植物生态学报 ›› 2019, Vol. 43 ›› Issue (6): 532-542.DOI: 10.17521/cjpe.2019.0075
收稿日期:
2019-04-04
修回日期:
2019-06-12
出版日期:
2019-06-20
发布日期:
2019-09-30
通讯作者:
李品ORCID:0000-0003-2289-9240
基金资助:
LI Pin1,*(),Muledeer TUERHANBAI2,TIAN Di2,FENG Zhao-Zhong1
Received:
2019-04-04
Revised:
2019-06-12
Online:
2019-06-20
Published:
2019-09-30
Contact:
LI PinORCID:0000-0003-2289-9240
Supported by:
摘要:
土壤微生物生物量在森林生态系统中充当具有生物活性的养分积累和储存库。土壤微生物转化有机质为植物提供可利用养分, 与植物的相互作用维系着陆地生态系统的生态功能。同时, 土壤微生物也与植物争夺营养元素, 在季节交替过程和植物的生长周期中呈现出复杂的互利-竞争关系。综合全球数据对温带、亚热带和热带森林土壤微生物生物量碳(C)、氮(N)、磷(P)含量及其化学计量比值的季节动态进行分析, 发现温带和亚热带森林的土壤微生物生物量C、N、P含量均呈现夏季低、冬季高的格局。热带森林四季的土壤微生物生物量C、N、P含量都低于温带和亚热带森林, 且热带森林土壤微生物生物量C含量、N含量在秋季相对最低, 土壤微生物生物量P含量四季都相对恒定。温带森林的土壤微生物生物量C:N在春季显著高于其他两个森林类型; 热带森林的土壤微生物生物量C:N在秋季显著高于其他2个森林类型。温带森林土壤微生物生物量N:P和C:P在四季都保持相对恒定, 而热带森林土壤微生物生物量N:P和C:P在夏季高于其他3个季节。阔叶树的土壤微生物生物量C含量、N含量、N:P、C:P在四季都显著高于针叶树; 而针叶树的土壤微生物生物量P含量在四季都显著高于阔叶树。在春季和冬季时, 土壤微生物生物量C:N在阔叶树和针叶树之间都没有显著差异; 但是在夏季和秋季, 针叶树的土壤微生物生物量C:N显著高于阔叶树。对于土壤微生物生物量的变化来说, 森林类型是主要的显著影响因子, 季节不是显著影响因子, 暗示土壤微生物生物量的季节波动是随着植物其内在固有的周期变化而变化。植物和土壤微生物密切作用表现出来的对养分的不同步吸收是保留养分和维持生态功能的一种权衡机制。
李品, 木勒德尔•吐尔汗拜, 田地, 冯兆忠. 全球森林土壤微生物生物量碳氮磷化学计量的季节动态. 植物生态学报, 2019, 43(6): 532-542. DOI: 10.17521/cjpe.2019.0075
LI Pin, Muledeer TUERHANBAI, TIAN Di, FENG Zhao-Zhong. Seasonal dynamics of soil microbial biomass carbon, nitrogen and phosphorus stoichiometry across global forest ecosystems. Chinese Journal of Plant Ecology, 2019, 43(6): 532-542. DOI: 10.17521/cjpe.2019.0075
图1 陆地生态系统中植物和土壤微生物活动相互关联的概念模型。一方面植物凋落物为土壤微生物生长活动提供底物, 同时土壤微生物分解底物产生的无机氮供植物生长利用, 它们之间是互利共生的。另一方面, 当养分供应(特别是氮)缺乏时, 它们之间又转换为竞争关系。改绘自Zak等(2000)。
Fig. 1 A conceptual model illustrating the links between plant and soil microbial activity in terrestrial ecosystems. On one hand, plants and microbes are mutualistic, since plant residues constitute the main substrate for microbial biomass that in turn produces inorganic nitrogen used by plants. On the other hand, their interaction is in competition for soil nutrients, N in particular. The competitive interaction is regulated by the relative distribution of roots and microbes in the soil, but it also depends on the pathway followed by the mineralized N. Redraw based on Zak et al. (2000).
