植物生态学报 ›› 2019, Vol. 43 ›› Issue (8): 658-671.DOI: 10.17521/cjpe.2019.0018
陈婵1,张仕吉1,李雷达1,刘兆丹1,陈金磊1,辜翔1,王留芳1,方晰1,2,*()
收稿日期:
2019-01-22
修回日期:
2019-08-06
出版日期:
2019-08-20
发布日期:
2020-01-03
通讯作者:
方晰
基金资助:
CHEN Chan1,ZHANG Shi-Ji1,LI Lei-Da1,LIU Zhao-Dan1,CHEN Jin-Lei1,GU Xiang1,WANG Liu-Fang1,FANG Xi1,2,*()
Received:
2019-01-22
Revised:
2019-08-06
Online:
2019-08-20
Published:
2020-01-03
Contact:
FANG Xi
Supported by:
摘要:
为揭示植被恢复过程中生态系统的养分循环机制及植物的生存策略, 根据亚热带森林群落演替过程, 采用空间代替时间方法, 以湘中丘陵区地域相邻、环境条件基本一致的檵木(Loropetalum chinensis) +南烛(Vaccinium bracteatu) +杜鹃(Rhododendron mariesii)灌草丛(LVR)、檵木+杉木(Cunninghamia lanceolata) +白栎(Quercus fabri)灌木林(LCQ)、马尾松(Pinus massoniana) +柯(Lithocarpus glaber) +檵木针阔混交林(PLL)、柯+红淡比(Cleyera japonica) +青冈(Cyclobalanopsis Glauca)常绿阔叶林(LCC)作为一个恢复系列, 设置固定样地, 采集植物叶片、未分解层凋落物和0-30 cm土壤样品, 测定有机碳(C)、全氮(N)、全磷(P)含量及其化学计量比, 运用异速生长关系、养分利用效率和再吸收效率分析植物对环境变化的响应和养分利用策略。结果表明: (1)随着植被恢复, 叶片C:N、C:P、N:P显著下降, 而叶片C、N、P含量和土壤C、N含量、C:P、N:P显著增加, 其中LCC植物叶片C、N含量, 土壤C、N含量及其N:P, PLL植物叶片P含量, 土壤C:P显著高于其他3个恢复阶段, 各恢复阶段植物叶片N:P > 20, 植物生长受P限制; 凋落物C、N、P含量及其化学计量比波动较大。(2)凋落物与叶片、土壤的化学计量特征之间的相关关系较弱, 叶片与土壤的化学计量特征之间具有显著相关关系, 其中叶片C、N、P含量与土壤C、N含量、C:N (除叶片C、N含量外)、C:P、N:P呈显著正相关关系; 叶片C:N与土壤C、N含量、C:P、N:P, 叶片C:P与土壤C含量、C:N、C:P, 叶片N:P与土壤C:N呈显著负相关关系。(3)植被恢复过程中, 叶片N、P之间具有显著异速生长关系, 异速生长指数为1.45, 叶片N、P的利用效率下降, 对N、P的再吸收效率增加, LCC叶片N利用效率最低, PLL叶片P利用效率最低而N、P再吸收效率最高。(4)叶片N含量内稳态弱, 而P含量具有较高的内稳态, 在土壤低P限制下植物能保持P平衡。植被恢复显著影响叶片、凋落物、土壤C、N、P含量及其化学计量比, 叶片与土壤之间C、N、P含量及化学计量比呈显著相关关系, 植物通过降低养分利用效率和提高养分再吸收效率适应土壤养分的变化, 叶片-凋落物-土壤系统的N、P循环随着植被恢复逐渐达到“化学计量平衡”。
陈婵, 张仕吉, 李雷达, 刘兆丹, 陈金磊, 辜翔, 王留芳, 方晰. 中亚热带植被恢复阶段植物叶片、凋落物、土壤碳氮磷化学计量特征. 植物生态学报, 2019, 43(8): 658-671. DOI: 10.17521/cjpe.2019.0018
CHEN Chan, ZHANG Shi-Ji, LI Lei-Da, LIU Zhao-Dan, CHEN Jin-Lei, GU Xiang, WANG Liu-Fang, FANG Xi. Carbon, nitrogen and phosphorus stoichiometry in leaf, litter and soil at different vegetation restoration stages in the mid-subtropical region of China. Chinese Journal of Plant Ecology, 2019, 43(8): 658-671. DOI: 10.17521/cjpe.2019.0018
图1 中亚热带不同恢复阶段植物叶片、凋落物、土壤C (A)、N (B)、P (C)含量及C:N (D)、C:P (E)、N:P (F)(平均值±标准偏差, n = 12)。LCC, 柯+红淡比+青冈常绿阔叶林; LCQ, 檵木+杉木+白栎灌木林; LVR, 檵木+南烛+杜鹃灌草丛; PLL, 马尾松+柯+檵木针阔混交林。不同小写字母代表同一组分不同恢复阶段之间差异显著(p < 0.05)。
