植物生态学报 ›› 2008, Vol. 32 ›› Issue (6): 1277-1284.DOI: 10.3773/j.issn.1005-264x.2008.06.008
收稿日期:
2008-01-03
接受日期:
2008-06-05
出版日期:
2008-01-03
发布日期:
2008-11-30
通讯作者:
韩有志
作者简介:
*(hanyouzhi@sxau.edu.cn)基金资助:
YANG Xiu-Yun, HAN You-Zhi(), ZHANG Yun-Xiang
Received:
2008-01-03
Accepted:
2008-06-05
Online:
2008-01-03
Published:
2008-11-30
Contact:
HAN You-Zhi
摘要:
该文研究了华北落叶松(Larix principis-rupprechtii)人工林细根生物量水平分布和季节变化特征。采用钻土芯法(土钻内径7.0 cm), 在距树干20、50和100 cm处设取样点, 每个样点处分3层(0~10、11~20和21~30 cm)钻取土芯, 取样时间为5、7、9和10月。华北落叶松人工林细根(≤2 mm)生物量全年平均值为224.89 g·m-2, 在水平分布上表现为100 cm处细根生物量最大(244.20 g·m-2), 其次为20 cm处(221.03 g·m-2), 50 cm处最少(209.45 g·m-2)。在0~30 cm土层, 总细根(包括活跟和死根)生物量季节变化范围在169.67~263.09 g·m-2之间, 9月细根生物量最大, 5月细根生物量最少。0~10 cm土层细根生物量季节变化差异显著(p<0.05), 11~20和21~30 cm差异不显著(p>0.05)。距树干100和20 cm处(0~10 cm土层), 细根生物量的季节变化差异明显(p<0.05), 9月总细根生物量最大(172.82和185.68 g·m-2), 5月总细根生物量最少(69.28和73.47 g·m-2); 50 cm处季节变化差异不明显(p>0.05)。细根生物量分布和季节变化不仅受土壤垂直格局影响同时也与距树干不同水平距离有很大的关系。
杨秀云, 韩有志, 张芸香. 距树干不同距离处华北落叶松人工林细根生物量分布特征及季节变化. 植物生态学报, 2008, 32(6): 1277-1284. DOI: 10.3773/j.issn.1005-264x.2008.06.008
YANG Xiu-Yun, HAN You-Zhi, ZHANG Yun-Xiang. EFFECTS OF HORIZONTAL DISTANCE ON FINE ROOT BIOMASS AND SEASONAL DYNAMICS IN LARIX PRINCIPIS-RUPPRECHTIIPLANTATION. Chinese Journal of Plant Ecology, 2008, 32(6): 1277-1284. DOI: 10.3773/j.issn.1005-264x.2008.06.008
取样深 Soil depth (cm) | 全氮 Total N (%) | 全磷 Total P (%) | 速效钾 Available K (%) | 有机质 Organic matter (%) |
---|---|---|---|---|
5~20 | 0.355 | 0.070 | 0.246 | 8.217 |
20~43 | 0.281 | 0.054 | 0.144 | 6.412 |
表1 研究区土壤基本化学性质
Table 1 Soil (top 5-43 cm) properties at the study area
取样深 Soil depth (cm) | 全氮 Total N (%) | 全磷 Total P (%) | 速效钾 Available K (%) | 有机质 Organic matter (%) |
---|---|---|---|---|
5~20 | 0.355 | 0.070 | 0.246 | 8.217 |
20~43 | 0.281 | 0.054 | 0.144 | 6.412 |
样地号 Plot No. | 冠幅 Crown (m) | 密度 Stem density (stem·hm-2) | 平均树高 Mean height (m) | 平均胸径 Mean DBH (cm) |
---|---|---|---|---|
Plot 1 | 2.02 | 492 | 9.6 | 14.3 |
Plot 2 | 2.06 | 495 | 9.5 | 14.2 |
Plot 3 | 1.92 | 487 | 9.7 | 14.6 |
表2 样地林分基本特征
Table 2 Stand characteristics of Larix principis-rupprechtii plantation
样地号 Plot No. | 冠幅 Crown (m) | 密度 Stem density (stem·hm-2) | 平均树高 Mean height (m) | 平均胸径 Mean DBH (cm) |
---|---|---|---|---|
Plot 1 | 2.02 | 492 | 9.6 | 14.3 |
Plot 2 | 2.06 | 495 | 9.5 | 14.2 |
Plot 3 | 1.92 | 487 | 9.7 | 14.6 |
图4 不同土层深度和水平距离处细根生物量的季节动态变化 a: 0~10 cm b: 11~20 cm c: 21~30 cm LFR、DFR: 见图3 See Fig. 3