森林类型 Forest type | 微生物生物量 Microbial biomass (μg·g-1) | 微生物生物量比值 Microbial biomass ratio | ||||
---|---|---|---|---|---|---|
C | N | P | C:N | N:P | C:P | |
所有类型 Overall | 629 ± 477 (80) | 98 ± 81 (66) | 32 ± 26 (34) | 6.9a ± 2.5 (65) | 5.4 ± 8.2 (33) | 26.4 ± 25.0 (34) |
温带针叶林 Temperate conifer forest | 570ab ± 307 (14) | 76b ± 49 (13) | 76 ± 41 (5) | 7.9a ± 2.4 (13) | 1.3 ± 0.0 (4) | 13.1 ± 9.9 (5) |
温带阔叶林 Temperate broad-leaved forest | 795ab ± 551 (12) | 94b ± 57 (11) | 54 (1) | 7.4a ± 1.9 (10) | 1.3 (1) | 8.6 (1) |
亚热带针叶林 Subtropical conifer forest | 347b ± 125 (5) | 35b ± 9 (3) | na | 8.3a ± 2.6 (3) | na | na |
亚热带阔叶林 Subtropical broad-leaved forest | 971a ± 650 (17) | 186a ± 94 (11) | 28 ± 11 (7) | 5.8a ± 1.7 (11) | 9.1 ± 3.5 (7) | 53.4 ± 22.2 (7) |
热带森林 Tropical forest | 454b ± 303 (32) | 82b ± 78 (28) | 22 ± 10 (21) | 6.5a ± 2.7 (28) | 5.2 ± 9.7 (21) | 21.5 ± 22.8 (21) |
表1 土壤微生物生物量碳(C)、氮(N)、磷(P)含量和C:N、N:P、C:P在各个森林生态系统类型的统计结果
Table 1 Soil microbial biomass carbon (C), nitrogen (N), phosphorus (P) content, C:N, N:P, C:P for each forest type across global forest ecosystems
森林类型 Forest type | 微生物生物量 Microbial biomass (μg·g-1) | 微生物生物量比值 Microbial biomass ratio | ||||
---|---|---|---|---|---|---|
C | N | P | C:N | N:P | C:P | |
所有类型 Overall | 629 ± 477 (80) | 98 ± 81 (66) | 32 ± 26 (34) | 6.9a ± 2.5 (65) | 5.4 ± 8.2 (33) | 26.4 ± 25.0 (34) |
温带针叶林 Temperate conifer forest | 570ab ± 307 (14) | 76b ± 49 (13) | 76 ± 41 (5) | 7.9a ± 2.4 (13) | 1.3 ± 0.0 (4) | 13.1 ± 9.9 (5) |
温带阔叶林 Temperate broad-leaved forest | 795ab ± 551 (12) | 94b ± 57 (11) | 54 (1) | 7.4a ± 1.9 (10) | 1.3 (1) | 8.6 (1) |
亚热带针叶林 Subtropical conifer forest | 347b ± 125 (5) | 35b ± 9 (3) | na | 8.3a ± 2.6 (3) | na | na |
亚热带阔叶林 Subtropical broad-leaved forest | 971a ± 650 (17) | 186a ± 94 (11) | 28 ± 11 (7) | 5.8a ± 1.7 (11) | 9.1 ± 3.5 (7) | 53.4 ± 22.2 (7) |
热带森林 Tropical forest | 454b ± 303 (32) | 82b ± 78 (28) | 22 ± 10 (21) | 6.5a ± 2.7 (28) | 5.2 ± 9.7 (21) | 21.5 ± 22.8 (21) |
森林类型 Forest type | 年平均气温 MAT | 年降水量 MAP | pH | 土壤有机碳 SOC | 土壤总氮 TN | 土壤总磷 TP | |
---|---|---|---|---|---|---|---|
微生物生物量C Microbial biomass C | 所有类型 Overall | -0.247*** | 0.037 | -0.117* | 0.671*** | 0.582*** | 0.461*** |
温带针叶林 Temperate conifer forest | -0.165 | 0.361** | -0.561*** | 0.858*** | 0.838*** | -0.105 | |
温带阔叶林 Temperate broad-leaved forest | -0.084 | 0.116 | 0.138 | 0.704*** | 0.696*** | 0.437*** | |
亚热带针叶林 Subtropical conifer forest | 0.087 | 0.231 | -0.327* | 0.303* | 0.173 | 0.003 | |
亚热带阔叶林 Subtropical broad-leaved forest | -0.208 | 0.249* | 0.285* | 0.614*** | 0.640*** | 0.505* | |
热带森林 Tropical | -0.172 | 0.289** | -0.350** | 0.549*** | 0.609*** | 0.625*** | |
微生物生物量N Microbial biomass N | 所有类型 Overall | -0.226*** | 0.085 | -0.047 | 0.535*** | 0.588*** | 0.346*** |
