植物生态学报 ›› 2017, Vol. 41 ›› Issue (8): 862-871.DOI: 10.17521/cjpe.2016.0363
所属专题: 遥感生态学
出版日期:
2017-08-10
发布日期:
2017-09-29
通讯作者:
谢锦升
作者简介:
康璟瑶(1991-),男,江苏南京人,硕士生,主要从事旅游地理与旅游规划研究,E-mail: 基金资助:
Hao ZHANG, Mao-Kui Lyu, Jin-Sheng XIE*()
Online:
2017-08-10
Published:
2017-09-29
Contact:
Jin-Sheng XIE
About author:
KANG Jing-yao(1991-), E-mail: 摘要:
可溶性有机质(DOM)是森林生态系统能量循环的主要载体, 在碳循环过程中发挥着重要的作用。为了深入了解植被恢复后土壤DOM的变化和结构特征, 在典型红壤侵蚀区福建省龙岩市长汀县河田镇选取不同恢复年限的马尾松(Pinus massoniana)林为研究对象, 利用光学技术对比分析了不同恢复年限(0年, 13年, 31年)马尾松林保留芒萁(Dicranopteris dichotoma)覆盖地、去除芒萁覆盖地和林下裸地土壤DOM光谱特征。结果表明: 未治理地(Y0)、恢复13年(Y13)和恢复31年(Y31)马尾松林芒萁覆盖地土壤可溶性有机碳(DOC)含量分别是林下裸地的7.61倍、4.83倍和5.47倍, 去除芒萁一年后, 土壤DOC的含量显著下降, 但仍分别是林下裸地的1.84倍、4.12倍和4.73倍; 芒萁覆盖地土壤DOM的芳香化指数(AI)和腐殖化指数(HIX)均显著高于林下裸地, 而波长在250 nm和365 nm处的紫外可见光光度值之比(E2:E3)的趋势与之相反, 去除芒萁一年后, AI和HIX降低显著, 表明芒萁覆盖地土壤DOM腐殖化和芳香化程度更高, 分子量更大; 林下裸地DOM红外光谱中特征峰明显不如林下芒萁覆盖地丰富, 其含有更多的羟基、羧酸类, 以及碳水化合物中的烷氧基等结构简单、易迁移的物质, 去除芒萁一年后, DOM红外光谱特征峰无明显变化, 表明芒萁是土壤DOM数量和结构的主要影响因素, 而这种影响是一个长期缓慢的过程。从DOM光谱分析结果可知, 芒萁覆盖下土壤DOM的分子量更大, 结构更复杂, 易于被土壤胶粒吸附, 维持其化学稳定, 利于土壤有机碳积累。由此可见, 芒萁在土壤有机碳积累过程中具有积极的作用。
张浩, 吕茂奎, 谢锦升. 红壤侵蚀区芒萁对土壤可溶性有机质光谱特征的影响. 植物生态学报, 2017, 41(8): 862-871. DOI: 10.17521/cjpe.2016.0363
Hao ZHANG, Mao-Kui Lyu, Jin-Sheng XIE. Effect of Dicranopteris dichotoma on spectroscopic characteristic of dissolved organic matter in red soil erosion area. Chinese Journal of Plant Ecology, 2017, 41(8): 862-871. DOI: 10.17521/cjpe.2016.0363
因子 Factor | 林分类型 Stand type | ||||||||
---|---|---|---|---|---|---|---|---|---|
Y0 | Y13 | Y31 | |||||||
NRd | Rd | CK | NRd | Rd | CK | NRd | Rd | CK | |
治理历史 Management process | 土壤侵蚀严重 Suffer from serious soil erosion | 从2002年开始治理 Ecological restoration since from 2002 | 从1984年开始治理 Ecological restoration since from 1984 | ||||||
优势种 Dominant species | 马尾松, 芒萁 Pinus massoniana, Dicranopteris dichotoma | 马尾松, 芒萁 Pinus massoniana, Dicranopteris dichotoma | 马尾松, 芒萁 Pinus massoniana, Dicranopteris dichotoma | ||||||
平均树高 Average height of trees (m) | 2 | 7 | 13.7 | ||||||
平均胸径 Average diameter at breast height (cm) | 3.1 | 7.4 | 14 | ||||||
植株密度 Plant density (stems·hm-2) | 1 741 | 3 341 | 1 433 | ||||||
芒萁覆盖度 Coverage of Dicranopteris dichotoma (%) | 15 | 90 | 85 | ||||||
坡度 Slope (°) | 19 | 8 | 11 | ||||||
土壤有机碳 Soil organic carbon (g·kg-1) | 6.37 ± 0.12 | 3.42 ± 0.01 | 1.60 ± 0.14 | 10.16 ± 1.47 | 11.30 ± 1.28 | 8.09 ± 0.52 | 14.33 ± 4.78 | 14.23 ± 1.94 | 5.32 ± 0.54 |
