-05
接受日期:
2015-05-20
出版日期:
2015-06-01
发布日期:
2015-07-02
通讯作者:
赵成章
作者简介:
*作者简介: E-mail:
基金资助:
SONG Qing-Hua, ZHAO Cheng-Zhang*(), SHI Yuan-Chun, DU Jing, WANG Ji-Wei, CHEN Jing
Received:
2014-12-05
Accepted:
2015-05-20
Online:
2015-06-01
Published:
2015-07-02
Contact:
Cheng-Zhang ZHAO
About author:
# Co-first authors
摘要:
根系分叉数和连接长度影响植物根系分布格局, 二者的权衡关系对理解植物根系构型的生态适应策略有重要意义。利用ArcGIS建立研究区域的数字高程模型, 并提取坡向数据, 采用全根挖掘和Win-RHIZO根系分析仪相结合的方法, 研究了祁连山北坡高寒退化草地不同坡向甘肃臭草(Melica przewalskyi)根系分叉数与连接长度间的关系。结果表明: 随着坡向由北坡向东坡、西坡、南坡转变, 草地群落的密度、高度、地上生物量和土壤含水量逐渐减小, 甘肃臭草种群的密度、高度以及根系连接长度呈逐渐增大的趋势、分叉数逐渐减小; 不同坡向甘肃臭草根系分叉数与连接长度间的相关性存在差异(p < 0.05), 在南坡和北坡甘肃臭草根系分叉数和连接长度之间存在极显著的负相关关系(p < 0.01), 在东坡和西坡二者之间存在显著的负相关关系(p < 0.05), 甘肃臭草分配给根系分叉数与连接长度的资源间存在着“此消彼长”的权衡关系。不同坡向甘肃臭草根系分叉数和连接长度的资源配置模式反映了植物根系功能性状对环境的响应和适应, 以及根系构型构建的投资权衡机制。
宋清华, 赵成章, 史元春, 杜晶, 王继伟, 陈静. 不同坡向甘肃臭草根系分叉数和连接长度的权衡关系. 植物生态学报, 2015, 39(6): 577-585. DOI: 10.17521/cjpe.2015.0055
SONG Qing-Hua,ZHAO Cheng-Zhang,SHI Yuan-Chun,DU Jing,WANG Ji-Wei,CHEN Jing. Trade-off between root forks and link length of Melica przewalskyi on different aspects of slopes. Chinese Journal of Plant Ecology, 2015, 39(6): 577-585. DOI: 10.17521/cjpe.2015.0055
图1 甘肃臭草根系分叉数和连接长度沿坡向梯度的变化(平均值±标准误差)。不同小写字母表示坡向间差异显著(p < 0.05)。
Fig. 1 Changes in root forks and link length of Melica przewalskyi along an aspect gradient (mean ± SE). Different lowercase letters indicate significant differences among slope aspects (p < 0.05).
图2 不同坡向甘肃臭草根系分叉数和连接长度的关系。A, 北坡。B, 东坡。C, 西坡。D, 南坡。
Fig. 2 The relationship between root forks and link length of Melica przewalskyi in different aspects of slopes. A, North slope. B, East slope. C, West slope. D, South slope.
