植物生态学报 ›› 2020, Vol. 44 ›› Issue (8): 875-884.DOI: 10.17521/cjpe.2019.0369
罗林1,3, 黄艳1,3, 梁进1, 汪恩涛4, 胡君1, 贺合亮1,3, 赵春章2,*()
收稿日期:
2019-12-31
接受日期:
2020-03-25
出版日期:
2020-08-20
发布日期:
2020-07-03
通讯作者:
赵春章
作者简介:
* zhaochzh04@126.com基金资助:
LUO Lin1,3, HUANG Yan1,3, LIANG Jin1, WANG En-Tao4, HU Jun1, HE He-Liang1,3, ZHAO Chun-Zhang2,*()
Received:
2019-12-31
Accepted:
2020-03-25
Online:
2020-08-20
Published:
2020-07-03
Contact:
ZHAO Chun-Zhang
Supported by:
摘要:
温度与植物种类是生态系统土壤微生物群落组成与结构的重要影响因子。气候变暖背景下, 不同树种及树种互作对土壤微生物群落产生的影响仍不清楚。该文以西南亚高山针叶林主要建群种粗枝云杉(Picea asperata)和岷江冷杉(Abies faxoniana)为研究对象, 采用红外加热器模拟增温, 通过不同种植方式(云杉、冷杉单种和二者混种, 以及裸地对照), 研究不同物种及增温对土壤微生物磷脂脂肪酸(PLFAs)含量与群落结构的影响。结果表明: (1)无论增温与否, 与裸地相比, 云杉与冷杉单种均显著增加了土壤微生物群落主要类群及总PLFAs含量, 而混种仅在非增温条件下增加了微生物群落PLFAs含量; 另一方面, 增温显著促进了裸地真菌(F)和云杉根区革兰氏阴性菌(GN)的生长, 但对冷杉与冷杉-云杉混种小区微生物群落具有显著的抑制作用。(2)主成分分析(PCA)表明, 非增温条件下, 植物种植对土壤微生物群落组成的影响更为明显。非增温情况下云杉、冷杉单种和混种均对微生物群落结构有显著影响, 显著降低了土壤革兰氏阳性菌/阴性菌(GP/GN), 增加了土壤真菌细菌比(F/B)(64.29%-35.71%), 而增温时, 仅冷杉单种对GP/GN和F/B有显著影响。(3) PLFAs含量与土壤碳含量显著正相关, 微生物群落结构(F/B)则与土壤pH及无机氮含量有显著相关关系。以上结果说明, 在非增温情况下, 无论单种还是混种均有利于土壤微生物生长, 但在增温情况下混种对微生物群落PLFAs含量无显著影响, 两个物种对微生物群落结构的影响在增温条件下也有减弱的趋势。
罗林, 黄艳, 梁进, 汪恩涛, 胡君, 贺合亮, 赵春章. 西南亚高山针叶林主要树种互作及增温对根区土壤微生物群落的影响. 植物生态学报, 2020, 44(8): 875-884. DOI: 10.17521/cjpe.2019.0369
LUO Lin, HUANG Yan, LIANG Jin, WANG En-Tao, HU Jun, HE He-Liang, ZHAO Chun-Zhang. Effects of plant interspecific interaction and warming on soil microbial community in root zone soil of two dominant tree species in the subalpine coniferous forest in southwestern China. Chinese Journal of Plant Ecology, 2020, 44(8): 875-884. DOI: 10.17521/cjpe.2019.0369
图1 未增温和增温时不同栽种处理根区土壤各微生物群落磷脂脂肪酸(PLFAs)含量(平均值±标准误差)。A, 总PLFAs和细菌的PLFAs含量。B, 革兰氏阴性菌(GN)和革兰氏阳性菌(GP)的PLFAs含量。C, 真菌(F)和放线菌(AC)的PLFAs含量。U, 未增温; W, 增温。C, 裸地; Y, 云杉单种; L, 冷杉单种; H, 混种; Fp, 树种效应; Fw, 增温效应; Fp × w, 树种和增温的交互效应; *, p < 0.05; **, p < 0.01; ***, p < 0.001; ns, p > 0.05。不同小写字母表示未增温和增温时不同栽种处理根区土壤微生物群落PLFAs含量有显著差异(p < 0.05)。柱下*表示t检验有显著差异(p < 0.05)。
Fig. 1 Contents of phospholipid fatty acids (PLFAs) (mean ± SE) in root zone soil of different planting treatments with/ without warming. A, The content of total and bacteria PLFAs. B, The content of PLFAs of gram-negative bacteria (GN) and gram-positive bacteria (GP). C, The content of PLFAs of fungi (F) and actinomycetes (AC). U, unwarming; W, warming. C, unplanted area; Y, Picea asperata; L, Abies faxoniana; H, mixed; Fp, plant types effect; Fw, warming effect; Fp × w, plant types × warming interaction effect; *, p < 0.05; **, p < 0.01; ***, p < 0.001; ns, p > 0.05. Different lowercase letters indicate significant differences in PLFAs content in root zone of different planting treatments with and without warming (p < 0.05). * under the column indicates a significant difference in the t-test (p < 0.05).