Fig. 1 Contents of C (A), N (B) and P (C) and the C:N (D), C:P (E), N:P (F) in leaf, litter and soil at different restoration stages in the mid-subtropical region of China (mean ± SD, n = 12). LCC, Lithocarpus glaber + Cleyera japonica + Cyclobalanopsis glauca evergreen broad-leaved forest; LCQ, Loropetalum chinense + Cunninghamia lanceolata + Quercus fabri shrubbery; LVR, Loropetalum chinense + Vaccinium bracteatum + Rhododendron mariesii scrub-grass-land; PLL, Pinus massoniana + Lithocarpus glaber + Loropetalum chinense coniferous-broad leaved mixed forest. Different lowercase letters indicate significant differences at different restoration stages for the same component (p < 0.05).
图2 植被恢复过程中植物叶片、凋落物、土壤C、N、P及其化学计量比的关系(n = 48)。
Fig. 2 Relationships of leaf, litter, and soil C, N, P contents and stoichiometry during the restoration process (n = 48).
logy vs. logx | 恢复阶段 Restoration stages | n | 斜率b [95%置信区间] Slope b [95% CI] | 截距a [95%置信区间] Elevation a [95% CI] | 决定系数 Determination coefficient (R2) | p |
---|---|---|---|---|---|---|
logP vs. logN | LVR | 12 | 3.81 [2.83, 5.14] | -4.28 [-5.45, -3.11] | 0.89 | <0.01 |
LCQ | 12 | 0.54 [0.25, 1.17] | -0.83 [-1.35, -0.31] | 0.11 | 0.39 | |
PLL | 12 | 0.75 [0.52, 1.08] | -1.03 [-1.37, -0.70] | 0.83 | <0.01 | |
LCC | 12 | -0.96 [-2.07, -0.45] | 1.00 [0.00, 2.00] | 0.12 | 0.37 |
表1 不同恢复阶段植物叶片的N、P异速生长关系
Table 1 Allometric relationship of leaf N and P contents at each restoration stage
logy vs. logx | 恢复阶段 Restoration stages | n | 斜率b [95%置信区间] Slope b [95% CI] | 截距a [95%置信区间] Elevation a [95% CI] | 决定系数 Determination coefficient (R2) | p |
---|---|---|---|---|---|---|
logP vs. logN | LVR | 12 | 3.81 [2.83, 5.14] | -4.28 [-5.45, -3.11] | 0.89 | <0.01 |
LCQ | 12 | 0.54 [0.25, 1.17] | -0.83 [-1.35, -0.31] | 0.11 | 0.39 | |
PLL | 12 | 0.75 [0.52, 1.08] | -1.03 [-1.37, -0.70] | 0.83 | <0.01 | |
LCC | 12 | -0.96 [-2.07, -0.45] | 1.00 [0.00, 2.00] | 0.12 | 0.37 |
图4 植物叶片对N、P的利用效率(A)和再吸收效率(B)(n = 12)。LCC, LCQ, LVR, PLL同图1。NUEN, N的利用效率; NUEP, P的利用效率。不同小写字母代表不同恢复阶段之间的差异显著(p < 0.05)。
Fig. 4 Utilization efficiency (A) and reabsorption efficiency (B) of N, P of leaf (n = 12). LCC, LCQ, LVR, PLL see Fig. 1. NUEN, nutrient use efficiency of N; NUEP, nutrient use efficiency of P. Different lowercase letters indicate significant differences at different restoration stages (p < 0.05).