坡向 Aspect | 甘肃臭草密度 Density of M. przewalskyi (株·m-2) | 甘肃臭草高度 Height of M. przewalskyi (cm) | 根冠比 Root-shoot ratio |
---|---|---|---|
北 North | 55.83 ± 4.31c | 15.61 ± 0.14c | 2.09 ± 0.22b |
东 East | 94.00 ± 3.91b | 18.30 ± 0.26b | 2.58 ± 0.16a |
西 West | 98.17 ± 3.26b | 18.63 ± 0.32b | 2.63 ± 0.31a |
南 South | 14.50 ± 12.27a | 21.80 ± 0.87a | 2.14 ± 0.24ab |
表1 甘肃臭草生物学特征随坡向梯度的变化(平均值±标准误差)
Table 1 Biological characteristics of Melica przewalskyi along an aspect gradient (mean ± SE)
坡向 Aspect | 甘肃臭草密度 Density of M. przewalskyi (株·m-2) | 甘肃臭草高度 Height of M. przewalskyi (cm) | 根冠比 Root-shoot ratio |
---|---|---|---|
北 North | 55.83 ± 4.31c | 15.61 ± 0.14c | 2.09 ± 0.22b |
东 East | 94.00 ± 3.91b | 18.30 ± 0.26b | 2.58 ± 0.16a |
西 West | 98.17 ± 3.26b | 18.63 ± 0.32b | 2.63 ± 0.31a |
南 South | 14.50 ± 12.27a | 21.80 ± 0.87a | 2.14 ± 0.24ab |
坡向 Aspect | 群落特征 Community properties | 土壤水分含量 Soil moisture content (%) | ||
---|---|---|---|---|
群落密度 Community density (株·m-2) | 群落高度 Community height (cm) | 地上生物量 Aboveground biomass (g·m-2) | ||
北 North | 260.67 ± 18.54a | 34.50 ± 1.74a | 100.18 ± 2.13a | 12.30 ± 0.56a |
东 East | 214.17 ± 17.42b | 27.80 ± 1.32b | 97.66 ± 2.28b | 8.90 ± 0.38b |
西 West | 191.67 ± 16.17c | 25.80 ± 1.16b | 94.78 ± 1.49c | 8.50 ± 0.37b |
南 South | 147.33 ± 12.46d | 21.80 ± 0.87c | 92.23 ± 1.74d | 6.70 ± 0.24c |
表2 不同坡向草地群落的主要特征指标(平均值±标准误差)
Table 2 The major characteristics in different aspects of slopes (mean ± SE)
坡向 Aspect | 群落特征 Community properties | 土壤水分含量 Soil moisture content (%) | ||
---|---|---|---|---|
群落密度 Community density (株·m-2) | 群落高度 Community height (cm) | 地上生物量 Aboveground biomass (g·m-2) | ||
北 North | 260.67 ± 18.54a | 34.50 ± 1.74a | 100.18 ± 2.13a | 12.30 ± 0.56a |
东 East | 214.17 ± 17.42b | 27.80 ± 1.32b | 97.66 ± 2.28b | 8.90 ± 0.38b |
西 West | 191.67 ± 16.17c | 25.80 ± 1.16b | 94.78 ± 1.49c | 8.50 ± 0.37b |
南 South | 147.33 ± 12.46d | 21.80 ± 0.87c | 92.23 ± 1.74d | 6.70 ± 0.24c |
群落密度 Community density (株·m-2) | 群落高度 Community heigh (cm) | 地上生物量 Aboveground biomass (g·m-2) | 土壤含水量 Soil moisture content (%) | |
---|---|---|---|---|
分叉数 Root forks | 0.999** | 0.977* | 0.967* | 0.974* |
连接长度 Link length | -0.997** | -0.957* | -0.933 | -0.956* |
表3 甘肃臭草根系特征与群落特征的相关性分析
Table 3 Correlation analysis between root characteristics of Melica przewalskyi and community characteristics
群落密度 Community density (株·m-2) | 群落高度 Community heigh (cm) | 地上生物量 Aboveground biomass (g·m-2) | 土壤含水量 Soil moisture content (%) | |
---|---|---|---|---|
分叉数 Root forks | 0.999** | 0.977* | 0.967* | 0.974* |
连接长度 Link length | -0.997** | -0.957* | -0.933 | -0.956* |
[49] | Yin XQ (2004). Biogeography. Higher Education Press, Beijing. 26-28. (in Chinese) |
[殷秀琴 (2004). 生物地理学. 高等教育出版社, 北京. 26-28.] | |
[50] | Zhao CZ, Gao FY, Shi FX, Ren H, Sheng YP (2011). Melica przewalskyi population spatial pattern and response to soil moisture in degraded alpine grassland.Acta Ecologica Sinica, 31, 6688-6695. (in Chinese with English abstract) |
[赵成章, 高福元, 石福习, 任珩, 盛亚萍 (2011). 高寒退化草地甘肃臭草种群分布格局及其对土壤水分的响应. 生态学报, 31, 6688-6695.] | |