图2 不同栽种处理和增温对微生物群落磷脂脂肪酸(PLFAs)含量的影响(平均值±标准误差)。不同小写字母表示未增温和增温时不同栽种处理根区土壤微生物群落PLFAs含量有显著差异(p < 0.05)。U, 未增温; W, 增温。C, 裸地; Y, 云杉单种; L, 冷杉单种; H, 混种。
Fig. 2 Effects of different planting treatments and warming on phospholipid fatty acids (PLFAs) content of microbial community (mean ± SE). Different lowercase letters indicate significant differences in PLFAs cotent in root zone of different planting treatments with and without warming (p < 0.05). U, unwarming; W, warming. C, unplanted area; Y, Picea asperata; L, Abies faxoniana; H, mixed.
图3 不同栽种处理和增温对微生物群落结构的影响。U-C, 不增温裸地; U-H, 不增温混种; U-L, 不增温冷杉; U-Y, 不增温云杉; W-C, 增温裸地; W-H, 增温混种; W-L, 增温冷杉; W-Y, 增温云杉。
Fig. 3 Effects of different planting treatments and warming on soil microbial community structure. U-C, unwarming-empty area; U-H, unwarming-mixed area; U-L, unwarming-Abies faxoniana; U-Y, unwarming-Picea asperata; W-C, warming- empty area; W-H, warming-mixed area; W-L, warming-Abies faxoniana; W-Y, warming-Picea asperata.
图4 未增温和增温时不同栽种处理根区土壤革兰氏阳性菌/革兰氏阴性菌(GP/GN)和真菌/细菌(F/B)(平均值±标准误差)。U, 未增温; W, 增温。C, 裸地; Y, 云杉单种; L, 冷杉单种; H, 混种。Fp, 树种效应; Fw, 增温效应; Fp × w, 树种和增温的交互效应; **, p < 0.01; ***, p < 0.001; ns, p > 0.05。不同小写字母表示未增温和增温时不同栽种处理根区GP/GN和F/B有显著差异(p < 0.05)。柱下*表示t检验有显著差异(p < 0.05)。
Fig. 4 The GP/GN and F/B ratios (mean ± SE) in root zone soil of different planting treatments with and without warming. GN, gram-negative bacteria; GP, gram-positive bacteria. F, fungi; B, bacteria. U, unwarming; W, warming. C, unplanted area; Y, Picea asperata; L, Abies faxoniana; H, mixed. Fp, plant types effect; Fw, warming effect; Fp × w, plant types × warming interaction effect; **, p < 0.01; ***, p < 0.001; ns, p > 0.05. Different lowercase letters indicate significant differences in the GP/GN and F/B in root zone of different planting treatments under unwarming and warming (p < 0.05). * under the column indicates a significant difference in the t-test (p < 0.05).
