植物生态学报 ›› 2018, Vol. 42 ›› Issue (3): 382-396.DOI: 10.17521/cjpe.2017.0050
所属专题: 土壤呼吸
出版日期:
2018-03-20
发布日期:
2017-06-16
通讯作者:
郑伟 ORCID:0000-0002-5627-9042
基金资助:
WANG Xiang1,ZHU Ya-Qiong1,ZHENG Wei1,2,*(),GUAN Zheng-Xuan1,SHENG Jian-Dong1
Online:
2018-03-20
Published:
2017-06-16
Contact:
Wei ZHENG ORCID:0000-0002-5627-9042
Supported by:
摘要:
为探讨不同土地利用方式对新疆昭苏天山北坡山地草甸土壤呼吸速率的影响, 于2015年和2016年的4月底至9月初, 用土壤呼吸测量仪对补播草地(RG)、豆禾混播草地(LG)、围封草地(NG)和农田(CR)的土壤呼吸进行测定, 并分析了影响土壤呼吸速率的土壤生物和水热因子。结果表明: 1)土壤呼吸速率在2015年NG和CR呈现双峰值, RG和LG呈现单峰曲线, 各处理均在8月达到最大值。2016年各处理峰值出现的时间不同, RG和LG在6月底达到最大值, NG和CR在7月底达到最大值; 监测期内平均土壤呼吸速率由大到小依次为: NG > RG > CR > LG。2)各样地土壤呼吸速率与土壤温度呈指数正相关关系; 土壤含水量与土壤呼吸的关系可能由于此地段常年湿润, 土壤含水量较高, 从而抑制土壤呼吸, 土壤呼吸与土壤体积含水量呈线性负相关关系; 土壤呼吸的温度敏感指数(Q10)大小为NG > CR > RG > LG。3)不同处理的土壤微生物以细菌为主, 放线菌次之, 真菌居第三, 各样地总微生物生物量为: NG > RG > CR > LG, 与各样地平均土壤呼吸速率大小一致, 拟合分析显示RG土壤呼吸与放线菌呈显著的线性相关关系, LG土壤呼吸与细菌和放线菌呈显著线性相关关系。不同处理微生物生物量碳平均含量为CR > NG > LG > RG, 拟合分析显示RG与CR的土壤呼吸速率与微生物生物量碳呈显著线性相关关系, 其中CR的土壤呼吸速率与微生物生物量碳极显著相关; 4)各样地酶活性与土壤呼吸的相关关系分析显示, 只有蛋白酶和蔗糖酶与土壤呼吸有相关关系, 而蔗糖酶对土壤呼吸的影响更大。豆禾混播草地和补播草地相对于围封草地和农田, 土壤呼吸速率显著降低, 草地土壤的固碳能力显著提高。
王祥, 朱亚琼, 郑伟, 关正翾, 盛建东. 昭苏山地草甸4种典型土地利用方式下的土壤呼吸特征. 植物生态学报, 2018, 42(3): 382-396. DOI: 10.17521/cjpe.2017.0050
WANG Xiang, ZHU Ya-Qiong, ZHENG Wei, GUAN Zheng-Xuan, SHENG Jian-Dong. Soil respiration features of mountain meadows under four typical land use types in Zhaosu Basin. Chinese Journal of Plant Ecology, 2018, 42(3): 382-396. DOI: 10.17521/cjpe.2017.0050
图1 不同土地利用方式下土壤呼吸速率(Rs)季节变化(平均值±标准偏差)。CR, 农田; LG, 豆禾混播草地; NG, 围封草地; RG, 补播草地。
Fig. 1 Seasonal variation of soil respiration rate (Rs) in plots with different land use types (mean ± SD). CR, cropland; LG, legume-grass mixture; NG, natural grassland; RG, reseeding grassland.
图2 不同土地利用方式下各样地土壤温度和土壤含水量。CR, 农田; LG, 豆禾混播草地; NG, 围封草地; RG, 补播草地。
Fig. 2 Soil temperature and soil water content in plots with different land use types. CR, cropland; LG, legume-grass mixture; NG, natural grassland; RG, reseeding grassland.
图3 不同土地利用方式下土壤呼吸速率(Rs)与5 cm土壤温度的指数拟合关系。CR, 农田; LG, 豆禾混播草地; NG, 围封草地; RG, 补播草地。
Fig. 3 The relationship between soil respiration rate (Rs) and soil temperature at 5 cm depth in plots with different land use types. CR, cropland; LG, legume-grass mixture; NG, natural grassland; RG, reseeding grassland.
图4 不同土地利用方式下土壤呼吸速率(Rs)与10 cm土壤含水量的线性拟合关系。CR, 农田; LG, 豆禾混播草地; NG, 围封草地; RG, 补播草地。
Fig. 4 The relationship between soil respiration rate (Rs) and soil water content (SWC) at 10 cm depth in plots with different land use types. CR, cropland; LG, legume-grass mixture; NG, natural grassland; RG, reseeding grassland.