总氮Total nitrogen (g·kg-1) | 0.61 ± 0.02 | 0.52 ± 0.19 | 0.26 ± 0.07 | 0.74 ± 0.04 | 0.66 ± 0.01 | 0.48 ± 0.09 | 0.91 ± 0.25 | 0.81 ± 0.02 | 0.36 ± 0.16 |
pH | 4.37 ± 0.07 | 4.58 ± 4.58 | 4.67 ± 0.07 | 4.19 ± 0.07 | 4.39 ± 0.07 | 4.50 ± 0.04 | 4.24 ± 0.06 | 4.44 ± 0.03 | 4.69 ± 0.14 |
表1 样地基本概况(平均值±标准偏差)
Table 1 The basic background characteristics of sample plot (mean ± SD)
因子 Factor | 林分类型 Stand type | ||||||||
---|---|---|---|---|---|---|---|---|---|
Y0 | Y13 | Y31 | |||||||
NRd | Rd | CK | NRd | Rd | CK | NRd | Rd | CK | |
治理历史 Management process | 土壤侵蚀严重 Suffer from serious soil erosion | 从2002年开始治理 Ecological restoration since from 2002 | 从1984年开始治理 Ecological restoration since from 1984 | ||||||
优势种 Dominant species | 马尾松, 芒萁 Pinus massoniana, Dicranopteris dichotoma | 马尾松, 芒萁 Pinus massoniana, Dicranopteris dichotoma | 马尾松, 芒萁 Pinus massoniana, Dicranopteris dichotoma | ||||||
平均树高 Average height of trees (m) | 2 | 7 | 13.7 | ||||||
平均胸径 Average diameter at breast height (cm) | 3.1 | 7.4 | 14 | ||||||
植株密度 Plant density (stems·hm-2) | 1 741 | 3 341 | 1 433 | ||||||
芒萁覆盖度 Coverage of Dicranopteris dichotoma (%) | 15 | 90 | 85 | ||||||
坡度 Slope (°) | 19 | 8 | 11 | ||||||
土壤有机碳 Soil organic carbon (g·kg-1) | 6.37 ± 0.12 | 3.42 ± 0.01 | 1.60 ± 0.14 | 10.16 ± 1.47 | 11.30 ± 1.28 | 8.09 ± 0.52 | 14.33 ± 4.78 | 14.23 ± 1.94 | 5.32 ± 0.54 |
总氮Total nitrogen (g·kg-1) | 0.61 ± 0.02 | 0.52 ± 0.19 | 0.26 ± 0.07 | 0.74 ± 0.04 | 0.66 ± 0.01 | 0.48 ± 0.09 | 0.91 ± 0.25 | 0.81 ± 0.02 | 0.36 ± 0.16 |
pH | 4.37 ± 0.07 | 4.58 ± 4.58 | 4.67 ± 0.07 | 4.19 ± 0.07 | 4.39 ± 0.07 | 4.50 ± 0.04 | 4.24 ± 0.06 | 4.44 ± 0.03 | 4.69 ± 0.14 |
图1 土壤可溶性有机质(DOM)数量变化(平均值±标准偏差)。不同小写字母表示同一恢复年限不同处理间各指标间差异显著(p < 0.05); 不同大写字母表示同一处理不同恢复年限间各指标间差异显著(p < 0.05)。CK, 林下裸地; NRd, 芒萁覆盖地; Rd, 去除芒萁覆盖地。Y0, 未治理地; Y13, 恢复13年马尾松林地; Y31, 恢复31年马尾松林地。
Fig. 1 Variation of the quantity of soil dissolved organic matter (DOM) (mean ± SD). Different lowercase letters stand for the significant difference between different experimental treatments in the same vegetation restoration years (p < 0.05). Different capitals stand for the significant difference between the different vegetation restoration years in the same experimental treatment (p < 0.05). CK, control; NRd, not removed Dicranopteris dichotoma; Rd, removed D. dichotoma. Y0, without ecological restoration; Y13, ecological restoration for 13 years; Y31, ecological restoration for 31 years.