土壤因子 Soil factor | 处理 Treatment | C (mean ± SD) | Y (mean ± SD) | L (mean ± SD) | H (mean ± SD) | P | W | P × W |
---|---|---|---|---|---|---|---|---|
pH | U | 7.69 ± 0.02b | 7.80 ± 0.04a | 7.70 ± 0.02b | 7.81 ± 0.02a | 10.82*** | 1.08 | 4.65* |
W | 7.81 ± 0.02a* | 7.81 ± 0.01a | 7.67 ± 0.02b | 7.78 ± 0.03a | ||||
SM (%) | U | 30.80 ± 0.00bc | 29.60 ± 0.01c | 34.86 ± 0.01a | 32.11 ± 0.00b | 9.51*** | 637.00*** | 41.51*** |
W | 0.27 ± 0.00a* | 0.24 ± 0.00b* | 0.22 ± 0.00c* | 0.23 ± 0.01bc* | ||||
TN (mg·kg-1) | U | 2.90 ± 0.04ab | 2.93 ± 0.15ab | 3.15 ± 0.17a | 2.70 ± 0.04b | 0.66 | 7.31* | 2.28 |
W | 2.64 ± 0.15a | 2.63 ± 0.11a | 2.66 ± 0.08a* | 2.79 ± 0.08a | ||||
TC (mg·kg-1) | U | 29.86 ± 0.37a | 31.59 ± 0.91a | 32.38 ± 1.35a | 30.06 ± 0.63a | 1.81 | 12.54** | 1.10 |
W | 28.37 ± 1.04a | 28.55 ± 0.36a* | 29.51 ± 0.22a | 29.48 ± 0.76a | ||||
NH4+-N (mg·kg-1) | U | 11.29 ± 1.17a | 12.70 ± 1.08a | 9.93 ± 0.38a | 11.48 ± 1.07a | 3.09 | 0.02 | 2.91 |
W | 11.03 ± 0.38b | 9.93 ± 0.51b | 8.93 ± 0.21b | 15.06 ± 2.36a | ||||
NO3--N (mg·kg-1) | U | 5.76 ± 0.17b | 8.07 ± 0.38a | 7.82 ± 0.31a | 6.35 ± 0.26b | 108.88*** | 945.64*** | 53.29*** |
W | 13.39 ± 0.27b* | 15.06 ± 0.07a* | 13.69 ± 0.07b* | 8.10 ± 0.32c* | ||||
TC/TN | U | 10.31 ± 0.19b | 10.80 ± 0.38ab | 10.29 ± 0.12b | 11.15 ± 0.18a | 0.50 | 0.87 | 2.42 |
W | 10.77 ± 0.30a | 10.90 ± 0.38a | 11.11 ± 0.34a | 10.57 ± 0.03a |
表1 不同栽种处理和增温对土壤理化性质的影响
Table 1 Effects of different planting treatments and warming on soil physicochemical properties
土壤因子 Soil factor | 处理 Treatment | C (mean ± SD) | Y (mean ± SD) | L (mean ± SD) | H (mean ± SD) | P | W | P × W |
---|---|---|---|---|---|---|---|---|
pH | U | 7.69 ± 0.02b | 7.80 ± 0.04a | 7.70 ± 0.02b | 7.81 ± 0.02a | 10.82*** | 1.08 | 4.65* |
W | 7.81 ± 0.02a* | 7.81 ± 0.01a | 7.67 ± 0.02b | 7.78 ± 0.03a | ||||
SM (%) | U | 30.80 ± 0.00bc | 29.60 ± 0.01c | 34.86 ± 0.01a | 32.11 ± 0.00b | 9.51*** | 637.00*** | 41.51*** |
W | 0.27 ± 0.00a* | 0.24 ± 0.00b* | 0.22 ± 0.00c* | 0.23 ± 0.01bc* | ||||
TN (mg·kg-1) | U | 2.90 ± 0.04ab | 2.93 ± 0.15ab | 3.15 ± 0.17a | 2.70 ± 0.04b | 0.66 | 7.31* | 2.28 |
W | 2.64 ± 0.15a | 2.63 ± 0.11a | 2.66 ± 0.08a* | 2.79 ± 0.08a | ||||
TC (mg·kg-1) | U | 29.86 ± 0.37a | 31.59 ± 0.91a | 32.38 ± 1.35a | 30.06 ± 0.63a | 1.81 | 12.54** | 1.10 |
W | 28.37 ± 1.04a | 28.55 ± 0.36a* | 29.51 ± 0.22a | 29.48 ± 0.76a | ||||