样地 Plot | 2015 | 2016 | ||||
---|---|---|---|---|---|---|
拟合方程 Fitted equation | R2 | p | 拟合方程 Fitted equation | R2 | p | |
RG | Rs = 0.63e0.10Ts +$0.47W_{10}^{2}$- 0.11W10 - 1.99 | 0.81 | < 0.001 | Rs = e-0.99Ts -$0.60W_{10}^{2}$+ 0.63W10 - 0.73 | 0.68 | < 0.01 |
LG | Rs = 0.92e0.09Ts +$1.22W_{10}^{2}$- 0.02W10 - 12.45 | 0.67 | < 0.01 | Rs = e-0.99Ts +$0.45_{10}^{2}$- 0.24W10 - 0.97 | 0.89 | < 0.01 |
NG | Rs = e-0.95Ts -$0.49W_{10}^{2}$+ 0.49W10 + 0.47 | 0.78 | < 0.001 | Rs = 0.46e0.14Ts -$0.02W_{10}^{2}$+ 0.64W10 - 1.73 | 0.88 | < 0.01 |
CR | Rs = e-0.99Ts -$0.79W_{10}^{2}$+ 0.85W10 - 0.29 | 0.68 | < 0.01 | Rs = e-Ts +$0.86W_{10}^{2}$- 0.86W10 + 0.42 | 0.64 | < 0.01 |
表1 土壤呼吸(Rs)与土壤温度(Ts)和土壤含水量(W10)的回归方程
Table 1 Regression equations of soil respiration rate (Rs) with soil temperature (Ts) and soil water content (W10)
样地 Plot | 2015 | 2016 | ||||
---|---|---|---|---|---|---|
拟合方程 Fitted equation | R2 | p | 拟合方程 Fitted equation | R2 | p | |
RG | Rs = 0.63e0.10Ts +$0.47W_{10}^{2}$- 0.11W10 - 1.99 | 0.81 | < 0.001 | Rs = e-0.99Ts -$0.60W_{10}^{2}$+ 0.63W10 - 0.73 | 0.68 | < 0.01 |
LG | Rs = 0.92e0.09Ts +$1.22W_{10}^{2}$- 0.02W10 - 12.45 | 0.67 | < 0.01 | Rs = e-0.99Ts +$0.45_{10}^{2}$- 0.24W10 - 0.97 | 0.89 | < 0.01 |
NG | Rs = e-0.95Ts -$0.49W_{10}^{2}$+ 0.49W10 + 0.47 | 0.78 | < 0.001 | Rs = 0.46e0.14Ts -$0.02W_{10}^{2}$+ 0.64W10 - 1.73 | 0.88 | < 0.01 |
CR | Rs = e-0.99Ts -$0.79W_{10}^{2}$+ 0.85W10 - 0.29 | 0.68 | < 0.01 | Rs = e-Ts +$0.86W_{10}^{2}$- 0.86W10 + 0.42 | 0.64 | < 0.01 |
时期 Time | 样地 Plot | 总数量(105·g-1干土) Total abundance (105·g-1 dry soil) | 细菌 Bacteria | 放线菌 Actinomyces | 真菌 Fungi | |||
---|---|---|---|---|---|---|---|---|
数量(105·g-1干土) Abundance (105·g-1 dry soil) | 比例 Proportion (%) | 数量(105·g-1干土) Abundance (105·g-1 dry soil) | 比例 Proportion (%) | 数量(105·g-1干土) Abundance (105·g-1 dry soil) | 比例 Proportion (%) | |||
4月 April | RG | 12.02 | 11.81 ± 0.58a | 98.22 | 1.75 ± 1.21b | 1.46 | 0.03 ± 2.91b | 0.32 |
LG | 12.15 | 11.51 ± 1.73a | 94.67 | 1.99 ± 3.53b | 1.64 | 0.44 ± 1.76c | 3.69 | |
NG | 19.39 | 19.19 ± 4.26c | 98.94 | 1.55 ± 1.15a | 0.80 | 0.04 ± 1.76b | 0.26 | |
CR | 14.55 | 13.69 ± 1.73b | 94.24 | 8.26 ± 5.24c | 5.68 | 0.01 ± 0.33a | 0.08 | |
5月 May | RG | 16.46 | 16.08 ± 1.64b | 98.03 | 3.33 ± 1.53a | 1.66 | 0.04 ± 1.26a | 0.31 |
LG | 13.36 | 12.69 ± 2.09a | 95.98 | 4.06 ± 3.98 ab | 1.83 | 0.03 ± 2.02b | 2.19 | |
NG | 18.04 | 17.65 ± 4.51b | 98.65 | 3.21 ± 3.69a | 0.99 | 0.06 ± 2.69a | 0.36 | |
CR | 14.53 | 13.58 ± 2.94a | 94.41 | 6.59 ± 3.02c | 5.19 | 0.03 ± 1.05b | 0.40 | |
6月 June | RG | 15.56 | 15.08 ± 3.07b | 96.42 | 4.79 ± 3.64b | 2.63 | 0.01 ± 1.34a | 0.95 |
LG | 13.22 | 12.47 ± 1.33a | 95.21 | 2.51 ± 4.01a | 2.79 | 0.04 ± 3.17c | 2.00 | |
NG | 16.98 | 16.43 ± 2.77b | 95.83 | 5.03 ± 2.79b | 2.40 | 0.02 ± 5.69b | 1.77 | |
CR | 14.21 | 13.24 ± 2.50a | 93.29 | 4.91 ± 3.84b | 3.42 | 0.03 ± 3.89c | 3.29 | |
7月初 Early of July | RG | 16.86 | 15.59 ± 4.11c | 92.50 | 8.34 ± 1.31b | 4.93 | 0.04 ± 2.08a | 2.57 |
LG | 10.44 | 9.43 ± 2.91a | 86.88 | 5.16 ± 4.53a | 7.12 | 0.05 ± 2.68a | 6.00 | |