图2 土壤可溶性有机质(DOM)的紫外光谱特征(平均值±标准偏差)。不同小写字母表示同一恢复年限不同处理间各指标间差异显著(p < 0.05)。CK, 林下裸地; NRd, 芒萁覆盖地; Rd, 去除芒萁覆盖地。Y0, 未治理地; Y13, 恢复13年马尾松林地; Y31, 恢复31年马尾松林地。E2:E3, 波长在250 nm和365 nm处的紫外可见光光度值之比。
Fig. 2 Characteristics of soil dissolved organic matter (DOM) ultraviolet spectrum (mean ± SD). Different lowercase letters stand for the significant difference between different experimental treatments in the same vegetation restoration years (p < 0.05). CK, control; NRd, not removed Dicranopteris dichotoma; Rd, removed D. dichotoma. Y0, without ecological restoration; Y13, ecological restoration for 13 years; Y31, ecological restoration for 31 years. E2:E3, the ratio of ultraviolet-visible light absorption photometric quantity at 250 nm wavelength to ultraviolet-visible light absorption photometric quantity at 365 nm wavelength.
图3 土壤可溶性有机质(DOM)荧光发射光谱特征。CK, 林下裸地; NRd, 芒萁覆盖地; Rd, 去除芒萁覆盖地。Y0, 未治理地; Y13, 恢复13年马尾松林地; Y31, 恢复31年马尾松林地。λem, 发射荧光光谱波长。
Fig. 3 Characteristics of dissolved organic matter (DOM) emission fluorescence spectrum. CK, control; NRd, not removed Dicranopteris dichotoma; Rd, removed D. dichotoma. Y0, without ecological restoration; Y13, ecological restoration for 13 years; Y31, ecological restoration for 31 years. λem, emission fluorescence spectrum wavelength.
图4 土壤可溶性有机质(DOM)的荧光同步光谱特征。CK, 林下裸地; NRd, 芒萁覆盖地; Rd, 去除芒萁覆盖地。Y0, 未治理地; Y13, 恢复13年马尾松林地; Y31, 恢复31年马尾松林地。λsyn, 同步荧光光谱波长。
Fig. 4 Characteristics of dissolved organic matter (DOM) synchronization fluorescence spectrum. CK, control; NRd, not removed Dicranopteris dichotoma; Rd, removed Dicranopteris dichotoma. Y0, without ecological restoration; Y13, ecological restoration for 13 years; Y31, ecological restoration for 31 years. λsyn, synchronous fluorescence spectrum wavelength.
图5 土壤可溶性有机质(DOM)的荧光光谱特征(平均值±标准偏差)。不同小写字母表示同一恢复年限不同处理间各指标间差异显著(p < 0.05)。CK, 林下裸地; NRd, 芒萁覆盖地; Rd, 去除芒萁覆盖地。Y0, 未治理地; Y13, 恢复13年马尾松林地; Y31, 恢复31年马尾松林地。HIXem, 发射荧光光谱腐殖化指数; HIXsyn, 同步荧光光谱腐殖化指数。
Fig. 5 Characteristics of dissolved organic matter (DOM) fluorescence spectrum (mean ± SD). Different lowercase letters stand for the significant difference between different experimental treatments in the same vegetation restoration years (p < 0.05). CK, control; NRd, not removed Dicranopteris dichotoma; Rd, removed D. dichotoma. Y0, without ecological restoration; Y13, ecological restoration for 13 years; Y31, ecological restoration for 31 years. HIXem, emission fluorescence spectrum humification index; HIXsyn, synchronous fluorescence spectrum humification index.