[51] | Zhao CZ, Long RJ (2008). Rehabilitation process of degraded Melica przewalskyi grassland in the upper reaches of Shiyang River.Journal of Mountain Science, 26, 286-292. (in Chinese with English abstract) |
[赵成章, 龙瑞军 (2008). 石羊河上游甘肃臭草型退化草地植被恢复过程. 山地学报, 26, 286-292.] | |
[52] | Zhou B, Yan XH, Xiao YA, Wang N, Kuang ZQ (2015). Module biomass of Ageratum conyzoides populations in different habitats.Acta Ecologicy Sinica, 35, 2602-2608. (in Chinese with English abstract) |
[周兵, 闫小红, 肖宜安, 王宁, 旷志强 (2015). 不同生境下入侵植物胜红蓟种群构件生物量分配特性. 生态学报, 35, 2602-2608.] | |
[53] | Zhou YS, Wang LQ (2011). Ecological adaptation of root architecture to grassland degradation in Potentilla acaulis.Chinese Journal of Plant Ecology, 35, 490-499. (in Chinese with English abstract) |
[周艳松, 王立群 (2011). 星毛委陵菜根系构型对草原退化的生态适应. 植物生态学报, 35, 490-499.] | |
[1] | Bennie J, Huntley B, Wiltshire A, Hill MO, Baxter R (2008). Slope, aspect and climate: Spatially explicit and implicit models of topographic microclimate in chalk grassland.Ecological Modelling, 216, 47-59. |
[2] | Bernard-Verdier M, Navas M-L, Vellend M, Violle C, Fayolle A, Garnier E (2012). Community assembly along a soil depth gradient: Contrasting patterns of plant trait convergence and divergence in a Mediterranean rangeland.Journal of Ecology, 100, 1422-1433. |
[3] | Bingham IJ, Wu LH (2011). Simulation of wheat growth using the 3D root architecture model SPACSYS: Validation and sensitivity analysis.European Journal of Agronomy, 34, 181-189. |
[4] | Cantón Y, Del Barrio G, Solé-Benet A, Lázaro R (2004). Topographic controls on the spatial distribution of ground cover in the Tabernas badlands of SE Spain.CATENA, 55, 341-365. |
[5] | Carletti P, Vendramin E, Pizzeghello D, Concheri G, Zanella A, Nardi S, Squartini A (2009). Soil humic compounds and microbial communities in six spruce forests as function of parent material, slope aspect and stand age.Plant and Soil, 315, 47-65. |
[6] | Chen Y, Xu X, Zhang DR, Wei Y (2006). Correlations between vegetation distribution and topographical factors in the northwest of Longmen Mountain, Sichuan Province.Chinese Journal of Ecology, 25, 1052-1055. (in Chinese with English abstract) |
[陈瑶, 胥晓, 张德然, 魏勇 (2006). 四川龙门山西北部植被分布与地形因子的相关性. 生态学杂志, 25, 1052-1055.] | |
[7] | Chen YT, Xu ZZ (2014). Review on research of leaf economics spectrum.Chinese Journal of Plant Ecology, 38, 1135-1153. (in Chinese with English abstract) |
[陈莹婷, 许振柱 (2014). 植物叶经济谱的研究进展. 植物生态学报, 38, 1135-1153.] | |
[8] | Dang JJ, Zhao CZ, Li Y, Hou ZJ, Dong XG (2014). Variations with slope in stem and leaf traits of Melica przewalskyi in alpine grassland.Chinese Journal of Plant Ecology, 38, 1307-1314. (in Chinese with English abstract) |
[党晶晶, 赵成章, 李钰, 侯兆疆, 董小刚 (2014). 高寒草地甘肃臭草茎——叶性状的坡度差异性. 植物生态学报, 38, 1307-1314.] | |
[9] | Dang JJ, Zhao CZ, Li Y, Hou ZJ, Dong XG (2015). Relationship between leaf traits of Melica przewalskyi and slope aspects in alpine grassland of Qilian Mountains, China.Chinese Journal of Plant Ecology, 39, 23-31. (in Chinese with English abstract) |
[党晶晶, 赵成章, 李钰, 侯兆疆, 董小刚 (2015). 祁连山高寒草地甘肃臭草叶性状与坡向间的关系. 植物生态学报, 39, 23-31.] | |
[10] | Dannowski M, Block A (2005). Fractal geometry and root system structures of heterogeneous plant communities.Plant and Soil, 272, 61-76. |