NG | 17.51 | 16.49 ± 3.19c | 93.92 | 5.99 ± 6.07a | 3.57 | 0.04 ± 4.16a | 2.51 | |
CR | 13.83 | 12.91 ± 2.18b | 90.44 | 8.48 ± 2.71b | 6.18 | 0.05 ± 0.88a | 3.38 | |
7月末 End of July | RG | 12.88 | 11.84 ± 3.39b | 89.46 | 7.38 ± 3.62b | 7.75 | 0.03 ± 2.44a | 2.79 |
LG | 5.18 | 5.41 ± 6.88a | 87.18 | 3.89 ± 2.56a | 6.25 | 0.04 ± 5,78a | 6.57 | |
NG | 17.64 | 16.31 ± 2.87c | 92.47 | 7.22 ± 3.39b | 4.11 | 0.06 ± 0.88b | 3.42 | |
CR | 12.66 | 11.49 ± 2.68b | 90.56 | 8.67 ± 1.81c | 6.98 | 0.03 ± 2.37a | 2.46 | |
8月 August | RG | 12.16 | 11.46 ± 11.55b | 93.87 | 5.79 ± 5.41b | 4.99 | 0.01 ± 1.73a | 1.14 |
LG | 8.79 | 8.21 ± 8.13a | 90.53 | 4.71 ± 5.17b | 7.75 | 0.01 ± 2.57a | 1.72 | |
NG | 11.96 | 11.58 ± 1.58b | 96.77 | 2.67 ± 4.01a | 2.27 | 0.01 ± 1.53a | 0.96 | |
CR | 10.51 | 9.60 ± 0.70a | 89.78 | 7.91 ± 3.08c | 8.81 | 0.01 ± 2.35a | 1.41 | |
9月 September | RG | 15.61 | 15.14 ± 4.57b | 97.16 | 4.21 ± 2.97b | 2.56 | 0.04 ± 4.82a | 0.28 |
LG | 12.92 | 12.71 ± 3.94b | 98.40 | 1.72 ± 2.54a | 1.33 | 0.04 ± 0.88a | 0.27 | |
NG | 10.51 | 9.77 ± 7.97a | 86.48 | 6.98 ± 2.21c | 12.59 | 0.04 ± 1.47a | 0.93 | |
CR | 7.74 | 7.15 ± 2.78a | 82.93 | 5.65 ± 1.81d | 16.53 | 0.03 ± 1.22a | 0.54 |
表2 不同土地利用方式下土壤微生物区系构成(cfu·g-1 dry soil)(平均值±标准偏差, n = 3)
Table 2 Soil microflora in four plots with different land use types (cfu·g-1 dry soil) (mean ± SD, n = 3)
时期 Time | 样地 Plot | 总数量(105·g-1干土) Total abundance (105·g-1 dry soil) | 细菌 Bacteria | 放线菌 Actinomyces | 真菌 Fungi | |||
---|---|---|---|---|---|---|---|---|
数量(105·g-1干土) Abundance (105·g-1 dry soil) | 比例 Proportion (%) | 数量(105·g-1干土) Abundance (105·g-1 dry soil) | 比例 Proportion (%) | 数量(105·g-1干土) Abundance (105·g-1 dry soil) | 比例 Proportion (%) | |||
4月 April | RG | 12.02 | 11.81 ± 0.58a | 98.22 | 1.75 ± 1.21b | 1.46 | 0.03 ± 2.91b | 0.32 |
LG | 12.15 | 11.51 ± 1.73a | 94.67 | 1.99 ± 3.53b | 1.64 | 0.44 ± 1.76c | 3.69 | |
NG | 19.39 | 19.19 ± 4.26c | 98.94 | 1.55 ± 1.15a | 0.80 | 0.04 ± 1.76b | 0.26 | |
CR | 14.55 | 13.69 ± 1.73b | 94.24 | 8.26 ± 5.24c | 5.68 | 0.01 ± 0.33a | 0.08 | |
5月 May | RG | 16.46 | 16.08 ± 1.64b | 98.03 | 3.33 ± 1.53a | 1.66 | 0.04 ± 1.26a | 0.31 |
LG | 13.36 | 12.69 ± 2.09a | 95.98 | 4.06 ± 3.98 ab | 1.83 | 0.03 ± 2.02b | 2.19 | |
NG | 18.04 | 17.65 ± 4.51b | 98.65 | 3.21 ± 3.69a | 0.99 | 0.06 ± 2.69a | 0.36 | |
CR | 14.53 | 13.58 ± 2.94a | 94.41 | 6.59 ± 3.02c | 5.19 | 0.03 ± 1.05b | 0.40 | |
6月 June | RG | 15.56 | 15.08 ± 3.07b | 96.42 | 4.79 ± 3.64b | 2.63 | 0.01 ± 1.34a | 0.95 |
LG | 13.22 | 12.47 ± 1.33a | 95.21 | 2.51 ± 4.01a | 2.79 | 0.04 ± 3.17c | 2.00 | |
NG | 16.98 | 16.43 ± 2.77b | 95.83 | 5.03 ± 2.79b | 2.40 | 0.02 ± 5.69b | 1.77 | |
CR | 14.21 | 13.24 ± 2.50a | 93.29 | 4.91 ± 3.84b | 3.42 | 0.03 ± 3.89c | 3.29 | |
7月初 Early of July | RG | 16.86 | 15.59 ± 4.11c | 92.50 | 8.34 ± 1.31b | 4.93 | 0.04 ± 2.08a | 2.57 |
LG | 10.44 | 9.43 ± 2.91a | 86.88 | 5.16 ± 4.53a | 7.12 | 0.05 ± 2.68a | 6.00 | |
NG | 17.51 | 16.49 ± 3.19c | 93.92 | 5.99 ± 6.07a | 3.57 | 0.04 ± 4.16a | 2.51 | |