Fig. 4 Seasonal dynamics of fine root biomass at different soil depths and horizontal distance
细根类型 Fine root class | 变异来源 Source of variance | 自由度 df | 均方 MS | F | p |
---|---|---|---|---|---|
≤1 mm LFR | 距离 Distance | 2 | 1 431.631 | 1.356 | 0.259 |
土层深度 Soil depth | 2 | 95 860.049 | 90.789 | 0.000 | |
时间 Dates | 3 | 6 651.978 | 6.300 | 0.000 | |
距离×土层深度 Distance×Soil depth | 4 | 1 175.629 | 1.113 | 0.350 | |
距离×时间 Distance×Dates | 6 | 1 015.787 | 0.962 | 0.451 | |
土层深度×时间 Soil depth×Dates | 6 | 5 126.031 | 4.855 | 0.000 | |
距离×土层深度×时间 Distance×Soil depth×Dates | 12 | 661.172 | 0.626 | 0.819 | |
1~2 mm LFR | 距离 Distance | 2 | 3.144E+07 | 1.254 | 0.287 |
土层深度 Soil depth | 2 | 3.167E+07 | 1.263 | 0.284 | |
时间 Dates | 3 | 3.122E+07 | 1.245 | 0.294 | |
距离×土层深度 Distance×Soil depth | 4 | 3.113E+07 | 1.242 | 0.293 | |
距离×时间 Distance×Dates | 6 | 3.1023E+07 | 1.237 | 0.287 | |
土层深度×时间 Soil depth×Dates | 6 | 3.0783E+07 | 1.228 | 0.292 | |
距离×土层深度×时间 Distance×Soil depth×Dates | 12 | 3.041E+07 | 1.213 | 0.273 | |
≤2 mm DFR | 距离 Distance | 2 | 2.168E+08 | 0.974 | 0.379 |
土层深度 Soil depth | 2 | 2.166E+08 | 0.973 | 0.379 | |
时间 Dates | 3 | 2.161E+08 | 0.970 | 0.407 | |
距离×土层深度 Distance×Soil depth | 4 | 2.174E+08 | 0.977 | 0.421 | |
距离×时间 Distance×Dates | 6 | 2.148E+08 | 0.965 | 0.449 | |
土层深度×时间 Soil depth×Dates | 6 | 2.180E+08 | 0.979 | 0.440 | |
距离×土层深度×时间 Distance×Soil depth×Dates | 12 | 2.169E+08 | 0.974 | 0.474 |
表3 土层深度、水平距离和季节变化对华北落叶松细根生物量交互影响的方差分析表
Table 3 ANOVA for influence of different soil depths, distances and dates on the fine root biomass of Larix principis-rupprechtiiplantations
细根类型 Fine root class | 变异来源 Source of variance | 自由度 df | 均方 MS | F | p |
---|---|---|---|---|---|
≤1 mm LFR | 距离 Distance | 2 | 1 431.631 | 1.356 | 0.259 |
土层深度 Soil depth | 2 | 95 860.049 | 90.789 | 0.000 | |
时间 Dates | 3 | 6 651.978 | 6.300 | 0.000 | |
距离×土层深度 Distance×Soil depth | 4 | 1 175.629 | 1.113 | 0.350 | |
距离×时间 Distance×Dates | 6 | 1 015.787 | 0.962 | 0.451 | |
土层深度×时间 Soil depth×Dates | 6 | 5 126.031 | 4.855 | 0.000 | |
距离×土层深度×时间 Distance×Soil depth×Dates | 12 | 661.172 | 0.626 | 0.819 | |
1~2 mm LFR | 距离 Distance | 2 | 3.144E+07 | 1.254 | 0.287 |
土层深度 Soil depth | 2 | 3.167E+07 | 1.263 | 0.284 | |
时间 Dates | 3 | 3.122E+07 | 1.245 | 0.294 | |
距离×土层深度 Distance×Soil depth | 4 | 3.113E+07 | 1.242 | 0.293 | |
距离×时间 Distance×Dates | 6 | 3.1023E+07 | 1.237 | 0.287 | |
土层深度×时间 Soil depth×Dates | 6 | 3.0783E+07 | 1.228 | 0.292 | |
距离×土层深度×时间 Distance×Soil depth×Dates | 12 | 3.041E+07 | 1.213 | 0.273 | |