图5 土壤N (A)、P (B)含量与植物叶片N、P含量的关系(n = 48)。***, p < 0.001。
Fig. 5 Effects of soil N (A) and P (B) contents on the homeostasis of leaf N and P (n = 48). ***, p < 0.001.
[1] | Cao Y, Chen YM (2017). Ecosystem C:N:P stoichiometry and carbon storage in plantations and a secondary forest on the Loess Plateau, China. Ecological Engineering, 105, 125-132. |
[2] | Cao Y, Zhang P, Chen YM (2018). Soil C:N:P stoichiometry in plantations of N-fixing black locust and indigenous pine, and secondary oak forests in Northwest China. Journal of Soils and Sediments, 18, 1478-1489. |
[3] | Chapin III FS (1980). The mineral nutrition of wild plants. Annual Review of Ecology and Systematics, 1, 233-260. |
[4] | Chen LL, Deng Q, Yuan ZY, Mu XM, Kallenbach RL (2018). Age-related C:N:P stoichiometry in two plantation forests in the Loess Plateau of China. Ecological Engineering, 120, 14-22. |
[5] | Clinton PW, Allen RB, Davis MR (2002). Nitrogen storage and availability during stand development in a New Zealand Nothofagus forest. Canadian Journal of Forest Research, 32, 344-352. |
[6] | Elser JJ, Sterner RW, Gorokhova E, Fagan WF, Markow TA, Cotner JB, Harrison JF, Hobbie SE, Odell GM, Weider LW (2000). Biological stoichiometry from genes to ecosystems. Ecology Letters, 3, 540-550. |
[7] | Gao Y, He NP, Yu GR, Chen WL, Wang QF (2014). Long-term effects of different land use types on C, N, and P stoichiometry and storage in subtropical ecosystems: A case study in China. Ecological Engineering, 67, 171-181. |
[8] | Grime JP (2001). Plant Strategies, Vegetation Processes, and Ecosystem Properties. 2nd edn. John Wiley & Sons, Chichester, UK. 13-48. |
[9] | Gu X, Zhang SJ, Liu ZD, Li LD, Chen JL, Wang LF, Fang X (2018). Effects of vegetation restoration on soil organic carbon concentration and density in the mid-subtropical region of China. Chinese Journal of Plant Ecology, 42, 595-608. |
[ 辜翔, 张仕吉, 刘兆丹, 李雷达, 陈金磊, 王留芳, 方晰 (2018). 中亚热带植被恢复对土壤有机碳含量、碳密度的影响. 植物生态学报, 42, 595-608.] | |
[10] | Güsewell S (2004). N:P ratios in terrestrial plants: Variation and functional significance. New Phytologist, 164, 243-266. |
[11] | Güsewell S, Koerselman W (2002). Variation in nitrogen and phosphorus concentrations of wetland plants. Perspectives in Plant Ecology, Evolution and Systematics, 5, 37-61. |
[12] | Güsewell S, Verhoeven JTA (2006). Litter N:P ratios indicate whether N or P limits the decomposability of graminoid leaf litter. Plant and Soil, 287, 131-143. |
[13] | Han WX, Fang JY (2008). Review on the mechanism models of allometric scaling laws: 3/4 vs. 2/3 power. Journal of Plant Ecology (Chinese Version), 32, 951-960. |
[ 韩文轩, 方精云 (2008). 幂指数异速生长机制模型综述. 植物生态学报, 32, 951-960.] | |
[14] | He JS, Wang L, Flynn DFB, Wang X, Ma W, Fang J (2008). Leaves nitrogen: Phosphorus stoichiometry across Chinese grassland biomes. Oecologia, 155, 301-310. |
[15] | He YJ, Qin L, Li ZY, Liang XY, Shao MX, Tan L (2013). Carbon storage capacity of monoculture and mixed-species plantations in subtropical China. Forest Ecology and Management, 295, 193-198. |