CR | 13.83 | 12.91 ± 2.18b | 90.44 | 8.48 ± 2.71b | 6.18 | 0.05 ± 0.88a | 3.38 | |
7月末 End of July | RG | 12.88 | 11.84 ± 3.39b | 89.46 | 7.38 ± 3.62b | 7.75 | 0.03 ± 2.44a | 2.79 |
LG | 5.18 | 5.41 ± 6.88a | 87.18 | 3.89 ± 2.56a | 6.25 | 0.04 ± 5,78a | 6.57 | |
NG | 17.64 | 16.31 ± 2.87c | 92.47 | 7.22 ± 3.39b | 4.11 | 0.06 ± 0.88b | 3.42 | |
CR | 12.66 | 11.49 ± 2.68b | 90.56 | 8.67 ± 1.81c | 6.98 | 0.03 ± 2.37a | 2.46 | |
8月 August | RG | 12.16 | 11.46 ± 11.55b | 93.87 | 5.79 ± 5.41b | 4.99 | 0.01 ± 1.73a | 1.14 |
LG | 8.79 | 8.21 ± 8.13a | 90.53 | 4.71 ± 5.17b | 7.75 | 0.01 ± 2.57a | 1.72 | |
NG | 11.96 | 11.58 ± 1.58b | 96.77 | 2.67 ± 4.01a | 2.27 | 0.01 ± 1.53a | 0.96 | |
CR | 10.51 | 9.60 ± 0.70a | 89.78 | 7.91 ± 3.08c | 8.81 | 0.01 ± 2.35a | 1.41 | |
9月 September | RG | 15.61 | 15.14 ± 4.57b | 97.16 | 4.21 ± 2.97b | 2.56 | 0.04 ± 4.82a | 0.28 |
LG | 12.92 | 12.71 ± 3.94b | 98.40 | 1.72 ± 2.54a | 1.33 | 0.04 ± 0.88a | 0.27 | |
NG | 10.51 | 9.77 ± 7.97a | 86.48 | 6.98 ± 2.21c | 12.59 | 0.04 ± 1.47a | 0.93 | |
CR | 7.74 | 7.15 ± 2.78a | 82.93 | 5.65 ± 1.81d | 16.53 | 0.03 ± 1.22a | 0.54 |
指标 Index | LG | RG | NG | CR |
---|---|---|---|---|
细菌 Bacteria (105·g-1 dry soil) | 14.17 ± 3.95bc | 10.31 ± 3.91a | 15.02 ± 4.93c | 11.25 ± 3.90ab |
放线菌 Actinomyces (105·g-1 dry soil) | 5.34 ± 24.42a | 3.55 ± 20.18a | 4.91 ± 30.91ab | 7.13 ± 19.87b |
真菌 Fungi (105·g-1 dry soil) | 0.02 ± 16.18a | 0.03 ± 18.42b | 0.02 ± 23.01b | 0.02 ± 19.45b |
微生物生物量碳 Microbial biomass carbon (mg·kg-1) | 82.15 ± 26.61a | 82.12 ± 29.26a | 97.41 ± 32.92b | 97.72 ± 35.79b |
表3 不同土地利用方式下各样地土壤微生物数量和微生物生物量碳比较(平均值±标准偏差, n = 3)
Table 3 Soil microflora and microbial biomass carbon in plots with different land use types (mean ± SD, n = 3)
指标 Index | LG | RG | NG | CR |
---|---|---|---|---|
细菌 Bacteria (105·g-1 dry soil) | 14.17 ± 3.95bc | 10.31 ± 3.91a | 15.02 ± 4.93c | 11.25 ± 3.90ab |
放线菌 Actinomyces (105·g-1 dry soil) | 5.34 ± 24.42a | 3.55 ± 20.18a | 4.91 ± 30.91ab | 7.13 ± 19.87b |
真菌 Fungi (105·g-1 dry soil) | 0.02 ± 16.18a | 0.03 ± 18.42b | 0.02 ± 23.01b | 0.02 ± 19.45b |
微生物生物量碳 Microbial biomass carbon (mg·kg-1) | 82.15 ± 26.61a | 82.12 ± 29.26a | 97.41 ± 32.92b | 97.72 ± 35.79b |
图5 不同利用方式下土壤呼吸速率(Rs)与微生物区系、微生物生物量碳的相关关系(平均值±标准偏差)。CR, 农田; LG, 豆禾混播草地; NG, 围封草地; RG, 补播草地。
Fig. 5 The relationship between soil respiration rate(Rs) and microflora, microbial biomass carbon in four plots with different land use types (mean ± SD). CR, cropland; LG, legume-grass mixture; NG, natural grassland; RG, reseeding grassland.
图6 不同利用方式下土壤微生物生物量碳(平均值±标准偏差)。CR, 农田; LG, 豆禾混播草地; NG, 围封草地; RG, 补播草地。
Fig. 6 Soil microbial biomass carbon in four plots with different land use types (mean ± SD). CR, cropland; LG, legume-grass mixture; NG, natural grassland; RG, reseeding grassland.
图7 不同利用方式草地土壤酶活性的变化(平均值±标准偏差)。CR, 农田; LG, 豆禾混播草地; NG, 围封草地; RG, 补播草地。
Fig. 7 Soil enzyme activities in four plots with different land use types (mean ± SD). CR, cropland; LG, legume-grass mixture; NG, natural grassland; RG, reseeding grassland.