≤2 mm DFR | 距离 Distance | 2 | 2.168E+08 | 0.974 | 0.379 |
土层深度 Soil depth | 2 | 2.166E+08 | 0.973 | 0.379 | |
时间 Dates | 3 | 2.161E+08 | 0.970 | 0.407 | |
距离×土层深度 Distance×Soil depth | 4 | 2.174E+08 | 0.977 | 0.421 | |
距离×时间 Distance×Dates | 6 | 2.148E+08 | 0.965 | 0.449 | |
土层深度×时间 Soil depth×Dates | 6 | 2.180E+08 | 0.979 | 0.440 | |
距离×土层深度×时间 Distance×Soil depth×Dates | 12 | 2.169E+08 | 0.974 | 0.474 |
[1] | Chen GS (陈光水), Yang YS (杨玉盛), He ZM (何宗明), Xie JS (谢锦升), Gao R (高人), Zeng HD (曾宏达) (2005). Effects of proximity of stems and tree diameters on fine root density in plantations. Acta Ecologica Sinica (生态学报), 25,1007-1011. (in Chinese with English abstract) |
[2] | Cheng YH (程云环), Han YZ (韩有志), Wang QC (王庆成), Wang ZQ (王正权) (2005). Seasonal dynamics of fine root biomass, root length density, specific root length and soil resource availability in a Larix gmelini plantation. Acta Phytoecologica Sinica (植物生态学报), 29,403-410. (in Chinese with English abstract) |
[3] | Edit Committee of Shanxi Forest (山西森林编辑委员会) (1992). Shanxi Forest(山西森林). Chinese Forestry Publishing House, Beijing. (in Chinese) |
[4] | Farrish KW (1991). Spatial and temporal fine-root distribution in three Louisiana forest soils. Soil Science Society of America Journal, 55,1752-1757. |
[5] | Geng YQ (耿玉清), Shan HC (单宏臣), Tan X (谭笑), Sun XY (孙向阳) (2002). Soils in forest gaps in artificial coniferous forests. Journal of Beijing Forestry University (北京林业大学学报), 24,16-19. (in Chinese with English abstract) |
[6] | Gill RA, Jackson RB (2000). Global patterns of root turnover for terrestrial ecosystems. New Phytologist, 147,13-31. |
[7] | Guo ZL (郭忠玲), Zheng JP (郑金萍), Ma YD (马元丹), Han SJ (韩士杰) (2006). A preliminary study on fine root biomass and dynamics of woody plants in several major forest communities of Changbai Mountain, China. Acta Ecologica Sinica (生态学报), 26,2855-2862. (in Chinese with English abstract) |
[8] | Hendrick RL, Pregitzer KS (1996). Temporal and depth related patterns of fine root dynamics in northern hard wood forest. Journal of Ecology, 84,167-176. |
[9] | Hendrick RL, Pregitzer KS (1997). The relationship between fine root demography and the soil environment in northern hardwood forests. Ecoscience, 4,99-105. |
[10] | Huang JH (黄建辉), Han XG (韩兴国), Chen LZ (陈灵芝) (1999). Advances in the research of fine root biomass in forest ecosystems. Acta Ecologica Sinica (生态学报), 19,270-277. (in Chinese with English abstract) |