温带针叶林 Temperate conifer forest | -0.248 | 0.246 | -0.285 | 0.638*** | 0.717*** | -0.424 | |
温带阔叶林 Temperate broad-leaved forest | 0.039 | 0.059 | 0.355*** | 0.481*** | 0.597*** | 0.428* | |
亚热带针叶林 Subtropical conifer forest | 0.180 | 0.517** | -0.498** | 0.037 | -0.007 | -0.340 | |
亚热带阔叶林 Subtropical broad-leaved forest | -0.419** | 0.217 | 0.123 | 0.672*** | 0.676*** | 0.201 | |
热带森林 Tropical forest | -0.262* | 0.205 | -0.339** | 0.610*** | 0.691*** | 0.633*** | |
微生物生物量P Microbial biomass P | 所有类型 Overall | -0.555*** | -0.323** | 0.363*** | 0.215* | 0.263* | 0.474*** |
温带针叶林 Temperate conifer forest | 0.891* | -0.147 | 0.351 | 0.943* | 0.918* | -0.839 | |
温带阔叶林 Temperate broad-leaved forest | 0.434* | -0.434* | 0.375 | 0.591** | 0.776*** | 0.638** | |
亚热带针叶林 Subtropical conifer forest | 0.154 | 0.287 | 0.442 | 0.806 | 0.867 | -0.331 | |
亚热带阔叶林 Subtropical broad-leaved forest | 0.311 | 0.284 | 0.348 | 0.599* | 0.643* | 0.542 | |
热带森林 Tropical forest | -0.082 | 0.024 | -0.397* | 0.245 | 0.303 | 0.347 |
表2 各森林类型土壤微生物生物量碳(C)、氮(N)、磷(P)含量与环境因子的相关性
Table 2 Correlation coefficients for the relationship between microbial biomass carbon (C), nitrogen (N), and phosphorus (P) content with environmental variables on different forest types
森林类型 Forest type | 年平均气温 MAT | 年降水量 MAP | pH | 土壤有机碳 SOC | 土壤总氮 TN | 土壤总磷 TP | |
---|---|---|---|---|---|---|---|
微生物生物量C Microbial biomass C | 所有类型 Overall | -0.247*** | 0.037 | -0.117* | 0.671*** | 0.582*** | 0.461*** |
温带针叶林 Temperate conifer forest | -0.165 | 0.361** | -0.561*** | 0.858*** | 0.838*** | -0.105 | |
温带阔叶林 Temperate broad-leaved forest | -0.084 | 0.116 | 0.138 | 0.704*** | 0.696*** | 0.437*** | |
亚热带针叶林 Subtropical conifer forest | 0.087 | 0.231 | -0.327* | 0.303* | 0.173 | 0.003 | |
亚热带阔叶林 Subtropical broad-leaved forest | -0.208 | 0.249* | 0.285* | 0.614*** | 0.640*** | 0.505* | |
热带森林 Tropical | -0.172 | 0.289** | -0.350** | 0.549*** | 0.609*** | 0.625*** | |
微生物生物量N Microbial biomass N | 所有类型 Overall | -0.226*** | 0.085 | -0.047 | 0.535*** | 0.588*** | 0.346*** |
温带针叶林 Temperate conifer forest | -0.248 | 0.246 | -0.285 | 0.638*** | 0.717*** | -0.424 | |
温带阔叶林 Temperate broad-leaved forest | 0.039 | 0.059 | 0.355*** | 0.481*** | 0.597*** | 0.428* | |
亚热带针叶林 Subtropical conifer forest | 0.180 | 0.517** | -0.498** | 0.037 | -0.007 | -0.340 | |
亚热带阔叶林 Subtropical broad-leaved forest | -0.419** | 0.217 | 0.123 | 0.672*** | 0.676*** | 0.201 | |
热带森林 Tropical forest | -0.262* | 0.205 | -0.339** | 0.610*** | 0.691*** | 0.633*** | |
微生物生物量P Microbial biomass P | 所有类型 Overall | -0.555*** | -0.323** | 0.363*** | 0.215* | 0.263* | 0.474*** |
温带针叶林 Temperate conifer forest | 0.891* | -0.147 | 0.351 | 0.943* | 0.918* | -0.839 | |
温带阔叶林 Temperate broad-leaved forest | 0.434* | -0.434* | 0.375 | 0.591** | 0.776*** | 0.638** | |