样地 Plot | 过氧化氢酶 Hydrogen peroxidase (mL of mol·L-1 KMnO4) | 脲酶 Urease (NH4+-N, mg·g-1·24 h-1) | 蔗糖酶 Invertase (C6H12O6, mg·g-1·24 h-1) | 蛋白酶 Proteinase (C2H5NO2, mg·g-1·24 h-1) |
---|---|---|---|---|
RG | 0.45 ± 0.11a | 0.22 ± 0.06a | 1.45 ± 0.14a | 7.86 ± 5.53a |
LG | 0.44 ± 0.14a | 0.23 ± 0.04a | 1.46 ± 0.13a | 8.71 ± 6.43a |
NG | 0.49 ± 0.22ab | 0.25 ± 0.07a | 1.46 ± 0.15a | 9.04 ± 6.61a |
CR | 0.64 ± 0.29b | 0.25 ± 0.03a | 1.47 ± 0.14a | 10.17 ± 5.48a |
表4 不同土地利用方式下土壤酶活性各样地酶活性比较(平均值±标准偏差, n = 3)
Table 4 Comparison of soil enzyme activity among four plots with different land use types (mean ± SD, n = 3)
样地 Plot | 过氧化氢酶 Hydrogen peroxidase (mL of mol·L-1 KMnO4) | 脲酶 Urease (NH4+-N, mg·g-1·24 h-1) | 蔗糖酶 Invertase (C6H12O6, mg·g-1·24 h-1) | 蛋白酶 Proteinase (C2H5NO2, mg·g-1·24 h-1) |
---|---|---|---|---|
RG | 0.45 ± 0.11a | 0.22 ± 0.06a | 1.45 ± 0.14a | 7.86 ± 5.53a |
LG | 0.44 ± 0.14a | 0.23 ± 0.04a | 1.46 ± 0.13a | 8.71 ± 6.43a |
NG | 0.49 ± 0.22ab | 0.25 ± 0.07a | 1.46 ± 0.15a | 9.04 ± 6.61a |
CR | 0.64 ± 0.29b | 0.25 ± 0.03a | 1.47 ± 0.14a | 10.17 ± 5.48a |
图8 不同土地利用方式下各样地土壤呼吸速率(Rs)与土壤酶活性的相关关系。CR, 农田; LG, 豆禾混播草地; NG, 围封草地; RG, 补播草地。
Fig. 8 The relationship between soil respiration rate(Rs) and enzymatic activity in four plots with different land use types. CR, cropland; LG, legume-grass mixture; NG, natural grassland; RG, reseeding grassland.
[1] |
Anderson DW, Coleman DC ( 1985). The dynamics of organic matter in grassland soils. Journal of Soil & Water Conservation, 40, 211-216.
DOI URL |
[2] |
Chen J, Cao JJ, Wei YL, Liu JH, Ma FL, Chen DC, Feng JY, Xia Y, Ceng Y ( 2014). Effect of grazing exclusion on soil respiration during the dormant season in alpine meadow grassland ecosystems on the northern shore of Qinghai Lake, China. Acta Prataculturae Sinica, 23(6), 78-86.
DOI URL |
陈骥, 曹军骥, 魏永林, 刘吉宏, 马扶林, 陈迪超, 冯嘉裕, 夏瑶, 岑燕 ( 2014). 青海湖北岸高寒草甸草原非生长季土壤呼吸对温度和湿度的响应. 草业学报, 23(6), 78-86.
DOI URL |
|
[3] |
Chen ST, Sang L, Zhang X, Hu ZH ( 2016). Effects of warming and straw application on soil respiration and enzyme activity in a winter wheat cropland. Environmental Science, 37, 703-709.
DOI URL |
陈书涛, 桑琳, 张旭, 胡正华 ( 2016). 增温及秸秆施用对冬小麦田土壤呼吸和酶活性的影响. 环境科学, 37, 703-709.
DOI URL |
|
[4] |
Flechard CR, Ambus P, Skiba U, Rees RM, Hensen A, van Amstel A, Raschi A ( 2007). Effects of climate and management intensity on nitrous oxide emissions in grassland systems across Europe. Agriculture, Ecosystems & Environment, 121, 135-152.
DOI URL |
[5] | Guan SY ( 1998). The Desert Grassland and Water Salt Plant System and Optimized Ecological Model in Xinjiang. Science Press, Beijing. 320-344. |
关松荫 ( 1986). 土壤酶及其研究法. 农业出版社, 北京. 320-344. | |
[6] | Guo HM, Zhang YY, Liu QF, Jiang JS, Li JC, Wang R, Li NN, Li RJ, Guo SL, Li CY ( 2014). Responses of soil respiration to land use changes in a semiarid region of Loess Plateau. Journal of Natural Resources, 29, 1686-1695. |
郭慧敏, 张彦军, 刘庆芳, 姜继韶, 李俊超, 王蕊, 李娜娜, 李如剑, 郭胜利, 李春越 ( 2014). 黄土高原半干旱区土壤呼吸对土地利用变化的响应. 自然资源学报, 29, 1686-1695. | |
[7] |
Guo MY, Zhao KT, You JC, Xu LJ, Wang LJ, Ja SJ ( 2012). Soil microbial characteristic and soil respiration in grassland under different use patterns. Acta Agrestia Sinica, 20(1), 42-48.
DOI URL |
郭明英, 朝克图, 尤金成, 徐丽君, 王丽娟, 贾淑杰 ( 2012). 不同利用方式下草地土壤微生物及土壤呼吸特性. 草地学报 , 20(1), 42-48.