[16] | Hector A, Bagchi R (2007). Biodiversity and ecosystem multifunctionality. Nature, 448, 188-190. |
[17] | Hedin LO (2004). Global organization of terrestrial plant-nutrient interactions. Proceedings of the National Academy of Sciences of the United States of America, 101, 10849-10850. |
[18] | Hessen DO, Ågren GI, Anderson TR, Elser JJ, de Ruiter PC (2004). Carbon sequestration in ecosystems: The role of stoichiometry. Ecology, 85, 1179-1192. |
[19] | Hu YF, Shu XY, He J, Zhang YL, Xiao HH, Tang XY, Gu YF, Lan T, Xia JG, Ling J, Chen GD, Wang CQ, Deng LJ, Yuan S (2018). Storage of C, N, and P affected by afforestation with Salix cupularis in an alpine semiarid desert ecosystem. Land Degradation & Development, 29, 188-198. |
[20] | Institute of Soil Science, Chinese Academy of Sciences (1978). The Analysis of Soil Physical-Chemical Properties. Shanghai Scientific & Technical Publishers, Shanghai. |
[ 中国科学院南京土壤研究所 (1978). 土壤理化分析. 上海科技出版社, 上海.] | |
[21] | Jiang LL, He S, Wu LF, Yan YF, Weng SF, Liu J, Wang WQ, Zeng CS (2014). Characteristics of stoichiometric homeostasis of three plant species in wetlands in Minjiang Estuary. Wetland Science, 12, 293-298. |
[ 蒋利玲, 何诗, 吴丽凤, 颜远烽, 翁少峰, 刘静, 王维奇, 曾从盛 (2014). 闽江河口湿地3种植物化学计量内稳性特征. 湿地科学, 12, 293-298.] | |
[22] | Killingbeck KT (1996). Nutrients in senesced leaves: Keys to the search for potential resorption and resorption proficiency. Ecology, 77, 1716-1727. |
[23] | Koerselman W, Meuleman AFM (1996). The vegetation N:P ratio: A new tool to detect the nature of nutrients limitation. Journal of Applied Ecology, 33, 1441-1450. |
[24] | Kooijman SALM (1995). The stoichiometry of animal energetics. Journal of Theoretical Biology, 177, 139-149. |
[25] | Li CZ, Zhao LH, Sun PS, Zhao FZ, Kang D, Yang GH, Han XH, Feng YZ, Ren GX (2016). Deep soil C, N, and P stocks and stoichiometry in response to land use patterns in the Loess Hilly Region of China. PLOS ONE, 11, e0159075. DOI: 10.1371/journal.pone.0159075. |
[26] | Liu WD, Su JR, Li SF, Zhang ZJ, Li ZW (2010). Stoichiometry study of C, N and P in plant and soil at different successional stages of monsoon evergreen broad-leaved forest in Pu’er, Yunnan Province. Acta Ecologica Sinica, 30, 6581-6590. |
[ 刘万德, 苏建荣, 李帅锋, 张志钧, 李忠文 (2010). 云南普洱季风常绿阔叶林演替系列植物和土壤C、N、P化学计量特征. 生态学报, 30, 6581-6590.] | |
[27] | Liu Y, Wu YX, Han SJ, Lin L (2009). Litterfall decomposition in four forest types in Changbai Mountains of China. Chinese Journal of Ecology, 28, 400-404. |
[ 刘颖, 武耀祥, 韩士杰, 林鹿 (2009). 长白山四种森林类型凋落物分解动态. 生态学杂志, 28, 400-404.] | |
[28] | Milla R, Castro-Díez P, Maestro-Martínez M, Montserrat-Martí G (2005). Does the gradualness of leaf shedding govern nutrient resorption from senescing leaves in Mediterranean woody plants? Plant and Soil, 278, 303-313. |