NH4+-N (mg·kg-1) | U | 11.29 ± 1.17a | 12.70 ± 1.08a | 9.93 ± 0.38a | 11.48 ± 1.07a | 3.09 | 0.02 | 2.91 |
W | 11.03 ± 0.38b | 9.93 ± 0.51b | 8.93 ± 0.21b | 15.06 ± 2.36a | ||||
NO3--N (mg·kg-1) | U | 5.76 ± 0.17b | 8.07 ± 0.38a | 7.82 ± 0.31a | 6.35 ± 0.26b | 108.88*** | 945.64*** | 53.29*** |
W | 13.39 ± 0.27b* | 15.06 ± 0.07a* | 13.69 ± 0.07b* | 8.10 ± 0.32c* | ||||
TC/TN | U | 10.31 ± 0.19b | 10.80 ± 0.38ab | 10.29 ± 0.12b | 11.15 ± 0.18a | 0.50 | 0.87 | 2.42 |
W | 10.77 ± 0.30a | 10.90 ± 0.38a | 11.11 ± 0.34a | 10.57 ± 0.03a |
pH | SM (%) | TN | TC | NH4+-N | NO3--N | TC/TN | |
---|---|---|---|---|---|---|---|
Total | 0.05 | 0.33 | 0.25 | 0.47* | -0.22 | 0.01 | 0.16 |
B | 0.01 | 0.36 | 0.30 | 0.50* | -0.23 | -0.02 | 0.12 |
GP | 0.04 | 0.44* | 0.36 | 0.53** | -0.27 | -0.05 | 0.04 |
GN | 0.00 | 0.32 | 0.27 | 0.49* | -0.21 | -0.01 | 0.15 |
F | 0.35 | 0.08 | -0.04 | 0.21 | -0.07 | 0.18 | 0.37 |
AC | 0.21 | 0.03 | 0.12 | 0.31 | -0.08 | 0.16 | 0.20 |
F/B | 0.64*** | -0.38 | -0.46* | -0.31 | 0.21 | 0.41* | 0.45* |
GP/GN | 0.12 | 0.13 | 0.01 | -0.23 | -0.07 | -0.10 | -0.29 |
表2 微生物群落磷脂脂肪酸(PLFAs)与环境因子的Pearson相关性分析(相关系数)
Table 2 Pearson correlation coefficients between microbial community phospholipid fatty acids (PLFAs) and environmental factors
pH | SM (%) | TN | TC | NH4+-N | NO3--N | TC/TN | |
---|---|---|---|---|---|---|---|
Total | 0.05 | 0.33 | 0.25 | 0.47* | -0.22 | 0.01 | 0.16 |
B | 0.01 | 0.36 | 0.30 | 0.50* | -0.23 | -0.02 | 0.12 |
GP | 0.04 | 0.44* | 0.36 | 0.53** | -0.27 | -0.05 | 0.04 |
GN | 0.00 | 0.32 | 0.27 | 0.49* | -0.21 | -0.01 | 0.15 |
F | 0.35 | 0.08 | -0.04 | 0.21 | -0.07 | 0.18 | 0.37 |
AC | 0.21 | 0.03 | 0.12 | 0.31 | -0.08 | 0.16 | 0.20 |
F/B | 0.64*** | -0.38 | -0.46* | -0.31 | 0.21 | 0.41* | 0.45* |
GP/GN | 0.12 | 0.13 | 0.01 | -0.23 | -0.07 | -0.10 | -0.29 |
[1] |
Allison SD, Treseder KK (2008). Warming and drying suppress microbial activity and carbon cycling in boreal forest soils. Global Change Biology, 14, 2898-2909.
DOI URL |
[2] |
Bardgett RD, Mommer L, de Vries FT (2014). Going underground: root traits as drivers of ecosystem processes. Trends in Ecology and Evolution, 29, 692-699.
DOI URL PMID |
[3] |
Brockett BFT, Prescott CE, Grayston SJ (2012). Soil moisture is the major factor influencing microbial community structure and enzyme activities across seven biogeoclimatic zones in western Canada. Soil Biology & Biochemistry, 44, 9-20.