[11] | de Bello F, Lepš J, Sebastia M-T (2006). Variations in species and functional plant diversity along climatic and grazing gradients.Ecography, 29, 801-810. |
[12] | Du JH, Liu AL, Dong YX, Hu MY, Liang J, Li W (2014). Architectural characteristics of roots in typical coastal psammophytes of South China.Chinese Journal of Plant Ecology, 38, 888-896. (in Chinese with English abstract) |
[杜建会, 刘安隆, 董玉祥, 胡绵友, 梁杰, 李薇 (2014). 华南海岸典型沙生植物根系构型特征. 植物生态学报, 38, 888-896.] | |
[13] | Fabbro T, Körner C (2004). Altitudinal differences in flower traits and reproductive allocation.Flora-Morphology, Distribution, Functional Ecology of Plants, 199, 70-81. |
[14] | Fekedulegn D, Hicks RR, Colbert JJ (2003). Influence of topographic aspect, precipitation and drought on radial growth of four major tree species in an Appalachian watershed.Forest Ecology and Management, 177, 409-425. |
[15] | Fitter AH, Sticklabd TR (1991). Architectural analysis of plant root systems 2. Influence of nutrient supply on architecture in contrasting plant species.New Phytologist, 118, 383-389. |
[16] | Forde BG (2014). Nitrogen signalling pathways shaping root system architecture: An update.Current Opinion in Plant Biology, 21, 30-36. |
[17] | Fortunel C, Fine PVA, Baraloto C (2012). Leaf, stem and root tissue strategies across 758 neotropical tree species.Functional Ecology, 26, 1153-1161. |
[18] | Gao FY, Zhao CZ (2012). In the process of grassland degradation the spatial pattern and spatial association of dominant species.Acta Ecologica Sinica, 32, 6661-6669. (in Chinese with English abstract) |
[高福元, 赵成章 (2012). 甘肃臭草型退化草地优势种群空间格局及其关联性. 生态学报, 32, 6661-6669.] | |
[19] | Grossman JD, Rice KJ (2012). Evolution of root plasticity responses to variation in soil nutrient distribution and concentration.Evolutionary Applications, 5, 850-857. |
[20] | Guo JH, Zeng FJ, Li CJ, Zhang B (2014). Root architecture and ecological adaptation strategies in three shelterbelt plant species in the southern Taklimakan Desert.Chinese Journal of Plant Ecology, 38, 36-44. (in Chinese with English abstract) |
[郭京衡, 曾凡江, 李尝君, 张波 (2014). 塔克拉玛干沙漠南缘三种防护林植物根系构型及其生态适应策略. 植物生态学报, 38, 36-44.] | |
[21] | Guswa AJ (2010). Effect of plant uptake strategy on the water- optimal root depth.Water Resources Research, 46, doi: 10.1029/2010WR009122. |
[22] | Hodge A, Berta G, Doussan C, Merchan F, Crespi M (2009). Plant root growth, architecture and function.Plant and Soil, 321, 153-187. |
[23] | Huang YM, Liu D, An SS (2015). Effects of slope aspect on soil nitrogen and microbial properties in the Chinese Loess region.CATENA, 125, 135-145. |
[24] | Hulme PE (2008). Phenotypic plasticity and plant invasions: Is it all jack?Functional Ecology, 22, 3-7. |
[25] | Kiswara W, Behnke N, van Avesaath P, Huiskes AHL, Erftemeijer PLA, Bouma TJ (2009). Root architecture of six tropical seagrass species, growing in three contrasting habitats in Indonesian waters.Aquatic Botany, 90, 235-245. |
[26] | Kong XP, Zhang ML, de Smet I, Ding ZJ (2014). Designer crops: Optimal root system architecture for nutrient acquisition.Trends in Biotechnology, 32, 597-598. |