[29] | Mooshammer M, Wanek W, Schnecker J, Wild B, Leitner S, Hofhansl F, Blöchl A, Hämmerle I, Frank AH, Fuchslueger L, Keiblinger KM, Zechmeister Boltenstern S, Richter A (2012). Stoichiometric controls of nitrogen and phosphorus cycling in decomposing beech leaf litter. Ecology, 93, 770-782. |
[30] | Nie LQ, Wu Q, Yao B, Fu S, Hu QW (2016). Leaf litter and soil carbon, nitrogen, and phosphorus stoichiometry of dominant plant species in the Poyang Lake wetland. Acta Ecologica Sinica, 36, 1898-1906. |
[ 聂兰琴, 吴琴, 尧波, 付姗, 胡启武 (2016). 鄱阳湖湿地优势植物叶片-凋落物-土壤碳氮磷化学计量特征. 生态学报, 36, 1898-1906.] | |
[31] | Niklas KJ (1994). Size-dependent variations in plant growth rates and the “3/4-power rule”. American Journal of Botany, 81, 134-144. |
[32] | Ning QR, Li SZ, Jiang LC, Zhao Y, Liu R, Zhang XY (2016). Foliar nutrient content and resorption efficiency of Pinus massoniana in the subtropical red soil erosion region. Acta Ecologica Sinica, 36, 3510-3517. |
[ 宁秋蕊, 李守中, 姜良超, 赵颖, 刘溶, 张欣影 (2016). 亚热带红壤侵蚀区马尾松针叶养分含量及再吸收特征. 生态学报, 36, 3510-3517.] | |
[33] | O’Brien SL, Jastrow JD (2013). Physical and chemical protection in hierarchical soil aggregates regulates soil carbon and nitrogen recovery in restored perennial grasslands. Soil Biology & Biochemistry, 61, 1-13. |
[34] | Paul KI, Polglase PJ, Nyakuengama JG, Khanna PK (2002). Change in soil carbon following afforestation. Forest Ecology and Management, 168, 241-257. |
[35] | Peng X, Fang X, Yu LH, Xiang WH, Huang ZH (2016). Change characteristic of soil C, N, P stoichiometric ratios in mid-subtropical forests restoration. Journal of Central South University of Forestry & Technology, 36(11), 65-72. |
[ 彭晓, 方晰, 喻林华, 项文化, 黄志宏 (2016). 中亚热带4种森林土壤碳、氮、磷化学计量特征. 中南林业科技大学学报, 36(11), 65-72.] | |
[36] | Qin H, Li JX, Gao SP, Li C, Li R, Sheng XH (2010). Characteristics of leaf element contents for eight nutrients across 660 terrestrial plant species in China. Acta Ecologica Sinica, 30, 1247-1257. |
[ 秦海, 李俊祥, 高三平, 李铖, 李蓉, 沈兴华 (2010). 中国660种陆生植物叶片8种元素含量特征. 生态学报, 30, 1247-1257.] | |
[37] | Qin J, Xi WM, Rahmlow A, Kong HY, Zhang Z, Shangguan ZP (2016). Effects of forest plantation types on leaf traits of Ulmus pumila and Robinia pseudoacacia on the Loess Plateau, China. Ecological Engineering, 97, 416-425. |
[38] | R Development Core Team (2018). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. |
[39] | Reich PB, Tjoelker MG, MacHado JL, Oleksyn J (2006). Universal scaling of respiratory metabolism, size and nitrogen in plants. Nature, 439, 457-461. |
[40] | Ren CJ, Zhao FZ, Kang D, Yang GH, Han XH, Tong XG, Feng YZ, Ren GX (2016). Linkages of C:N:P stoichiometry and bacterial community in soil following afforestation of former farmland. Forest Ecology and Management, 376, 59-66. |
[41] | Royer DL, Miller IM, Peppe DJ, Hickey LJ (2010). Leaf economic traits from fossils support a weedy habit for early angiosperms. American Journal of Botany, 97, 438-445. |
[42] | Sardans J, Alonso R, Carnicer J, Fernández-Martínez M, Vivanco MG, Peñuelas J (2016). Factors influencing the foliar elemental composition and stoichiometry in forest trees in Spain. Perspectives in Plant Ecology Evolution & Systematics, 18, 52-69. |