DOI URL |
[4] |
D’Amore DV, Hennon PE, Schaberg PG, Hawley GJ (2009). Adaptation to exploit nitrate in surface soils predisposes yellow-cedar to climate-induced decline while enhancing the survival of western redcedar: a new hypothesis. Forest Ecology and Management, 258, 2261-2268.
DOI URL |
[5] |
DeAngelis KM, Pold G, Topçuoğlu BD, van Diepen LTA, Varney RM, Blanchard JL, Melillo J, Frey SD (2015). Long-term forest soil warming alters microbial communities in temperate forest soils. Frontiers in Microbiology, 6, 104. DOI: 10.3389/fmicb.2015.00104.
DOI URL PMID |
[6] |
Delgado-Baquerizo M, Maestre FT, Reich PB, Jeffries TC, Gaitan JJ, Encinar D, Berdugo M, Campbell CD, Singh BK (2016). Microbial diversity drives multifunctionality in terrestrial ecosystems. Nature Communications, 7, 10541. DOI: 10.1038/ncomms10541.
DOI URL PMID |
[7] |
Falkowski PG, Fenchel T, Delong EF (2008). The microbial engines that drive Earthʼs biogeochemical cycles. Science, 320, 1034-1039.
DOI URL PMID |
[8] |
Grayston SJ, Vaughan D, Jones D (1997). Rhizosphere carbon flow in trees, in comparison with annual plants: the importance of root exudation and its impact on microbial activity and nutrient availability. Applied Soil Ecology, 5, 29-56.
DOI URL |
[9] |
Gunina A, Smith AR, Godbold DL, Jones DL, Kuzyakov Y (2017). Response of soil microbial community to afforestation with pure and mixed species. Plant and Soil, 412, 357-368.
DOI URL |
[10] |
Guo QX, Yan LJ, Korpelainen H, Niinemets Ü, Li CY (2019). Plant-plant interactions and N fertilization shape soil bacterial and fungal communities. Soil Biology & Biochemistry, 128, 127-138.
DOI URL |
[11] |
Hackl E, Pfeffer M, Donat C, Bachmann C, Zechmeister Boltenstern S (2005). Composition of the microbial communities in the mineral soil under different types of natural forest. Soil Biology & Biochemistry, 37, 661-671.
DOI URL |
[12] | IPCC (2013). Climate Change 2013: The Physical Science Basis//Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK. |
[13] |
Jangid K, Williams MA, Franzluebbers AJ, Schmidt TM, Coleman DC, Whitman WB (2011). Land-use history has a stronger impact on soil microbial community composition than aboveground vegetation and soil properties. Soil Biology & Biochemistry, 43, 2184-2193.
DOI URL |
[14] |
Kaiser C, Koranda M, Kitzler B, Fuchslueger L, Schnecker J, Schweiger P, Rasche F, Zechmeister-Boltenstern S, Sessitsch A, Richter A (2010). Belowground carbon allocation by trees drives seasonal patterns of extracellular enzyme activities by altering microbial community composition in a beech forest soil. New Phytologist, 187, 843-858.
DOI URL |
[15] |
Kumar M, Männistö MK, van Elsas JD, Nissinen RM (2016). Plants impact structure and function of bacterial communities in Arctic soils. Plant and Soil, 399, 319-332.
DOI URL |
[16] | Li YJ, Zhu LY, Yin HJ, Liu Q, Jiang XM, Zhao CZ (2015). Effects of 3-year continuous night-time warming and nitrogen fertilization on ectomycorrhizae of Picea asperata and the ectomycorrhizal fungal diversity. Acta Ecologica Sinica, 35, 2967-2977. |
[ 李月蛟, 朱利英, 尹华军, 刘庆, 蒋先敏, 赵春章 (2015). 连续三年夜间增温和施氮对云杉外生菌根及菌根真菌多样性的影响. 生态学报, 35, 2967-2977.] | |
[17] | Liu Q, Wu Y, He H (2001). Ecological problems of subalpine coniferous forest in the southwest of China. World Science and Technology Research and Development, 23, 63-69. |
[ 刘庆, 吴彦, 何海 (2001). 中国西南亚高山针叶林的生态学问题. 世界科技研究与发展, 23, 63-69.] | |
[18] |
Lladó S, López-Mondéjar R, Baldrian P (2018). Drivers of microbial community structure in forest soils. Applied Microbiology and Biotechnology, 102, 4331-4338.