DOI URL |
|
[8] | Hanson PJ, Edwards NT, Garten CT, Andrews JA ( 2000). Separating root and soil microbial contributions to soil respiration: A review of methods and observations. Biogeochemistry, 48, 115-146. |
[9] |
Jiang DM, He SF, Cao CY, Toshio O, Li XH ( 2006). Effect of plowing and reseeding on soil physicochemical properties and biological activities of alkalized grassland in Horqin area. Chinese Journal of Grassland, 28(4), 18-23.
DOI URL |
蒋德明, 贺山峰, 曹成有, 押田敏雄, 李雪华 ( 2006). 翻耙补播对科尔沁碱化草地土壤理化性质和生物活性的影响. 中国草地学报, 28(4), 18-23.
DOI URL |
|
[10] |
Kirschbaum MUF ( 2006). The temperature dependence of organic- matter decomposition-still a topic of debate. S oil Biology & Biochemistry, 38, 2510-2518.
DOI URL |
[11] |
Lal R ( 2004). Soil carbon sequestration impacts on global climate change and food security. Science, 304, 1623.
DOI URL PMID |
[12] | Lal R, Kimble J, Follett R ( 1998). Land use and soil C pool in terrestrial ecosystems. In: Lal R, Kimbkle J, Follett R, Stewarteds BA eds. Management of Carbon Sequestration in Soil. CRC Press, Boca Raton. 1-10. |
[13] |
Li W, Cao WX, Liu HD, Li XL, Xu CL, Shi SL, Feng J, Zhou CM ( 2015). Analysis of soil respiration under different grazing management patterns in the alpine meadow-steppe of the Qinghai-Tibet Plateau. Acta Prataculturae Sinica, 24(10), 22-32.
DOI |
李文, 曹文侠, 刘皓栋, 李小龙, 徐长林, 师尚礼, 冯今, 周传猛 ( 2015). 不同放牧管理模式对高寒草甸草原土壤呼吸特征的影响. 草业学报, 24(10), 22-32.
DOI |
|
[14] |
Li ZG, Hou FJ ( 2010). Analysis of soil respiration diurnal dynamics and factors influencing it in enclosed natural grasslands under different topographies in the Loess Plateau. Acta Prataculturae Sinica, 19(1), 42-49.
DOI |
李志刚, 侯扶江 ( 2010). 黄土高原不同地形封育草地的土壤呼吸日动态与影响因子分析. 草业学报, 19(1), 42-49.
DOI |
|
[15] | Liu HF, Wu X, Li Y, Li ZS, Liu GH ( 2014). Effects of land use change on greenhouse gas fluxes from soils: A review. Chinese Journal of Ecology, 33, 1960-1968. |
刘慧峰, 伍星, 李雅, 李宗善, 刘国华 ( 2014). 土地利用变化对土壤温室气体排放通量影响研究进展. 生态学杂志, 33, 1960-1968. | |
[16] |
Liu JC, Li ZG, Li X ( 2014). Research of variations of soil respiration rate among different land use types in the Agro-pastoral Ecotone of North China. Journal of Inner Mongolia University for Nationalities, 29, 306-309.
DOI URL |
刘季骢, 李志刚, 李兴 ( 2014). 北方农牧交错带不同土地利用方式下土壤呼吸速率探究. 内蒙古民族大学学报(自然科学版), 29, 306-309.
DOI URL |
|
[17] |
Liu W, Wang JM, Wang ZP ( 2011). Plant functional type effects on methane uptake by soils in typical grasslands of Inner Mongolia. Chinese Journal of Plant Ecology, 35, 275-283.
DOI URL |
刘伟, 王继明, 王智平 ( 2011). 内蒙古典型草原植物功能型对土壤甲烷吸收的影响. 植物生态学报, 35, 275-283.
DOI URL |
|
[18] | Ning F, Xu Z, Shan GL ( 2008). Effects of disturbance ways on soil physical and chemical properties. Chinese Journal of Grassland, 30(4), 46-50. |
宁发, 徐柱, 单贵莲 ( 2008). 干扰方式对典型草原土壤理化性质的影响. 中国草地学报, 30(4), 46-50. | |
[19] |
Qi WW, Niu HS, Wang SP, Liu YJ, Zhang LR ( 2012). Simulation of effects of warming on carbon budget in alpine meadow ecosystem on the Tibetan Plateau. Acta Ecologica Sinica, 32, 1713-1722.
DOI URL |
亓伟伟, 牛海山, 汪诗平, 刘艳杰, 张立荣 ( 2012). 增温对青藏高原高寒草甸生态系统固碳通量影响的模拟研究. 生态学报, 32, 1713-1722.
DOI URL |
|
[20] |
Raiesi F, Beheshti A ( 2014). Soil C turnover, microbial biomass and respiration, and enzymatic activities following range and conversion to wheat-alfalfa cropping in a semi-arid climate. Environmental Earth Sciienes, 72, 5073-5088.
DOI URL |
[21] |
Rinnan R, Stark S, Tolvanen A ( 2009). Responses of vegetation and soil microbial communities to warming and simulated herbivory in a subarctic heath. Journal of Ecology, 97, 788-800.
DOI URL |
[22] |
Sampson RN, Apps M, Brown S, Cole CV, Smith TM, Downing J, Ojima DS, Solomon AM, Heath LS, Wisniewski J ( 1993). Terrestrial biosphere carbon fluxes quantification of sinks and sources of CO2. Water, Air, and Soil Pollution, 70, 3-15.
DOI URL |
[23] |
Sparling GP, Shepherd TG, Kettles HA ( 1992). Changes in soil organic C, microbial C and aggregate stability under continuous maize and cereal cropping, and after restoration to pasture in soils from the Manawatu Region, New Zealand. Soil & Tillage Research, 24, 225-241.