亚热带针叶林 Subtropical conifer forest | 0.154 | 0.287 | 0.442 | 0.806 | 0.867 | -0.331 | |
亚热带阔叶林 Subtropical broad-leaved forest | 0.311 | 0.284 | 0.348 | 0.599* | 0.643* | 0.542 | |
热带森林 Tropical forest | -0.082 | 0.024 | -0.397* | 0.245 | 0.303 | 0.347 |
图2 三种森林类型(温带森林、亚热带森林和热带森林)土壤微生物生物量C、N、P含量及其比值的季节动态(平均值±标准偏差)。星号代表统计上有显著性差异(p < 0.05)。
Fig. 2 Seasonal dynamic changes in soil microbial biomass C, N, P content and their ratios in three climatic forest types including temperate forests, subtropical forests and tropical forests (mean ± SD). The asterisk designates statistical differences (p < 0.05).
图3 三种森林类型(温带森林、亚热带森林和热带森林)土壤微生物生物量C、N、P含量及其比值在四季的比较(平均值±标准偏差)。不同的小写字母代表统计上有显著性差异(p < 0.05)。
Fig. 3 Comparisons of soil microbial biomass and their ratios in three climatic forest types including temperate forests, subtropical forests and tropical forests (mean ± SD). Statistical differences are denoted by different lowercase letters (p < 0.05).
图4 针叶林和阔叶林在春夏秋冬四季的土壤微生物生物量比较(平均值±标准偏差)。不同的小写字母代表统计上有显著性差异(p < 0.05)。
Fig. 4 Box-Whisker plots showing the differences in soil microbial biomass between coniferous and broadleaf forests at four major seasons of spring, summer, autumn and winter (mean ± SD). Statistical differences are denoted by different lowercase letters (p < 0.05).
来源 Source | 微生物生物量C含量 Microbial biomass C content | 微生物生物量N含量 Microbial biomass N content | 微生物生物量P含量 Microbial biomass P content | ||||||
---|---|---|---|---|---|---|---|---|---|
d.f. | MS | F | d.f. | MS | F | d.f. | MS | F | |
森林类型 Forest type | 2 | 1 135 927.6 | 4.04* | 2 | 90 638.4 | 13.41*** | 2 | 20 756.4 | 52.32*** |
季节 Season | 3 | 172 792.3 | 0.62 | 3 | 3 484.8 | 0.52 | 3 | 1 142.8 | 2.88* |
森林类型 × 季节 Forest type × Season | 6 | 123 876.6 | 0.44 | 6 | 2 794.1 | 0.41 | 6 | 535.8 | 1.35 |
残差 Residual | 264 | 281 003.8 | 216 | 6 761.1 | 105 | 396.7 | |||
来源 Source | 微生物生物量C:N Microbial biomass C:N | 微生物生物量N:P Microbial biomass N:P | 微生物生物量C:P Microbial biomass C:P | ||||||
d.f. | MS | F | d.f. | MS | F | d.f. | MS | F | |
森林类型 Forest type | 2 | 93.1 | 7.76** | 2 | 430.5 | 7.18** | 2 | 11 677.1 | 6.20** |
季节 Season | 3 | 17.9 | 1.49 | 3 | 6.8 | 0.11 | 3 | 245.8 | 0.13 |
森林类型 × 季节 Forest type × Season | 6 | 34.7 | 2.89* | 6 | 20.3 | 0.34 | 6 | 649.4 | 0.35 |
残差 Residual | 211 | 12.0 | 97 | 60.0 | 101 | 1 884.1 |
表3 季节和森林类型双因子方差分析对土壤微生物生物量及其比值的交互影响
Table 3 Two-way ANOVA analysis on the integrative effects of seasons and forest types on soil microbial biomass and their ratios
来源 Source | 微生物生物量C含量 Microbial biomass C content | 微生物生物量N含量 Microbial biomass N content | 微生物生物量P含量 Microbial biomass P content | ||||||
---|---|---|---|---|---|---|---|---|---|
d.f. | MS | F | d.f. | MS | F | d.f. | MS | F | |