[27] | Li XL, Hou XY, Wu XH, Sa RL, Ji L, Chen HJ, Liu ZY, Ding Y (2014). Plastic responses of stem and leaf functional traits in Leymus chinensis to long-term grazing in a meadow steppe.Chinese Journal of Plant Ecology, 38, 440-451. (in Chinese with English abstract) |
[李西良, 侯向阳, 吴新宏, 萨茹拉, 纪磊, 陈海军, 刘志英, 丁勇 (2014). 草甸草原羊草茎叶功能性状对长期过度放牧的可塑性响应. 植物生态学报, 38, 440-451.] | |
[28] | Liu J, Xiang WH, Xu X, Chen R, Tian DL, Peng CH, Fang X (2010). Analysis of architecture and functions of fine roots of five subtropical tree species in Huitong, Hunan Province, China.Chinese Journal of Plant Ecology, 34, 938-945. (in Chinese with English abstract) |
[刘佳, 项文化, 徐晓, 陈瑞, 田大伦, 彭长辉, 方晰 (2010). 湖南会同5个亚热带树种的细根构型及功能特征分析. 植物生态学报, 34, 938-945.] | |
[29] | Malamy JE (2005). Intrinsic and environmental response pathways that regulate root system architecture.Plant, Cell & Environment, 28, 67-77. |
[30] | Mooney KA, Halitschke R, Kessler A, Agrawal AA (2010). Evolutionary trade-offs in plants mediate the strength of trophic cascades.Science, 327, 1642-1644. |
[31] | Oppelt AL, Kurth W, Godbold DL (2001). Topology, scaling relations and Leonardo’s rule in root systems from African tree species.Tree Physiology, 21, 117-128. |
[32] | Oppelt AL, Kurth W, Godbold DL (2005). Contrasting rooting patterns of some arid-zone fruit tree species from Botswana. II. Coarse root distribution.Agroforestry Systems, 64, 13-24. |
[33] | Pacheco-Villalobos D, Hardtke CS (2012). Natural genetic variation of root system architecture from Arabidopsis to Brachypodium: Towards adaptive value.Philosophical Transactions of the Royal Society B: Biological Sciences, 367, 1552-1558. |
[34] | Pyšek P, Křivánek PM, Jarošík V (2009). Planting intensity, residence time, and species traits determine invasion success of alien woody species.Ecology, 90, 2734-2744. |
[35] | Rogers ED, Benfey PN (2015). Regulation of plant root system architecture: Implications for crop advancement.Current Opinion in Biotechnology, 32, 93-98. |
[36] | Sardans J, Peñuelas J, Estiarte M (2008). Changes in soil enzymes related to C and N cycle and in soil C and N content under prolonged warming and drought in a Mediterranean shrubland.Applied Soil Ecology, 39, 223-235. |
[37] | Schenk HJ, Jackson RB (2002a). Rooting depths, lateral root spreads and below-ground/above-ground allometries of plants in water-limited ecosystems.Journal of Ecology, 90, 480-494. |
[38] | Schenk HJ, Jackson RB (2002b). The global biogeography of roots.Ecological Monographs, 73, 311-328. |
[39] | Shan LS, Li Y, Dong QL, Geng DM (2012). Ecological adaptation of Reaumuria soongorica root system architecture to arid environment.Journal of Desert Research, 32, 1283-1290. (in Chinese with English abstract) |
[单立山, 李毅, 董秋莲, 耿东梅 (2012). 红砂根系构型对干旱的生态适应. 中国沙漠, 32, 1283-1290.] | |
[40] | Shan LS, Li Y, Ren W, Su SP, Dong QL, Geng DM (2013). Root architecture of two desert plants in central Hexi Corridor of Northwest China.Chinese Journal of Applied Ecology, 24, 25-31. (in Chinese with English abstract) |
[单立山, 李毅, 任伟, 苏世平, 董秋莲, 耿东梅 (2013). 河西走廊中部两种荒漠植物根系构型特征. 应用生态学报, 24, 25-31.] | |