DOI URL PMID |
[19] | Lu RK (2000). Soil Agricultural Chemical Analysis Method. University of Chinese Academy of Sciences, Beijing. |
[ 鲁如坤 (2000). 土壤农业化学分析方法. 中国农业科技出版社, 北京.] | |
[20] |
Macdonald CA, Thomas N, Robinson L, Tate KR, Ross DJ, Dando J, Singh BK (2009). Physiological, biochemical and molecular responses of the soil microbial community after afforestation of pastures with Pinus radiata. Soil Biology & Biochemistry, 41, 1642-1651.
DOI URL |
[21] |
Majdi H, Öhrvik J (2004). Interactive effects of soil warming and fertilization on root production, mortality, and longevity in a Norway spruce stand in Northern Sweden. Global Change Biology, 10, 182-188.
DOI URL |
[22] |
Marschner P, Crowley D, Yang CH (2004). Development of specific rhizosphere bacterial communities in relation to plant species, nutrition and soil type. Plant and Soil, 261, 199-208.
DOI URL |
[23] |
Nakadai T, Yokozawa M, Ikeda H, Koizumi H (2002). Diurnal changes of carbon dioxide flux from bare soil in agricultural field in Japan. Applied Soil Ecology, 19, 161-171.
DOI URL |
[24] |
Nazaries L, Tottey W, Robinson L, Khachane A, Al-Soud WA, Sørensen S, Singh BK (2015). Shifts in the microbial community structure explain the response of soil respiration to land-use change but not to climate warming. Soil Biology & Biochemistry, 89, 123-134.
DOI URL |
[25] |
Rui J, Li J, Wang S, An J, Liu WT, Lin Q, Yang Y, He Z, Li X (2015). Responses of bacterial communities to simulated climate changes in alpine meadow soil of the Qinghai-Tibet Plateau. Applied and Environmental Microbiology, 81, 6070-6077.
DOI URL PMID |
[26] |
Schindlbacher A, Rodler A, Kuffner M, Kitzler B, Sessitsch A, Zechmeister-Boltenstern S (2011). Experimental warming effects on the microbial community of a temperate mountain forest soil. Soil Biology & Biochemistry, 43, 1417-1425.
DOI URL PMID |
[27] |
Sheik CS, Beasley WH, Elshahed MS, Zhou X, Luo Y, Krumholz LR (2011). Effect of warming and drought on grassland microbial communities. The ISME Journal, 5, 1692-1700.
DOI URL PMID |
[28] | Shen JP, He JZ (2011). Responses of microbes-mediated carbon and nitrogen cycles to global climate change. Acta Ecologica Sinica, 31, 2957-2967. |
[ 沈菊培, 贺纪正 (2011). 生态学报, 31, 2957-2967.] | |
[29] |
Song CQ, Wu JS, Lu YH, Shen QR, He JZ, Huang QY, Jia ZJ, Leng SY, Zhu YG (2013). Advances of soil microbiology in the last decade in China. Advances in Earth Science, 28, 1087-1105.
DOI URL |
[ 宋长青, 吴金水, 陆雅海, 沈其荣, 贺纪正, 黄巧云, 贾仲君, 冷疏影, 朱永官 (2013). 中国土壤微生物学研究10年回顾. 地球科学进展, 28, 1087-1105.] | |
[30] |
Sun DD, Li YJ, Zhao WQ, Zhang ZL, Li DD, Zhao CZ, Liu Q (2016). Effects of experimental warming on soil microbial communities in two contrasting subalpine forest ecosystems, eastern Tibetan Plateau, China. Journal of Mountain Science, 13, 1442-1452.
DOI URL |
[31] |
Treseder KK, Allen EB, Egerton-Warburton LM, Hart MM, Klironomos JN, Maherali H, Tedersoo L (2018). Arbuscular mycorrhizal fungi as mediators of ecosystem responses to nitrogen deposition: a trait-based predictive framework. Journal of Ecology, 106, 480-489.
DOI URL |
[32] |
Urbanová M, Šnajdr J, Baldrian P (2015). Composition of fungal and bacterial communities in forest litter and soil is largely determined by dominant trees. Soil Biology & Biochemistry, 84, 53-64.