森林类型 Forest type | 2 | 1 135 927.6 | 4.04* | 2 | 90 638.4 | 13.41*** | 2 | 20 756.4 | 52.32*** |
季节 Season | 3 | 172 792.3 | 0.62 | 3 | 3 484.8 | 0.52 | 3 | 1 142.8 | 2.88* |
森林类型 × 季节 Forest type × Season | 6 | 123 876.6 | 0.44 | 6 | 2 794.1 | 0.41 | 6 | 535.8 | 1.35 |
残差 Residual | 264 | 281 003.8 | 216 | 6 761.1 | 105 | 396.7 | |||
来源 Source | 微生物生物量C:N Microbial biomass C:N | 微生物生物量N:P Microbial biomass N:P | 微生物生物量C:P Microbial biomass C:P | ||||||
d.f. | MS | F | d.f. | MS | F | d.f. | MS | F | |
森林类型 Forest type | 2 | 93.1 | 7.76** | 2 | 430.5 | 7.18** | 2 | 11 677.1 | 6.20** |
季节 Season | 3 | 17.9 | 1.49 | 3 | 6.8 | 0.11 | 3 | 245.8 | 0.13 |
森林类型 × 季节 Forest type × Season | 6 | 34.7 | 2.89* | 6 | 20.3 | 0.34 | 6 | 649.4 | 0.35 |
残差 Residual | 211 | 12.0 | 97 | 60.0 | 101 | 1 884.1 |
[1] | Barbhuiya AR, Arunachalam A, Pandey HN, Arunachalam K, Khan ML, Nath PC (2004). Dynamics of soil microbial biomass C, N and P in disturbed and undisturbed stands of a tropical wet-evergreen forest. European Journal of Soil Biology, 40, 113-121. |
[2] | Bonan GB (2014). Connecting mathematical ecosystems, real-world ecosystems, and climate science. New Phytologist, 202, 731-733. |
[3] | Brookes PC, Ocio JA, Wu J (1990). The soil microbial biomass: Its measurement, properties and role in nitrogen carbon dynamics following substrate incorporation. Soil Microorganisms, 35, 39-51. |
[4] | Brooks PD, Williams MW, Schmidt SK (1996). Microbial activity under alpine snowpacks, Niwot Ridge, Colorado. Biogeochemistry, 32, 93-113. |
[5] | Brooks PD, Williams MW, Schmidt SK (1998). Inorganic N and microbial biomass dynamics before and during spring snowmelt. Biogeochemistry, 43, 1-15. |
[6] | Cleveland CC, Liptzin D (2007). C:N:P stoichiometry in soil: Is there a “Redfield ratio” for the microbial biomass? Biogeochemistry, 85, 235-252. |
[7] | Deng M, Liu L, Jiang L, Liu W, Wang X, Li S, Yang S, Wang B (2018). Ecosystem scale trade-off in nitrogen acquisition pathways. Nature Ecology & Evolution, 2, 1724-1734. |
[8] | Devi NB, Yadava PS (2006). Seasonal dynamics in soil microbial biomass C, N and P in a mixed-oak forest ecosystem of Manipur, North-east India. Applied Soil Ecology, 31, 220-227. |
[9] | Edwards KA, McCulloch J, Peter Kershaw G, Jefferies RL (2006). Soil microbial and nutrient dynamics in a wet Arctic sedge meadow in late winter and early spring. Soil Biology & Biochemistry, 38, 2843-2851. |
[10] | Fang CM, Smith P, Moncrieff JB, Smith JU (2005). Similar response of labile and resistant soil organic matter pools to changes in temperature. Nature, 433, 57-59. |
[11] | Fauci MF, Dick RP (1994). Soil microbial dynamics: Short- and long-term effects of inorganic and organic nitrogen. Soil Science Society of America Journal, 58, 801-806. |