[41] | Shipley B, Lechowicz MJ, Wright I, Reich PB (2006). Fundamental trade-offs generating the worldwide leaf economics spectrum.Ecology, 87, 535-541. |
[42] | Szoboszlay M, Lambers J, Chappell J, Kupper JV, Moe LA, McNear Jr DH (2015). Comparison of root system architecture and rhizosphere microbial communities of Balsas teosinte and domesticated corn cultivars.Soil Biology & Biochemistry, 80, 34-44. |
[43] | Tang GA, Li FY, Liu XJ (2010). Tutorial of Digital Elevation Model. Science Press, Beijing. 149. (in Chinese) |
[汤国安, 李发源, 刘学军 (2010). 数字高程模型教程. 科学出版社, 北京. 149.] | |
[44] | Villordon AQ, Ginzberg I, Firon N (2014). Root architecture and root and tuber crop productivity.Trends in Plant Science, 19, 419-425. |
[45] | Walk TC, van Erp E, Lynch JP (2004). Modelling applicability of fractal analysis to efficiency of soil exploration by roots.Annals of Botany, 94, 119-128. |
[46] | Westoby M, Wright IJ (2006). Land-plant ecology on the basis of functional traits.Trends in Ecology & Evolution, 21, 261-268. |
[47] | Yang Q, Zhao CZ, Shi LL, Dang JJ, Zha GD (2014). Spatial autocorrelation analysis on soil moisture of Melica przewalskyi patch in a degraded alpine grassland of Qilian Mountains, Northwest China.Chinese Journal of Ecology, 33, 716-722. (in Chinese with English abstract) |
[杨泉, 赵成章, 史丽丽, 党晶晶, 查高德(2014). 祁连山地甘肃臭草斑块土壤水分的空间自相关分析. 生态学杂志, 33, 716-722.] | |
[48] | Yang XL, Zhang XM, Li YL, Li SC, Sun HL (2008). Analysis of root architecture and root adaptive strategy in the Taklimakan desert area of China. Journal of Plant Ecology (Chinese Version), 32, 1268-1276. (in Chinese with English abstract) |
[杨小林, 张希明, 李义玲, 李绍才, 孙海龙 (2008). 塔克拉玛干沙漠腹地3种植物根系构型及其生境适应策略. 植物生态学报, 32, 1268-1276.] |
[1] | 臧永新 马剑英 周晓兵 陶冶 尹本丰 沙亚古丽·及格尔 张元明. 极端干旱和降水对沙垄不同坡位、坡向短命植物地上生产力的影响[J]. 植物生态学报, 2022, 46(12): 1537-1550. |
[2] | 李豪, 马如玉, 强波, 贺聪, 韩路, 王海珍. 胡杨当年生小枝茎构型对展叶效率的影响[J]. 植物生态学报, 2021, 45(11): 1251-1262. |
[3] | 宋慧清, 倪鸣源, 朱师丹. 乔木与木质藤本的水力与光合性状的差异: 以热带森林崖豆藤属和买麻藤属为例[J]. 植物生态学报, 2020, 44(3): 192-204. |
[4] | 李全弟, 刘旻霞, 夏素娟, 南笑宁, 蒋晓轩. 甘南高寒草甸群落的物种-多度关系沿坡向的变化[J]. 植物生态学报, 2019, 43(5): 418-426. |
[5] | 祝维, 余立璇, 赵德海, 贾黎明. 基于根系发育分级的砂壤土下成熟林木根系构型分析[J]. 植物生态学报, 2019, 43(2): 119-130. |
[6] | 车应弟, 刘旻霞, 李俐蓉, 焦骄, 肖卫. 基于功能性状及系统发育的亚高寒草甸群落构建[J]. 植物生态学报, 2017, 41(11): 1157-1167. |
[7] | 金鹰, 王传宽. 九种不同材性的温带树种叶水力性状及其权衡关系[J]. 植物生态学报, 2016, 40(7): 702-710. |
[8] | 段贝贝, 赵成章, 徐婷, 郑慧玲, 冯威, 韩玲. 兰州北山不同坡向刺槐叶脉密度与气孔性状的关联性分析[J]. 植物生态学报, 2016, 40(12): 1289-1297. |
[9] | 宋清华, 赵成章, 史元春, 杜晶, 王继伟, 陈静. 高寒草地甘肃臭草根系分形结构的坡向差异性[J]. 植物生态学报, 2015, 39(8): 816-824. |
[10] | 史元春, 赵成章, 宋清华, 杜晶, 陈静, 王继伟. 兰州北山刺槐枝叶性状的坡向差异性[J]. 植物生态学报, 2015, 39(4): 362-370. |
[11] | 郑慧玲, 赵成章, 徐婷, 段贝贝, 韩玲, 冯威. 红砂根系分叉数和分支角度权衡关系的坡向差异[J]. 植物生态学报, 2015, 39(11): 1062-1070. |
[12] | 党晶晶, 赵成章, 李钰, 侯兆疆, 董小刚. 祁连山高寒草地甘肃臭草叶性状与坡向间的关系[J]. 植物生态学报, 2015, 39(1): 23-31. |
[13] | 张茜,赵成章,董小刚,马小丽,侯兆疆,李钰. 高寒退化草地狼毒种群不同海拔花大小-数量的权衡关系[J]. 植物生态学报, 2014, 38(5): 452-459. |
[14] | 侯兆疆, 赵成章, 李钰, 张茜, 马小丽. 不同坡向高寒退化草地狼毒株高和枝条数的权衡关系[J]. 植物生态学报, 2014, 38(3): 281-288. |
[15] | 党晶晶, 赵成章, 李钰, 侯兆疆, 董小刚. 高寒草地甘肃臭草茎-叶性状的坡度差异性[J]. 植物生态学报, 2014, 38(12): 1307-1314. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19