图6 土壤可溶性有机质(DOM)的红外光谱特征。CK, 林下裸地; NRd, 芒萁覆盖地; Rd, 去除芒萁覆盖地。Y0, 未治理地; Y13, 恢复13年马尾松林地; Y31, 恢复31年马尾松林地。
Fig. 6 Characteristics of dissolved organic matter (DOM) fourier infrared transmission spectrum. CK, control; NRd, not removed Dicranopteris dichotoma; Rd, removed D. dichotoma. Y0, without ecological restoration; Y13, ecological restoration for 13 years; Y31, ecological restoration for 31 years.
[1] |
Akagi J, ádám Zsolnay, Bastida F (2007). Quantity and spectroscopic properties of soil dissolved organic matter (DOM) as a function of soil sample treatments: Air-drying and pre-incubation.Chemosphere, 69, 1040-1046.
DOI URL PMID |
[2] |
Andreasson F, Bo B, B??th E (2009). Bioavailability of DOC in leachates, soil matrix solutions and soil water extracts from beech forest floors.Soil Biology & Biochemistry, 41, 1652-1658.
DOI URL |
[3] |
Carter HT, Tipping E, Koprivnjak JF, Millerc PM, Cooksond B, Hamilton-Taylord J (2012). Freshwater DOM quantity and quality from a two-component model of UV absorbance.Water Research, 46, 4532-4542.
DOI URL PMID |
[4] |
Chang SC, Wang CP, Feng CM, Rees R, Hell U, Matzner E (2007). Soil fluxes of mineral elements and dissolved organic matter following manipulation of leaf litter input in a Taiwan Chamaecyparis forest.Forest Ecology & Management, 242, 133-141.
DOI URL |
[5] |
Fujii K, Uemura M, Hayakawa C, Funakawa S (2009). Fluxes of dissolved organic carbon in two tropical forest ecosystems of East Kalimantan, Indonesia. Geoderma, 152, 127-136.
DOI URL |
[6] |
Gielen B, Neirynck J, Luyssaert S, Janssens IA (2011). The importance of dissolved organic carbon fluxes for the carbon balance of a temperate Scots pine forest.Agricultural and Forest Meteorology, 151, 270-278.
DOI URL |
[7] |
Hagedorn F, Kaiser K, Feyen H, Schleppi P (2000). Effects of redox conditions and flow processes on the mobility of dissolved organic carbon and nitrogen in a forest soil.Journal of Environmental Quality, 29, 288-297.
DOI URL |
[8] |
Jiao K, Li ZP (2005). Dynamics and biodegradation of dissolved organic carbon in paddy soils derived from red clay. Soils, 37, 272-276.(in Chinese with English abstract)[焦坤, 李忠佩 (2005). 红壤稻田土壤溶解有机碳含量动态及其生物降解特征. 土壤,37, 272-276.]
DOI URL |
[9] |
Kaiser K (1997). Dissolved organic matter sorption on subsoil and minerals studied by 13C-NMR and DRIFT spectroscopy.European Journal of Soil Science, 48, 301-310.
DOI URL |
[10] |
Kalbitz K, Geyer W, Geyer S (1999). Spectroscopic properties of dissolved humic substances—A reflection of land use history in a fen area.Biogeochemistry, 47, 219-238.
DOI URL |
[11] |
Kalbitz K, Kaiser K (2008). Contribution of dissolved organic matter to carbon storage in forest mineral soils.Journal of Plant Nutrition & Soil Science, 171, 52-60.
DOI URL |
[12] |
Kalbitz K, Meyer A, Yang R, Gerstberger P (2007). Response of dissolved organic matter in the forest floor to long-term manipulation of litter and throughfall inputs.Biogeochemistry, 86, 301-318.
DOI URL |
[13] | Li HT, Yu GR, Li JY, Chen YR, Liang T (2007). Decomposition dynamics and nutrient release of litters for four artificial forests in the red soil and hilly region of subtropical China.Acta Ecologica Sinica, 27, 898-908.(in Chinese with English abstract)[李海涛, 于贵瑞, 李家永, 陈永瑞, 梁涛 (2007). 亚热带红壤丘陵区四种人工林凋落物分解动态及养分释放. 生态学报,27, 898-908.] |
[14] |
Liu Z, Yang YS, Zhu JM, Xie JS, Si YT (2015). Effects of forest conversion on quantities and spectroscopic characteristics of soil dissolved organic matter in subtropical China.Acta Ecologica Sinica, 35, 6288-6297.(in Chinese with English abstract) [刘翥, 杨玉盛, 朱锦懋, 谢锦升, 司友涛 (2015). 中亚热带森林转换对土壤可溶性有机质数量与光谱学特征的影响. 生态学报,35, 6288-6297.]