[11] | Hutchings MJ, John EA (2003). Distribution of roots in soil, and root foraging activity. In: Kroon HD, Visser EJW eds.Root Ecology. Springer-Verlag, New York, 61-83. |
[12] | Idol TW, Pope PE, Ponder F Jr (2000). Fine root dynamics across chromo sequence of upland temperate deciduous forest. Forest Ecology and Management, 127,153-167. |
[13] | Kleb HR, Wilson SD (1999). Scales of heterogeneity in prairie and forest. Canadian Journal of Botany, 77,370-376. |
[14] | Li LH (李凌浩), Lin P (林鹏), Xing XR (邢雪荣) (1998). Fine root biomass and production of Castanopsis eyrei forests in Wuyi Mountains. Chinese Journal of Applied Ecology (应用生态学报), 9,337-340. (in Chinese with English abstract) |
[15] | Liao LP (廖利平), Deng SJ (邓仕坚), Yu XJ (于小军) (2001). Growth distribution and exudation of fine root of Chinese fir trees grown in continuously cropped plantations. Acta Ecologica Sinica (生态学报), 21,569-573. (in Chinese with English abstract) |
[16] | Olsthoorn AFM, Klap JM,Oude Voshaar JH (1999). The relation between fine root density and proximity of stems in closed Douglas-fir plantations on homogenous sandy soils: implication for sampling design. Plant and Soil, 211,215-221. |
[17] | Persson H (1980). Spatial distribution of fine-root growth, mortality and decomposition in a young Scots pine stand in central Sweden. Oikos, 34,77-87. |
[18] | Pregitzer KS, King JS, Burton AJ (2000). Response of tree fine roots to temperature. New Phytologist, 147,105-115. |
[19] | Pregitzer KS, Deforest JL, Burton AJ, Allen MF, Ruess RW, Hendrich RL (2002). Fine root architecture of nine North American trees. Ecological Monographs, 72,293-309. |
[20] | Pregitzer KS, Zak DR, Maziasz J (2000). Interactive effects of atmospheric CO 2 and soil-N availability on fine root of populous tremuloides. Ecological Applications, 10,18-33. |
[21] | Pregitzer KS (2003). Woody plants, carbon allocation and fine roots. New Phytologist, 158,421-424. |
[22] | Shi JW (史建伟), Wang MB (王孟本), Yu LZ (于立忠), Zhang YP (张育平) (2007). Effects of soil available nitrogen and related factors on plant fine root. Chinese Journal of Ecology (生态学杂志), 26,1634-1639. (in Chinese with English abstract) |
[23] | Xiao Y (肖扬), Yang P (杨鹏), Chen LN (陈林娜), Han YZ (韩有志) (1994). Biomass and production in Larix principis-rupprechtii forest in Pangquangou Natural Reserve in Shanxi. In: Li BS (李渤生), Zhan ZY (詹志勇) eds. A Green East Asia (绿满东亚). China Environmental Science Press, Beijing, 560-572. (in Chinese) |