[43] | Schreeg LA, Santiago LS, Wright SJ, Turner BL (2014). Stem, root, and older leaf N:P ratios are more responsive indicators of soil nutrient availability than new foliage. Ecology, 95, 2062-2068. |
[44] | Sterner RW, Elser JJ (2002). Ecological Stoichiometry: The Biology of Elements from Molecules to the Biosphere. Princeton University Press, Princeton. |
[45] | Su B, Han XG, Huang JH, Qu CM (2000). The nutrient use efficiency (NUE) of plants and it’s implications on the strategy of plant adaptation to nutrient-stressed environments. Acta Ecologica Sinica, 20, 335-343. |
[ 苏波, 韩兴国, 黄建辉, 渠春梅 (2000). 植物的养分利用效率(NUE)及植物对养分胁迫环境的适应策略. 生态学报, 20, 335-343.] | |
[46] | Sun X, Shen Y, Schuster MJ, Searle EB, Chen JH, Yang GW, Zhang YJ (2018). Initial responses of grass litter tissue chemistry and N:P stoichiometry to varied N and P input rates and ratios in Inner Mongolia. Agriculture, Ecosystems & Environment, 252, 114-125. |
[47] | Tian LM, Zhao L, Wu XD, Fang HB, Zhao YH, Hu GJ, Yue GY, Sheng Y, Wu JC, Chen J, Wang ZW, Li WP, Zou DF, Ping CL, Shang W, Zhao YG, Zhang GL (2018). Soil moisture and texture primarily control the soil nutrient stoichiometry across the Tibetan grassland. Science of the Total Environment, 622-623, 192-202. |
[48] | Wang LL, Zhao GX, Li M, Zhang MT, Zhang LF, Zhang XF, An LZ, Xu SJ (2015). C:N:P stoichiometry and leaf traits of halophytes in an arid saline environment, northwest China. PLOS ONE, 10, e0119935. DOI: 10.1371/journal.pone.0119935. |
[49] | Wang M, Moore TR (2014). Carbon, nitrogen, phosphorus, and potassium stoichiometry in an ombrotrophic peatland reflects plant functional type. Ecosystems, 17, 673-684. |
[50] | Wang ZF, Zheng FL (2018). C, N, and P stoichiometric characteristics of Pinus tabulaeformis plantation in the Ziwuling Region of the Loess Plateau. Acta Ecologica Sinica, 38, 6870-6880. |
[ 汪宗飞, 郑粉莉 (2018). 黄土高原子午岭地区人工油松林碳氮磷生态化学计量特征. 生态学报, 38, 6870-6880.] | |
[51] | Warton DI, Duursma RA, Falster DS, Taskinen S (2012). SMART 3—An R package for estimation and inference about allometric lines. Methods in Ecology and Evolution, 3, 257-259. |
[52] | Xiang WH, Liu SH, Lei XD, Frank SC, Tian DL, Wang GJ, Deng XW (2013). Secondary forest floristic composition, structure, and spatial pattern in subtropical China. Journal of Forest Research, 18, 111-120. |
[53] | Xiao HB, Li ZW, Dong YT, Chang XF, Deng L, Huang JQ, Nie XD, Liu C, Liu L, Wang DY, Liu QM, Zhang YR (2017). Changes in microbial communities and respiration following the revegetation of eroded soil. Agriculture Ecosystems & Environment, 246, 30-37. |
[54] | Xu CH, Xiang WH, Gou MM, Chen L, Lei PF, Fang X, Deng XW, Ouyang S (2018). Effects of forest restoration on soil carbon, nitrogen, phosphorus, and their stoichiometry in Hunan, Southern China. Sustainability, 10, 1874. DOI: 10.3390/su10061874. |