DOI URL |
[15] | Mccarthy JF (2005). Carbon fluxes in soil.Journal of Geographical Sciences, 15, 149-154. |
[16] |
Michalzik B, Matzner E (1999). Dynamics of dissolved organic nitrogen and carbon in a Central European Norway spruce ecosystem.European Journal of Soil Science, 50, 579-590.
DOI URL |
[17] |
Peuravuori J, Pihlaja K (1997). Molecular size distribution and spectroscopic properties of aquatic humic substances.Analytica Chimica Acta, 337, 133-149.
DOI URL |
[18] |
Schwendenmann L, Veldkamp E (2005). The role of dissolved organic carbon, dissolved organic nitrogen, and dissolved inorganic nitrogen in a tropical wet forest ecosystems.Ecosystems, 8, 339-351.
DOI URL |
[19] |
Wu JS, Jiang PK, Chang SX, Xu QF, Lin Y (2010). Dissolved soil organic carbon and nitrogen were affected by conversion of native forests to plantations in subtropical China. Canadian Journal of Soil Science, 90, 27-36.
DOI URL |
[20] | Xiao YC, Dou S (2008). Study on infrared spectra of soil humus fractions.Chinese Journal of Analytical Chemistry, 35, 1596-1600.(in Chinese with English abstract) [肖彦春, 窦森 (2008). 土壤腐殖质各组分红外光谱研究. 分析化学,35, 1596-1600.] |
[21] |
Xie JS, Guo JF, Yang ZJ, Huang ZQ, Chen GS, Yang YS (2013). Rapid accumulation of carbon on severely eroded red soils through afforestation in subtropical China. Forest Ecology & Management, 300, 53-59.
DOI URL |
[22] |
Yang YS, Guo JF, Chen GS, Chen YX, Yu ZY, Liu DX (2003). Origin, property and flux of dissolved organic matter in forest ecosystems.Acta Ecologica Sinica, 23, 547-558.(in Chinese with English abstract)[杨玉盛, 郭剑芬, 陈光水, 陈银秀, 于占源, 董彬, 刘东霞 (2003). 森林生态系统DOM的来源、特性及流动. 生态学报,23, 547-558.]
DOI URL |
[23] | Zhan XH, Zhou LX, Yang H, Jiang TH (2007). Infrared spectroscopy of DOM-PAHs complexes.Acta Pedologica Sinic, 44, 47-53.(in Chinese with English abstract)[占新华, 周立祥, 杨红, 蒋廷惠 (2007). 水溶性有机物与多环芳烃结合特征的红外光谱学研究. 土壤学报,44, 47-53.] |
[24] |
Zhang H, Lyu MK, Jiang J, Pu XT, Wang EX, Qiu X, Xie JS (2016). Effect of vegetation restoration on topsoil and subsoil organic carbon mineralization in red soil erosion area,Journal of Soil and Water Conservation, 30, 244-249.(in Chinese with English abstract)[张浩, 吕茂奎, 江军, 蒲晓婷, 王恩熙, 邱曦, 谢锦升 (2016). 侵蚀红壤区植被恢复对表层与深层土壤有机碳矿化的影响. 水土保持学报,44, 244-249.]
DOI URL |
[25] |
Zhao J, Wan S, Li Z, Shao Y, Xu G, Liu Z, Zhou L, Fu S (2012). Dicranopteris-dominated understory as major driver of intensive forest ecosystem in humid subtropical and tropical region.Soil Biology & Biochemistry, 49, 78-87.
DOI URL |
[26] |
Zhou GM, Jiang PK (2004). Changes in active organic carbon of erosion red soil by vegetation recovery. Journal of Soil and Water Conservation, 18, 68-70.(in Chinese with English abstract)[周国模, 姜培坤 (2004). 不同植被恢复对侵蚀型红壤活性碳库的影响. 水土保持学报,18, 68-70.]