[12] | Feng WT, Zou XM, Schaefer D (2009). Above- and belowground carbon inputs affect seasonal variations of soil microbial biomass in a subtropical monsoon forest of southwest China. Soil Biology & Biochemistry, 41, 978-983. |
[13] | Fierer N, Strickland MS, Liptzin D, Bradford MA, Cleveland CC (2009). Global patterns in belowground communities. Ecology Letters, 12, 1238-1249. |
[14] | Groffmann PM, Zak DR, Christensen S, Mosier A, Tiedje JM (1993). Early spring nitrogen dynamics in a temperate forest landscape. Ecology, 74, 1579-1585. |
[15] | Harte J, Kinzig AP (1993). Mutualism and competition between plants and decomposers: Implications for nutrient allocation in ecosystems. The American Naturalist, 141, 829-846. |
[16] | He ZL, Wu J, O’Donnel AG, Syers JK (1997). Seasonal responses in microbial biomass carbon, phosphorus and sulphur in soils under pasture. Biology and Fertility of Soils, 24, 421-428. |
[17] | Kaiser C, Franklin O, Dieckmann U, Richter A (2014). Microbial community dynamics alleviate stoichiometric constraints during litter decay. Ecology Letters, 17, 680-690. |
[18] | Kaiser C, Fuchslueger L, Koranda M, Gorfer M, Stange CF, Kitzler B, Rasche F, Strauss J, Sessitsch A, Zechmeister-Boltenstern S, Richter A (2011). Plants control the seasonal dynamics of microbial N cycling in a beech forest soil by belowground C allocation. Ecology, 92, 1036-1051. |
[19] | Kaye JP, Hart SC (1997). Competition for nitrogen between plants and soil microorganisms. Trends in Ecology & Evolution, 12, 139-143. |
[20] | Koranda M, Kaiser C, Fuchslueger L, Kitzler B, Sessitsch A, Zechmeister-Boltenstern S, Richter A (2013). Seasonal variation in functional properties of microbial communities in beech forest soil. Soil Biology & Biochemistry, 60, 95-104. |
[21] | Landgraf D, Klose S (2002). Mobile and readily available C and N fractions and their relationship to microbial biomass and selected enzyme activities in a sandy soil under different management systems. Journal of Plant Nutrition and Soil Science, 165, 9-16. |
[22] | Li P, Yang YH, Han WX, Fang JY (2014). Global patterns of soil microbial nitrogen and phosphorus stoichiometry in forest ecosystems. Global Ecology and Biogeography, 23, 979-987. |
[23] | Lipson DA, Schadt CW, Schmidt SK (2002). Changes in soil microbial community structure and function in an alpine dry meadow following spring snow melt. Microbial Ecology, 43, 307-314. |
[24] | Lipson DA, Schmidt SK, Monson RK (1999). Links between microbial population dynamics and nitrogen availability in an alpine ecosystem. Ecology, 80, 1623-1631. |
[25] | Lipson DA, Schmidt SK, Monson RK (2000). Carbon availability and temperature control the post-snowmelt decline in alpine soil microbial biomass. Soil Biology & Biochemistry, 32, 441-448. |