DOI URL |
[33] |
Uroz S, Oger P, Tisserand E, Cébron A, Turpault MP, Buée M, De Boer W, Leveau JHJ, Frey-Klett P (2016). Specific impacts of beech and Norway spruce on the structure and diversity of the rhizosphere and soil microbial communities. Scientific Reports, 6, 27756. DOI: 10.1038/srep27756.
DOI URL PMID |
[34] |
van der Wal A, van Veen JA, Smant W, Boschker HTS, Bloem J, Kardol P, van der Putten WH, de Boer W (2006). Fungal biomass development in a chronosequence of land abandonment. Soil Biology & Biochemistry, 38, 51-60.
DOI URL |
[35] |
Wan XH, Huang ZQ, He ZM, Yu ZP, Wang MH, Davis MR, Yang YS (2015). Soil C:N ratio is the major determinant of soil microbial community structure in subtropical coniferous and broadleaf forest plantations. Plant and Soil, 387, 103-116.
DOI URL |
[36] |
Wang CT, Zhao XQ, Zi HB, Hu L, Ade L, Wang GX, Lerdau M (2017). The effect of simulated warming on root dynamics and soil microbial community in an alpine meadow of the Qinghai-Tibet Plateau. Applied Soil Ecology, 116, 30-41.
DOI URL |
[37] |
White DC, Davis WM, Nickels JS, King JD, Bobbie RJ (1979). Determination of the sedimentary microbial biomass by extractible lipid phosphate. Oecologia, 40, 51-62.
DOI URL PMID |
[38] |
Willers C, van Rensburg PJ, Claassens S (2015). Phospholipid fatty acid profiling of microbial communities—A review of interpretations and recent applications. Journal of Applied Microbiology, 119, 1207-1218.
DOI URL PMID |
[39] |
Wu YB, Zhang J, Deng YC, Wu J, Wang SP, Tang YH, Cui XY (2014). Effects of warming on root diameter, distribution, and longevity in an alpine meadow. Plant Ecology, 215, 1057-1066.
DOI URL |
[40] |
Yin HJ, Chen Z, Liu Q (2012a). Effects of experimental warming on soil N transformations of two coniferous species, Eastern Tibetan Plateau, China. Soil Biology & Biochemistry, 50, 77-84.
DOI URL |
[41] |
Yin HJ, Li YF, Xiao J, Xu ZF, Cheng XY, Liu Q (2013a). Enhanced root exudation stimulates soil nitrogen transformations in a subalpine coniferous forest under experimental warming. Global Change Biology, 19, 2158-2167.
DOI URL |
[42] |
Yin HJ, Xiao J, Li YF, Chen Z, Cheng XY, Zhao CZ, Liu Q (2013b). Warming effects on root morphological and physiological traits: the potential consequences on soil C dynamics as altered root exudation. Agricultural and Forest Meteorology, 180, 287-296.
DOI URL |
[43] |
Yin HJ, Xu ZF, Chen Z, Wei YY, Liu Q (2012b). Nitrogen transformation in the rhizospheres of two subalpine coniferous species under experimental warming. Applied Soil Ecology, 59, 60-67.
DOI URL |
[44] | Zhang D, Zhang YX, Qu LY, Zhang S, Ma KM (2012). Effects of altitude on soil microbial community in Quercus liaotungensis forest. Chinese Journal of Applied Ecology, 23, 2041-2048. |
[ 张地, 张育新, 曲来叶, 张霜, 马克明 (2012). 海拔对辽东栎林地土壤土壤微生物群落的影响. 应用生态学报, 23, 2041-2048.] | |
[45] |
Zhao CZ, Liu Q (2008). Growth and physiological responses of Picea asperata seedlings to elevated temperature and to nitrogen fertilization. Acta Physiologiae Plantarum, 31, 163-173.
DOI URL |
[46] |
Zhao CZ, Zhu LY, Liang J, Yin HJ, Yin CY, Li DD, Zhang NN, Liu Q (2014). Effects of experimental warming and nitrogen fertilization on soil microbial communities and processes of two subalpine coniferous species in Eastern Tibetan Plateau, China. Plant and Soil, 382, 189-201.