[55] | Xu HW, Qu Q, Li P, Guo ZQ, Wulan E, Xue S (2019). Stocks and stoichiometry of soil organic carbon, total nitrogen, and total phosphorus after vegetation restoration in the Loess Hilly Region, China. Forests, 10, 27. DOI: 10.3390/f10010027. |
[56] | Yan ER, Wang XH, Guo M, Zhong Q, Zhou W (2010). C:N:P stoichiometry across evergreen broad-leaved forests, evergreen coniferous forests and deciduous broad-leaved forests in the Tiantong region, Zhejiang Province, eastern China. Chinese Journal of Plant Ecology, 34, 48-57. |
[ 阎恩荣, 王希华, 郭明, 仲强, 周武 (2010). 浙江天童常绿阔叶林、常绿针叶林与落叶阔叶林的C:N:P化学计量特征. 植物生态学报, 34, 48-57.] | |
[57] | Yang Y, Liu BR, An SS (2018). Ecological stoichiometry in leaves, roots, litters and soil among different plant communities in a desertified region of Northern China. Catena, 166, 328-338. |
[58] | Yang YH, Luo YQ (2011). Carbon:nitrogen stoichiometry in forest ecosystems during stand development. Global Ecology and Biogeography, 20, 354-361. |
[59] | Yu Q, Chen QS, Elser JJ, He NP, Wu HH, Zhang GM, Wu JG, Bai YF, Han XG (2010). Linking stoichiometric homoeostasis with ecosystem structure, functioning and stability. Ecology Letters, 13, 1390-1399. |
[60] | Yu Q, Elser JJ, He NP, Wu HH, Chen QS, Zhang GM, Han XG (2011). Stoichiometric homeostasis of vascular plants in the Inner Mongolia grassland. Oecologia, 166, 1-10. |
[61] | Zeng QC, Li X, Dong YH, An SS, Darboux F (2016). Soil and plant components ecological stoichiometry in four steppe communities in the Loess Plateau of China. Catena, 147, 481-488. |
[62] | Zeng QC, Liu Y, Fang Y, Ma RT, Lal R, An SS, Huang YM (2017a). Impact of vegetation restoration on plants and soil C:N:P stoichiometry on the Yunwu Mountain Reserve of China. Ecological Engineering, 109, 92-100. |
[63] | Zeng YL, Fang X, Xiang WH, Deng XW, Peng CH (2017b). Stoichiometric and nutrient resorption characteristics of dominant tree species in subtropical Chinese forests. Ecology and Evolution, 7, 11033-11043. |
[64] | Zhang DJ, Zhang J, Yang WQ, Wu FZ, Huang YM (2014). Plant and soil seed bank diversity across a range of ages of Eucalyptus grandis plantations afforested on arable lands. Plant and soil, 376, 307-325. |
[65] | Zhang GQ, Zhang P, Peng SZ, Chen YM, Cao Y (2017). The coupling of leaf, litter, and soil nutrients in warm temperate forests in northwestern China. Scientific Reports, 7, 11754. DOI: 10.1038/s41598-017-12199-5. |
[66] | Zhang P, Zhang GQ, Zhao YP, Peng SZ, Chen YM, Cao Y (2018). Ecological stoichiometry characteristics of leaf-litter-soil interactions in different forest types in the Loess hilly-gully region of China. Acta Ecologica Sinica, 38, 5087-5098. |
[ 张萍, 章广琦, 赵一娉, 彭守璋, 陈云明, 曹扬 (2018). 黄土丘陵区不同森林类型叶片-凋落物-土壤生态化学计量特征. 生态学报, 38, 5087-5098.] | |
[67] | Zhang W, Liu WC, Xu MP, Deng J, Han XH, Yang GH, Feng YZ, Ren GX (2019). Response of forest growth to C:N:P stoichiometry in plants and soils during Robinia pseudoacacia afforestation on the Loess Plateau, China. Geoderma, 337, 280-289. |