[26] | Liu S, Wang CK (2010). Spatio-temporal patterns of soil microbial biomass carbon and nitrogen in five temperate forest ecosystems. Acta Ecologica Sinica, 30, 3135-3143. |
[ 刘爽, 王传宽 (2010). 五种温带森林土壤微生物生物量碳氮的时空格局. 生态学报, 30, 3135-3143.] | |
[27] | López-Mondéjar R, Voříšková J, Větrovský T, Baldrian P (2015). The bacterial community inhabiting temperate deciduous forests is vertically stratified and undergoes seasonal dynamics. Soil Biology & Biochemistry, 87, 43-50. |
[28] | Medlyn BE, Zaehle S, De Kauwe MG, Walker AP, Dietze MC, Hanson PJ, Hickler T, Jain AK, Luo Y, Parton W, Prentice IC, Thornton PE, Wang S, Wang YP, Weng E, Iversen CM, McCarthy HR, Warren JM, Oren R, Norby RJ (2015). Using ecosystem experiments to improve vegetation models. Nature Climate Change, 5, 528-534. |
[29] | Muller RN, Herbert Bormann F (1976). Role of Erythronium americanum Ker. in energy flow and nutrient dynamics of a northern hardwood forest ecosystem. Science, 193, 1126-1128. |
[30] | Neill C, Gignoux J (2006). Soil organic matter decomposition driven by microbial growth: A simple model for a complex network of interactions. Soil Biology & Biochemistry, 38, 803-811. |
[31] | Nemergut DR, Costello EK, Meyer AF, Pescador MY, Weintraub MN, Schmidt SK (2005). Structure and function of alpine and arctic soil microbial communities. Research in Microbiology, 156, 775-784. |
[32] | Schimel JP, Weintraub MN (2003). The implications of exoenzyme activity on microbial carbon and nitrogen limitation in soil: A theoretical model. Soil Biology & Biochemistry, 35, 549-563. |
[33] | Schmidt SK, Lipson DA (2004). Microbial growth under the snow: Implications for nutrient and allelochemical availability in temperate soils. Plant and Soil, 259, 1-7. |
[34] | Scott-Denton LE, Rosenstiel TN, Monson RK (2006). Differential controls by climate and substrate over the heterotrophic and rhizospheric components of soil respiration. Global Change Biology, 12, 205-216. |
[35] | Singh JS, Raghubanshi AS, Singh RS, Srivastava SC (1989). Microbial biomass acts as a source of plant nutrients in dry tropical forest and savanna. Nature, 338, 499-500. |
[36] | Terrer C, Vicca S, Stocker BD, Hungate BA, Phillips RP, Reich PB, Finzi AC, Prentice IC (2018). Ecosystem responses to elevated CO2 governed by plant-soil interactions and the cost of nitrogen acquisition. New Phytologist, 217, 507-522. |
[37] | Vance ED, Brookes PC, Jenkinson DS (1987). An extraction method for measuring soil microbial biomass C. Soil Biology & Biochemistry, 19, 703-707. |
[38] | Wang GB, Ruan HH, Tang YF, Luan YL, Chen YQ, Tao ZF (2008). Seasonal fluctuation of soil microbial biomass carbon in secondary oak forest and Pinus taeda plantation in north subtropical area of China. Chinese Journal of Applied Ecology, 19, 37-42. |