DOI URL |
[24] |
Su YZ, Li YL, Cui J Y, Zhao WZ ( 2005). Influences of continuous grazing and livestock exclusion on soil properties in a degraded early grassland, Inner Mongolia, northern China. Catena, 59, 267-278.
DOI URL |
[25] |
Sun J, Liu M, Li LJ, Liu JH, Zhang XJ ( 2009). Influence of non-tillage and stubble on soil microbial biomass C/N and enzyme activities in rain-fed field of Inner Mongolia. Acta Ecologica Sinica, 29, 5508-5515.
DOI URL |
孙建, 刘苗, 李立军, 刘景辉, 张星杰 ( 2009). 免耕与留茬对土壤微生物生物量C、N及酶活性的影响. 生态学报, 29, 5508-5515.
DOI URL |
|
[26] | Wang M, Liu YS, Li XJ, Zhang JT, Wang GD, Lu XR, Li XY ( 2014). Soil respiration dynamics and its controlling factors of typical vegetation communities on meadow steppes in the western Songnen Plain. Chinese Journal of Applied Ecology, 25, 45-52. |
王铭, 刘兴士, 李秀军, 张继涛, 王国栋, 鲁新蕊, 李晓宇 ( 2014). 松嫩平原西部草甸草原典型植物群落土壤呼吸动态及影响因素. 应用生态学报, 25, 45-52. | |
[27] |
Wang XG, Zhu B, Wang YQ, Zheng XH ( 2007). Soil respiration and its sensitivity to temperature under different land use conditions. Acta Ecologica Sinica, 27, 1960-1968.
DOI URL |
王小国, 朱波, 王艳强, 郑循华 ( 2007). 不同土地利用方式下土壤呼吸及其温度敏感性. 生态学报, 27, 1960-1968.
DOI URL |
|
[28] | Wang XJ ( 2013). Study on Reconstruction and Utilization of Grassland for Grazing. Master degree dissertation, Xinjiang Agricultural University, ürümqi. |
王雪娇 ( 2013). 放牧型草地重建与利用研究. 硕士学位论文, 新疆农业大学, 乌鲁木齐. | |
[29] | Wang XJ, Zhou YM, Wang XX, Jiang XJ, Han SJ ( 2014). Responses of soil enzymes in activity and soil microbes in biomass to warming in tundra ecosystem on Changbai Mountains. Acta Pedologica Sinica, 51, 166-175. |
王学娟, 周玉梅, 王秀秀, 江肖洁, 韩士杰 ( 2014). 长白山苔原生态系统土壤酶活性及微生物生物量对增温的响应. 土壤学报, 51, 166-175. | |
[30] |
Wang XY ( 2010). Cultivation and reseeding effects on soil organic matter in the mixed prairie. Soil Science Society of America Journal, 74, 1348-1355.
DOI URL |
[31] | Wang YH, Gong JR, Liu M, Huang YM, Yan X, Zhang ZY, Xu S, Luo QP ( 2015). Effects of grassland-use on soil respiration and litter decomposition. Chinese Journal of Plant Ecology, 39, 239-248. |
王忆慧, 龚吉蕊, 刘敏, 黄永梅, 晏欣, 张梓瑜, 徐沙, 罗亲普 ( 2015). 草地利用方式对土壤呼吸和凋落物分解的影响. 植物生态学报, 39, 239-248. | |
[32] |
Willcock S, Phillips OL, Platts PJ, Swetnam RD, Balmford A, Burgess ND, Fanning E ( 2016). Land cover change and carbon emissions over 100 years in an African biodiversity hotspot. Global Change Biology, 22, 2787-2800.
DOI URL PMID |
[33] |
Wu J, Chen ST Hu ZH, Zhang X ( 2015). Soil microbial respiration under different soil temperature conditions and its relationship to soil dissolved organic carbon and invertase. Environmental Science, 36, 1497-1506.
DOI URL |
吴静, 陈书涛, 胡正华, 张旭 ( 2015). 不同温度下的土壤微生物呼吸及其与水溶性有机碳和转化酶的关系. 环境科学, 36, 1497-1506.
DOI URL |
|
[34] | Xu GH ( 1986). Soil Microbiological Analysis Method Manual. Agricultural Publishing House, Beijing. |
许光辉 ( 1986). 土壤微生物分析方法手册. 农业出版社, 北京. | |
[35] | Yang Y, Han GD, Li YH, Chen ZF, Wang CJ ( 2012). Response of soil respiration to grazing intensity, water contents, and temperature of soil in different grasslands of Inner Mongolia. Acta Prataculturae Sinica, 21(6), 8-14. |
杨阳, 韩国栋, 李元恒, 陈志芳, 王成杰 ( 2012). 内蒙古不同草原类型土壤呼吸对放牧强度及水热因子的响应. 草业学报, 21(6), 8-14. | |
[36] | Zhang CX, Nan ZB ( 2010). Research progress on effect of grazing on soil microbes of grassland. Pratacultural Science, 27(1), 65-70. |
张成霞, 南志标 ( 2010). 放牧对草地土壤微生物影响的研究述评. 草业科学, 27(1), 65-70. | |
[37] |
Zhang PL, Li XG, Li YK, Ying P ( 2007). Effects of vegetation restoration on soil organic carbon and total nitrogen contents in the alpine agro-pastoral ecotone. Journal of Gansu Agricultural University, 42(2), 98-102.