[68] | Zhang W, Ren CJ, Deng J, Zhao FZ, Yang GH, Han XH, Tong XG, Feng YZ (2018). Plant functional composition and species diversity affect soil C, N, and P during secondary succession of abandoned farmland on the Loess Plateau. Ecological Engineering, 122, 91-99. |
[69] | Zhao FZ, Kang D, Han XH, Yang GH, Feng YZ, Ren GX (2015a). Soil stoichiometry and carbon storage in long-term afforestation soil affected by understory vegetation diversity. Ecological Engineering, 74, 415-422. |
[70] | Zhao FZ, Sun J, Ren CJ, Kang D, Deng J, Han XH, Yang GH, Feng YZ, Ren GX (2015b). Land use change influences soil C, N and P stoichiometry under “Grain-to-Green Program” in China. Scientific Reports, 5, 10195. DOI: 10.1038/srep10195. |
[71] | Zhao N, He NP, Wang QF, Zhang XY, Wang RL, Xu ZW, Yu GR (2014). The altitudinal patterns of leaf C:N:P stoichiometry are regulated by plant growth form, climate and soil on Changbai Mountain, China. PLOS ONE, 9, e95196. DOI: 10.1371/journal.pone.0095196. |
[72] | Zheng L, Lu LH (2012). Standing crop and nutrient characteristics of forest floor litter in China. Journal of Northwest Forestry University, 27(1), 63-69. |
[ 郑路, 卢立华 (2012). 我国森林地表凋落物现存量及养分特征. 西北林学院学报, 27(1), 63-69.] | |
[73] | Zhong ZS, Song XL, Lu XG, Xue ZS (2013). Ecological stoichiometry of carbon, nitrogen, and phosphorus in estuarine wetland soils: Influences of vegetation coverage, plant communities, geomorphology, and seawalls. Journal of Soils and Sediments, 13, 1043-1051. |
[1] | 韩路, 冯宇, 李沅楷, 王雨晴, 王海珍. 地下水埋深对灰胡杨叶片与土壤养分生态化学计量特征及其内稳态的影响[J]. 植物生态学报, 2024, 48(1): 92-102. |
[2] | 陈雪萍, 赵学勇, 张晶, 王瑞雄, 卢建男. 基于地理探测器的科尔沁沙地植被NDVI时空变化特征及其驱动因素[J]. 植物生态学报, 2023, 47(8): 1082-1093. |
[3] | 罗娜娜, 盛茂银, 王霖娇, 石庆龙, 何宇. 长期植被恢复对中国西南喀斯特石漠化土壤活性有机碳组分含量和酶活性的影响[J]. 植物生态学报, 2023, 47(6): 867-881. |
[4] | 崔光帅, 罗天祥, 梁尔源, 张林. 干旱半干旱区灌丛对草本植物的促进作用研究进展[J]. 植物生态学报, 2022, 46(11): 1321-1333. |
[5] | 薛金儒, 吕肖良. 黄土高原生态工程实施下基于日光诱导叶绿素荧光的植被恢复生产力效益评价[J]. 植物生态学报, 2022, 46(10): 1289-1304. |
[6] | 邓梦达, 游健荣, 李家湘, 李雄, 杨静, 邓创发, 刘昂, 刘文剑, 丁聪, 谢勇, 周国辉, 喻勋林. 长株潭城市群生态绿心地区主要植被类型的群落特征[J]. 植物生态学报, 2020, 44(12): 1296-1304. |
[7] | 王明明,刘新平,何玉惠,张铜会,魏静,车力木格,孙姗姗. 科尔沁沙地封育恢复过程中植物群落特征变化及影响因素[J]. 植物生态学报, 2019, 43(8): 672-684. |
[8] | 刘璐, 葛结林, 舒化伟, 赵常明, 徐文婷, 申国珍, 谢宗强. 神农架常绿落叶阔叶混交林碳氮磷化学计量比[J]. 植物生态学报, 2019, 43(6): 482-489. |
[9] | 俞筱押, 李玉辉, 杨光荣. 石林地质公园不同群落类型植物果实组成与种子散布特征[J]. 植物生态学报, 2018, 42(6): 663-671. |
[10] | 辜翔, 张仕吉, 刘兆丹, 李雷达, 陈金磊, 王留芳, 方晰. 中亚热带植被恢复对土壤有机碳含量、碳密度的影响[J]. 植物生态学报, 2018, 42(5): 595-608. |
[11] | 辜翔, 张仕吉, 刘兆丹, 李雷达, 陈金磊, 王留芳, 方晰. 湖南东部植被恢复对土壤有机碳矿化的影响[J]. 植物生态学报, 2018, 42(12): 1211-1224. |
[12] | 吴秀芝, 阎欣, 王波, 刘任涛, 安慧. 荒漠草地沙漠化对土壤-微生物-胞外酶化学计量特征的影响[J]. 植物生态学报, 2018, 42(10): 1022-1032. |
[13] | 张浩, 吕茂奎, 谢锦升. 红壤侵蚀区芒萁对土壤可溶性有机质光谱特征的影响[J]. 植物生态学报, 2017, 41(8): 862-871. |
[14] | 周正虎, 王传宽. 微生物对分解底物碳氮磷化学计量的响应和调节机制[J]. 植物生态学报, 2016, 40(6): 620-630. |
[15] | 辜翔, 张仕吉, 项文化, 李雷达, 刘兆丹, 孙伟军, 方晰. 中亚热带4种森林类型土壤活性有机碳的季节动态特征[J]. 植物生态学报, 2016, 40(10): 1064-1076. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19