[24] | Vogt KA, Grier CC, Vogt DJ (1986). Production, turnover and nutrient dynamics of above and belowground detritus of world forests. Advances in Ecological Research, 15,303-378. |
[25] | Vogt KA, Vogt DJ, Palmiotto PA, Boon P, O’Hara J, Asbjornsen H (1995). Review of root dynamics in forest ecosystems grouped by climate, climatic forest type and species. Plant and Soil, 187,159-219. |
[26] | Volker B, Leuschner C (1994). Spatial and temporal patterned of fine root abundance in a mixed oak-beech forest. Forest Ecology and Management, 70,11-21. |
[27] | Wen DZ (温达志), Wei P (魏平), Kong GH (孔国辉), Ye WH (叶万辉) (1999). Production and turnover rate of fine roots in two lower subtropical forest sites at Dinghushan. Acta Phytoecologica Sinica (植物生态学报), 23,361-369. (in Chinese with English abstract) |
[28] | Zhang XQ (张小全) (2001). Fine root biomass, production and turnover of trees in relations to environmental conditions. Forest Research (林业科学研究), 14,566-573. (in Chinese with English abstract) |
[1] | 刘瑶 钟全林 徐朝斌 程栋梁 郑跃芳 邹宇星 张雪 郑新杰 周云若. 不同大小刨花楠细根功能性状与根际微环境关系[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 杨尚锦, 范云翔, 章毓文, 韩巧玲, 赵玥, 段劼, 邸楠, 席本野. 树木夜间液流组分划分方法对比——以毛白杨为例[J]. 植物生态学报, 2024, 48(4): 496-507. |
[3] | 吴帆, 吴晨, 张宇辉, 余恒, 魏智华, 郑蔚, 刘小飞, 陈仕东, 杨智杰, 熊德成. 增温对成熟杉木人工林不同季节细根生长、形态及生理代谢特征的影响[J]. 植物生态学报, 2023, 47(6): 856-866. |
[4] | 刘婧, 缑倩倩, 王国华, 赵峰侠. 晋西北丘陵风沙区柠条锦鸡儿叶片与土壤生态化学计量特征[J]. 植物生态学报, 2023, 47(4): 546-558. |
[5] | 范云翔, 邸楠, 刘洋, 章毓文, 段劼, 李新, 王海红, 席本野. 毛白杨茎干夜间液流时空动态及其环境影响因子[J]. 植物生态学报, 2023, 47(2): 262-274. |
[6] | 党宏忠, 张学利, 韩辉, 石长春, 葛玉祥, 马全林, 陈帅, 刘春颖. 樟子松固沙林林水关系研究进展及对营林实践的指导[J]. 植物生态学报, 2022, 46(9): 971-983. |
[7] | 刘沛荣, 同小娟, 孟平, 张劲松, 张静茹, 于裴洋, 周宇. 散射辐射对中国东部典型人工林总初级生产力的影响[J]. 植物生态学报, 2022, 46(8): 904-918. |
[8] | 黄冬柳, 项伟, 李忠国, 朱师丹. 南亚热带10种造林树种的水力结构和水力安全[J]. 植物生态学报, 2022, 46(5): 602-612. |
[9] | 熊淑萍, 曹文博, 曹锐, 张志勇, 付新露, 徐赛俊, 潘虎强, 王小纯, 马新明. 水平结构配置对冬小麦冠层垂直结构、微环境及产量的影响[J]. 植物生态学报, 2022, 46(2): 188-196. |
[10] | 王俐爽, 同小娟, 孟平, 张劲松, 刘沛荣, 李俊, 张静茹, 周宇. 辽西半干旱地区两种典型人工林生态系统能量通量及蒸散特征[J]. 植物生态学报, 2022, 46(12): 1508-1522. |
[11] | 魏春雪, 杨璐, 汪金松, 杨家明, 史嘉炜, 田大栓, 周青平, 牛书丽. 实验增温对陆地生态系统根系生物量的影响[J]. 植物生态学报, 2021, 45(11): 1203-1212. |
[12] | 扈明媛, 袁野, 戴晓琴, 付晓莉, 寇亮, 王辉民. 亚热带人工林乔灌草根际土壤氮矿化特征[J]. 植物生态学报, 2020, 44(12): 1285-1295. |
[13] | 李品, 木勒德尔•吐尔汗拜, 田地, 冯兆忠. 全球森林土壤微生物生物量碳氮磷化学计量的季节动态[J]. 植物生态学报, 2019, 43(6): 532-542. |
[14] | 吕中诚, 康文星, 黄志宏, 赵仲辉, 邓湘雯. 不同林龄杉木组织迁移养分的再利用[J]. 植物生态学报, 2019, 43(5): 458-470. |
[15] | 高雨秋, 戴晓琴, 王建雷, 付晓莉, 寇亮, 王辉民. 亚热带人工林下植被根际土壤酶化学计量特征[J]. 植物生态学报, 2019, 43(3): 258-272. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19