DOI URL |
张平良, 李小刚, 李银科, 尹萍 ( 2007). 高寒农牧交错带植被恢复对土壤有机碳、全氮含量的影响. 甘肃农大学报, 42(2), 98-102.
DOI URL |
|
[38] | Zhang WT, Lai HX, Wang YP, Zhang H, Yang T, Lü JL ( 2008). Microbial populations in different vegetations in sloping field on the Loess Plateau. Acta Ecologica Sinica, 28, 4228-4234. |
张文婷, 来航线, 王延平, 张海, 杨婷, 吕家珑 ( 2008). 黄土高原不同植被坡地土壤微生物区系特征. 生态学报, 28, 4228-4234. | |
[39] |
Zhang YJ, Guo SL, Liu QF, Jiang JS, Wang R, Li NN ( 2015). Responses of soil respiration to land use conversions in degraded ecosystem of the semi-arid Loess Plateau. Ecological Engineering, 74, 196-205.
DOI URL |
[40] | Zhang YJ, Yang GW, Liu N, Chang SJ, Wang XY ( 2013). Review of grassland management practices for carbon sequestration. Acta Prataculturae Sinica, 22, 290-299. |
张英俊, 杨高文, 刘楠, 常书娟, 王晓亚 ( 2013). 草原碳汇管理对策. 草业学报, 22, 290-299. | |
[41] |
Zheng W, Jianaerguli, Tang GR, Zhu JZ ( 2015). Determination and community stability in different legume-grass mixes. Acta Prataculturae Sinica, 24(3), 155-167.
DOI URL |
郑伟, 加娜尔古丽, 唐高溶, 朱进忠 ( 2015). 不同混播方式下豆禾混播草地群落稳定性的测度与比较. 草业学报, 24(3), 155-167.
DOI URL |
[1] | 刘瑶 钟全林 徐朝斌 程栋梁 郑跃芳 邹宇星 张雪 郑新杰 周云若. 不同大小刨花楠细根功能性状与根际微环境关系[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 吴君梅, 曾泉鑫, 梅孔灿, 林惠瑛, 谢欢, 刘苑苑, 徐建国, 陈岳民. 土壤磷有效性调控亚热带森林土壤酶活性和酶化学计量对凋落叶输入的响应[J]. 植物生态学报, 2024, 48(2): 242-253. |
[3] | 沈健, 何宗明, 董强, 郜士垒, 林宇. 轻度火烧对滨海沙地人工林土壤呼吸速率和非生物因子的影响[J]. 植物生态学报, 2023, 47(7): 1032-1042. |
[4] | 张琦, 冯可, 常智慧, 何双辉, 徐维启. 灌丛化对林草交错带植物和土壤微生物的影响[J]. 植物生态学报, 2023, 47(6): 770-781. |
[5] | 赵小祥, 朱彬彬, 田秋香, 林巧玲, 陈龙, 刘峰. 叶片凋落物分解的主场优势研究进展[J]. 植物生态学报, 2023, 47(5): 597-607. |
[6] | 郑炀, 孙学广, 熊洋阳, 袁贵云, 丁贵杰. 叶际微生物对马尾松凋落针叶分解的影响[J]. 植物生态学报, 2023, 47(5): 687-698. |
[7] | 李雪, 董杰, 韩广轩, 张奇奇, 谢宝华, 李培广, 赵明亮, 陈克龙, 宋维民. 黄河三角洲典型滨海盐沼湿地土壤CO2和CH4排放对水盐变化的响应[J]. 植物生态学报, 2023, 47(3): 434-446. |
[8] | 李万年, 罗益敏, 黄则月, 杨梅. 望天树人工幼林混交对土壤微生物功能多样性与碳源利用的影响[J]. 植物生态学报, 2022, 46(9): 1109-1124. |
[9] | 吴赞, 彭云峰, 杨贵彪, 李秦鲁, 刘洋, 马黎华, 杨元合, 蒋先军. 青藏高原高寒草地退化对土壤及微生物化学计量特征的影响[J]. 植物生态学报, 2022, 46(4): 461-472. |
[10] | 毛瑾, 朵莹, 邓军, 程杰, 程积民, 彭长辉, 郭梁. 冬季增温和减雪对黄土高原典型草原土壤养分和细菌群落组成的影响[J]. 植物生态学报, 2021, 45(8): 891-902. |
[11] | 姜鑫, 牛克昌. 青藏高原禾草混播对土壤微生物多样性的影响[J]. 植物生态学报, 2021, 45(5): 539-551. |
[12] | 王毅, 孙建, 叶冲冲, 曾涛. 气候因子通过土壤微生物生物量氮促进青藏高原高寒草地地上生态系统功能[J]. 植物生态学报, 2021, 45(5): 434-443. |
[13] | 汪子微, 万松泽, 蒋洪毛, 胡扬, 马书琴, 陈有超, 鲁旭阳. 青藏高原不同高寒草地类型土壤酶活性及其影响因子[J]. 植物生态学报, 2021, 45(5): 528-538. |
[14] | 罗林, 黄艳, 梁进, 汪恩涛, 胡君, 贺合亮, 赵春章. 西南亚高山针叶林主要树种互作及增温对根区土壤微生物群落的影响[J]. 植物生态学报, 2020, 44(8): 875-884. |
[15] | 解梦怡, 冯秀秀, 马寰菲, 胡汗, 王洁莹, 郭垚鑫, 任成杰, 王俊, 赵发珠. 秦岭锐齿栎林土壤酶活性与化学计量比变化特征及其影响因素[J]. 植物生态学报, 2020, 44(8): 885-894. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19