DOI URL |
[27] | Zhou JM, Dai JY, Pan GX (2004). Fractionation and spectroscopic property of dissolved organic matters in soils.Spectroscopy and Spectral Analysis, 24, 1060-1065.(in Chinese with English abstract)[周江敏, 代静玉, 潘根兴 (2004). 应用光谱分析技术研究土壤水溶性有机质的分组及其结构特征. 光谱学与光谱分析,24, 1060-1065.] |
[28] | Zhu HJ (1992). Soil Geography. Higher Education Press, Beijing.(in Chinese)[朱鹤健 (1992). 土壤地理学. 高等教育出版社, 北京.] |
[1] | 崔光帅 罗天祥 梁尔源 张林. 干旱半干旱区灌丛对草本植物的促进作用研究进展[J]. 植物生态学报, 2022, 46(11): 1321-1333. |
[2] | 薛金儒, 吕肖良. 黄土高原生态工程实施下基于日光诱导叶绿素荧光的植被恢复生产力效益评价[J]. 植物生态学报, 2022, 46(10): 1289-1304. |
[3] | 邓梦达, 游健荣, 李家湘, 李雄, 杨静, 邓创发, 刘昂, 刘文剑, 丁聪, 谢勇, 周国辉, 喻勋林. 长株潭城市群生态绿心地区主要植被类型的群落特征[J]. 植物生态学报, 2020, 44(12): 1296-1304. |
[4] | 陈婵, 张仕吉, 李雷达, 刘兆丹, 陈金磊, 辜翔, 王留芳, 方晰. 中亚热带植被恢复阶段植物叶片、凋落物、土壤碳氮磷化学计量特征[J]. 植物生态学报, 2019, 43(8): 658-671. |
[5] | 王明明,刘新平,何玉惠,张铜会,魏静,车力木格,孙姗姗. 科尔沁沙地封育恢复过程中植物群落特征变化及影响因素[J]. 植物生态学报, 2019, 43(8): 672-684. |
[6] | 俞筱押, 李玉辉, 杨光荣. 石林地质公园不同群落类型植物果实组成与种子散布特征[J]. 植物生态学报, 2018, 42(6): 663-671. |
[7] | 辜翔, 张仕吉, 刘兆丹, 李雷达, 陈金磊, 王留芳, 方晰. 中亚热带植被恢复对土壤有机碳含量、碳密度的影响[J]. 植物生态学报, 2018, 42(5): 595-608. |
[8] | 辜翔, 张仕吉, 刘兆丹, 李雷达, 陈金磊, 王留芳, 方晰. 湖南东部植被恢复对土壤有机碳矿化的影响[J]. 植物生态学报, 2018, 42(12): 1211-1224. |
[9] | 刘翥,杨玉盛,司友涛,康根丽,郑怀舟. 植被恢复对侵蚀红壤可溶性有机质含量及光谱学特征的影响[J]. 植物生态学报, 2014, 38(11): 1174-1183. |
[10] | 唐毅, 刘志民. 沙丘生态系统种子库研究现状、趋势与挑战[J]. 植物生态学报, 2012, 36(8): 891-898. |
[11] | 萧蒇, 刘文治, 刘贵华. 丹江口库区滩涂与入库支流植被与土壤种子库: 水传播潜力探讨[J]. 植物生态学报, 2011, 35(3): 247-255. |
[12] | 申建红, 曾波, 类淑桐, 苏晓磊, 黄文军. 三峡水库消落区4种一年生植物种子的水淹耐受性及水淹对其种子萌发的影响[J]. 植物生态学报, 2011, 35(3): 237-246. |
[13] | 刘玉国, 刘长成, 魏雅芬, 刘永刚, 郭柯. 贵州省普定县不同植被演替阶段的物种组成与群落结构特征[J]. 植物生态学报, 2011, 35(10): 1009-1018. |
[14] | 俞筱押, 李玉辉. 滇石林喀斯特植物群落不同演替阶段的溶痕生境中木本植物的更新特征[J]. 植物生态学报, 2010, 34(8): 889-897. |
[15] | 罗东辉, 夏婧, 袁婧薇, 张忠华, 祝介东, 倪健. 我国西南山地喀斯特植被的根系生物量初探[J]. 植物生态学报, 2010, 34(5): 611-618. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19