DOI URL |
[1] | 夏璟钰 张扬建 郑周涛 赵广 赵然 朱艺旋 高洁 沈若楠 李文宇 郑家禾 张雨雪 朱军涛 孙建新. 青藏高原那曲高山嵩草草甸植物物候对增温的异步响应[J]. 植物生态学报, 2023, 47(预发表): 0-0. |
[2] | 钟楠蝶, 王力, 肖杰, 王琼. 增温条件下花粉来源对红雉凤仙花生殖成功的影响[J]. 植物生态学报, 2022, 46(4): 416-427. |
[3] | 田磊, 朱毅, 李欣, 韩国栋, 任海燕. 不同降水条件下内蒙古荒漠草原主要植物物候对长期增温和氮添加的响应[J]. 植物生态学报, 2022, 46(3): 290-299. |
[4] | 韩聪 刘鹏 母艳梅 原媛 郝少荣 田赟 查天山 贾昕. 油蒿灌丛生态系统碳平衡对昼夜非对称增温的响应[J]. 植物生态学报, 2022, 46(12): 1473-1485. |
[5] | 毛瑾, 朵莹, 邓军, 程杰, 程积民, 彭长辉, 郭梁. 冬季增温和减雪对黄土高原典型草原土壤养分和细菌群落组成的影响[J]. 植物生态学报, 2021, 45(8): 891-902. |
[6] | 蒋芬, 黄娟, 褚国伟, 程严, 刘旭军, 刘菊秀, 列志旸. 增温对南亚热带森林土壤磷形态的影响及其对有效磷的贡献[J]. 植物生态学报, 2021, 45(2): 197-206. |
[7] | 魏春雪, 杨璐, 汪金松, 杨家明, 史嘉炜, 田大栓, 周青平, 牛书丽. 实验增温对陆地生态系统根系生物量的影响[J]. 植物生态学报, 2021, 45(11): 1203-1212. |
[8] | 赵河聚, 岳艳鹏, 贾晓红, 成龙, 吴波, 李元寿, 周虹, 赵雪彬. 模拟增温对高寒沙区生物土壤结皮-土壤系统呼吸的影响[J]. 植物生态学报, 2020, 44(9): 916-925. |
[9] | 朱彪, 陈迎. 陆地生态系统野外增温控制实验的技术与方法[J]. 植物生态学报, 2020, 44(4): 330-339. |
[10] | 李旭, 吴婷, 程严, 谭钠丹, 蒋芬, 刘世忠, 褚国伟, 孟泽, 刘菊秀. 南亚热带常绿阔叶林4个树种对增温的生理生态适应能力比较[J]. 植物生态学报, 2020, 44(12): 1203-1214. |
[11] | 刘珊杉, 周文君, 况露辉, 刘占锋, 宋清海, 刘运通, 张一平, 鲁志云, 沙丽清. 亚热带常绿阔叶林土壤胞外酶活性对碳输入变化及增温的响应[J]. 植物生态学报, 2020, 44(12): 1262-1272. |
[12] | 闫鹏飞, 展鹏飞, 肖德荣, 王燚, 余瑞, 刘振亚, 王行. 模拟增温及分解界面对茭草凋落物分解速率及叶际微生物结构和功能的影响[J]. 植物生态学报, 2019, 43(2): 107-118. |
[13] | 吴红宝, 高清竹, 干珠扎布, 李钰, 闫玉龙, 胡国铮, 王学霞, 严俊, 何世丞. 放牧和模拟增温对藏北高寒草地植物群落特征及生产力的影响[J]. 植物生态学报, 2019, 43(10): 853-862. |
[14] | 宋小艳, 王根绪, 冉飞, 杨燕, 张莉, 肖瑶. 东北大兴安岭演替初期泰加林灌草层典型植物开花物候与生长对模拟暖干化气候的响应[J]. 植物生态学报, 2018, 42(5): 539-549. |
[15] | 石国玺, 王文颖, 蒋胜竞, 成岗, 姚步青, 冯虎元, 周华坤. 黄帚橐吾种群扩张对土壤理化特性与微生物功能多样性的影响[J]. 植物生态学报, 2018, 42(1): 126-132. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19