[ 王国兵, 阮宏华, 唐燕飞, 栾以玲, 陈月琴, 陶忠芳 (2008). 北亚热带次生栎林与火炬松人工林土壤微生物生物量碳的季节动态. 应用生态学报, 19, 37-42.] | |
[39] | Wang XQ, Han Y, Wang CK (2017). Soil microbial biomass and its seasonality in deciduous broadleaved forests with different stand ages in the Mao’ershan region, Northeast China. Chinese Journal of Plant Ecology, 41, 597-609. |
[ 王薪琪, 韩轶, 王传宽 (2017). 帽儿山不同林龄落叶阔叶林土壤微生物生物量及其季节动态. 植物生态学报, 41, 597-609.] | |
[40] | Warren M, Zou XM (2003). Seasonal nitrogen retention in temperate hardwood forests: The “vernal dam” hypothesis and case studies. Acta Phytoecologica Sinica, 27, 11-15. |
[ Warren M, 邹晓明 (2003) 温带阔叶林中氮的保留机制: “春坝”假设及研究实例. 植物生态学报, 27, 11-15.] | |
[41] | Yang K, Zhu JJ, Zhang JX, Yan QL (2009). Seasonal dynamics of soil microbial biomass C and N in two larch plantation forests with different ages in Northeastern China. Acta Ecologica Sinica, 29, 5500-5507. |
[ 杨凯, 朱教君, 张金鑫, 闫巧玲 (2009). 不同林龄落叶松人工林土壤微生物生物量碳氮的季节变化. 生态学报, 29, 5500-5507.] | |
[42] | Zak DR, Pregitzer KS, Curtis PS, Teeri JA, Fogel R, Randlett DL (1993). Elevated atmospheric CO2 and feedback between carbon and nitrogen cycles. Plant and Soil, 151, 105-117. |
[43] | Zak DR, Pregitzer KS, King JS, Holmes WE (2000). Elevated atmospheric CO2 fine roots and the response of soil microorganisms: A review and hypothesis. New Phytologist, 147, 201-222. |
[1] | 王袼, 胡姝娅, 李阳, 陈晓鹏, 李红玉, 董宽虎, 何念鹏, 王常慧. 不同类型草原土壤净氮矿化速率的温度敏感性[J]. 植物生态学报, 2024, 48(4): 523-533. |
[2] | 罗娜娜, 盛茂银, 王霖娇, 石庆龙, 何宇. 长期植被恢复对中国西南喀斯特石漠化土壤活性有机碳组分含量和酶活性的影响[J]. 植物生态学报, 2023, 47(6): 867-881. |
[3] | 朱玉荷, 肖虹, 王冰, 吴颖, 白永飞, 陈迪马. 蒙古高原草地不同深度土壤碳氮磷化学计量特征对气候因子的响应[J]. 植物生态学报, 2022, 46(3): 340-349. |
[4] | 李东, 田秋香, 赵小祥, 林巧玲, 岳朋芸, 姜庆虎, 刘峰. 贡嘎山树线过渡带土壤胞外酶活性及其化学计量比特征[J]. 植物生态学报, 2022, 46(2): 232-242. |
[5] | 王毅, 孙建, 叶冲冲, 曾涛. 气候因子通过土壤微生物生物量氮促进青藏高原高寒草地地上生态系统功能[J]. 植物生态学报, 2021, 45(5): 434-443. |
[6] | 解梦怡, 冯秀秀, 马寰菲, 胡汗, 王洁莹, 郭垚鑫, 任成杰, 王俊, 赵发珠. 秦岭锐齿栎林土壤酶活性与化学计量比变化特征及其影响因素[J]. 植物生态学报, 2020, 44(8): 885-894. |
[7] | 陈婵, 张仕吉, 李雷达, 刘兆丹, 陈金磊, 辜翔, 王留芳, 方晰. 中亚热带植被恢复阶段植物叶片、凋落物、土壤碳氮磷化学计量特征[J]. 植物生态学报, 2019, 43(8): 658-671. |
[8] | 高雨秋, 戴晓琴, 王建雷, 付晓莉, 寇亮, 王辉民. 亚热带人工林下植被根际土壤酶化学计量特征[J]. 植物生态学报, 2019, 43(3): 258-272. |
[9] | 唐立涛, 刘丹, 罗雪萍, 胡雷, 王长庭. 青海省森林土壤磷储量及其分布格局[J]. 植物生态学报, 2019, 43(12): 1091-1103. |
[10] | 程汉亭, 李勤奋, 刘景坤, 严廷良, 张俏燕, 王进闯. 橡胶林下益智光合特性的季节动态变化[J]. 植物生态学报, 2018, 42(5): 585-594. |
[11] | 王祥, 朱亚琼, 郑伟, 关正翾, 盛建东. 昭苏山地草甸4种典型土地利用方式下的土壤呼吸特征[J]. 植物生态学报, 2018, 42(3): 382-396. |
[12] | 李茜, 王芳, 曹扬, 彭守璋, 陈云明. 陕西省森林土壤固碳特征及其影响因素[J]. 植物生态学报, 2017, 41(9): 953-963. |
[13] | 刘泽彬, 王彦辉, 刘宇, 田奥, 王亚蕊, 左海军. 宁夏六盘山半湿润区华北落叶松林冠层叶面积指数的时空变化及坡面尺度效应[J]. 植物生态学报, 2017, 41(7): 749-760. |
[14] | 王薪琪, 韩轶, 王传宽. 帽儿山不同林龄落叶阔叶林土壤微生物生物量及其季节动态[J]. 植物生态学报, 2017, 41(6): 597-609. |
[15] | 许飞, 王传宽. 4种温带针叶树种树干CO2释放通量的季节动态及其驱动因子[J]. 植物生态学报, 2017, 41(4): 396-408. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19