植物生态学报 ›› 2017, Vol. 41 ›› Issue (6): 597-609.DOI: 10.17521/cjpe.2017.0011
• 研究论文 • 下一篇
收稿日期:
2017-05-31
接受日期:
2017-01-17
出版日期:
2017-06-10
发布日期:
2017-07-19
通讯作者:
王传宽
作者简介:
* 通信作者Author for correspondence (E-mail:基金资助:
Xin-Qi WANG, Yi HAN, Chuan-Kuan WANG*()
Received:
2017-05-31
Accepted:
2017-01-17
Online:
2017-06-10
Published:
2017-07-19
Contact:
Chuan-Kuan WANG
About author:
KANG Jing-yao(1991-), E-mail: 摘要:
土壤微生物在生态系统生物地球化学循环过程中扮演着重要角色, 对于受到干扰后退化土壤的肥力恢复具有重要的意义, 然而, 采伐后次生林发展过程中土壤微生物生物量的动态尚不明确。在帽儿山森林生态站的落叶阔叶林中设置了一个由采伐后0年(采伐迹地)、10年、25年、56年的林分构成林龄系列样地, 采用氯仿熏蒸浸提法, 在生长季期间(4-10月)每月测定各林分土壤微生物生物量碳含量(Cmic)、微生物生物量氮含量(Nmic)、土壤可溶性有机碳含量(Cdis)、可溶性全氮含量(Ndis)、土壤含水率、温度等因子, 以探索采伐干扰后不同林龄林分土壤微生物生物量的时间动态及其影响因子。结果表明: (1)不同林龄林分土壤微生物生物量生长季均值差异显著, Cmic表现为56年和采伐迹地显著高于25年和10年林分; Nmic表现为采伐迹地、56年显著高于10年林分, 25年林分居中; Cmic/Nmic表现为56年、10年林分显著高于25年林分、采伐迹地。(2)采伐迹地微生物生物量季节变化格局与其他3个林龄林分的差异主要体现在生长季后期, 前者表现为降低, 而后者表现为升高或变化不明显; 10年、25年、56年林分Cmic、Nmic季节变化格局的差异主要体现在生长季前期, 变化幅度随林龄增长而降低; 4个林龄林分Cmic/Nmic季节变化均表现为“W”形。(3)土壤微生物生物量的主要影响因子随林龄而变: 随林龄增长, Cmic、Nmic的影响因子由土壤含水率(采伐迹地、10年生)逐渐转变为土壤可溶性养分含量(10年、25年、56年林分); 采伐迹地Cmic/Nmic影响因子为土壤温度和Cdis, 其他3个林龄林分则为Cdis/Ndis。这些结果说明: 在采伐干扰后的次生林发展过程中, 植被组成和土壤理化性质不断变化, 提高了土壤微生物生物量, 进而改善了土壤养分状况, 显示出地上植被变化与地下微生物动态的密切联系。
王薪琪, 韩轶, 王传宽. 帽儿山不同林龄落叶阔叶林土壤微生物生物量及其季节动态. 植物生态学报, 2017, 41(6): 597-609. DOI: 10.17521/cjpe.2017.0011
Xin-Qi WANG, Yi HAN, Chuan-Kuan WANG. Soil microbial biomass and its seasonality in deciduous broadleaved forests with different stand ages in the Mao’ershan region, Northeast China. Chinese Journal of Plant Ecology, 2017, 41(6): 597-609. DOI: 10.17521/cjpe.2017.0011
林龄 Site age (a) | 坡度 Slope (°) | 林分密度 Site density (trees•hm-2) | 胸高断面积 Basal area (m2•hm-2) | 平均胸径 Mean DBH (cm) | 林分组成 Site composition | 0-20 cm土壤pH值 Soil pH value at 0-20 cm depth |
---|---|---|---|---|---|---|
0 | 18 | 0 | 0 | 0 | 未评估 Not assessed | 4.70 ± 0.16 |
10 | 15 | 6 200 ± 2 300 | 19.51 ± 2.40 | 5.0 ± 0.5 | 10BP+PU+PA+AM | 4.83 ± 0.21 |
25 | 15 | 6 028 ± 804 | 25.62 ± 2.30 | 12.2 ± 0.4 | 5BP3PD1UJ1FM+AM-PA-QM | 4.85 ± 0.10 |
56 | 18 | 1 833 ± 617 | 28.77 ± 4.12 | 26.8 ± 1.3 | 3BP2AM1UJ1JM1FM 1PD1TM+TA+PA-QM | 4.45 ± 0.30 |
表1 样地基本特征(平均值±标准偏差, n = 3)
Table 1 Characteristics of the sampled plots (mean ± SD, n = 3)
林龄 Site age (a) | 坡度 Slope (°) | 林分密度 Site density (trees•hm-2) | 胸高断面积 Basal area (m2•hm-2) | 平均胸径 Mean DBH (cm) | 林分组成 Site composition | 0-20 cm土壤pH值 Soil pH value at 0-20 cm depth |
---|---|---|---|---|---|---|
0 | 18 | 0 | 0 | 0 | 未评估 Not assessed | 4.70 ± 0.16 |
10 | 15 | 6 200 ± 2 300 | 19.51 ± 2.40 | 5.0 ± 0.5 | 10BP+PU+PA+AM | 4.83 ± 0.21 |
25 | 15 | 6 028 ± 804 | 25.62 ± 2.30 | 12.2 ± 0.4 | 5BP3PD1UJ1FM+AM-PA-QM | 4.85 ± 0.10 |
56 | 18 | 1 833 ± 617 | 28.77 ± 4.12 | 26.8 ± 1.3 | 3BP2AM1UJ1JM1FM 1PD1TM+TA+PA-QM | 4.45 ± 0.30 |
图1 不同林龄林分土壤微生物生物量碳含量(A)、氮含量(B)及碳氮比(C)生长季均值垂直变化的比较(平均值±标准误差)。不同大写字母代表同一林分不同土层的显著性差异组别, 不同小写字母代表同一土层不同林分的显著性差异组别, 相同字母表示无显著性差异。
Fig. 1 Comparisons of the vertical changes in the means of soil microbial biomass carbon content (A), nitrogen content (B) and carbon and nitrogen ratio (C) at different sites during the growing season (mean ± SE). Different capital letters of the same site indicate significant differences between soil layers, and different lowercase letters of the same soil layer indicate significant differences among sites, while the same letter indicates no significant difference.
图2 不同林龄林分土壤可溶性有机碳含量(A)、可溶性全氮含量(B)、可溶性有机碳/可溶性全氮比(C)及土壤含水率(D)生长季均值垂直变化的比较(平均值±标准误差)。不同大写字母代表同一林分不同土层的显著性差异组别, 不同小写字母代表同一土层不同林分的显著性差异组别, 相同字母表示无显著性差异。
Fig. 2 Comparisons of the vertical changes in the means of soil dissolved organic carbon content (A), total nitrogen content (B), dissolved organic carbon and nitrogen ratio (C), and water content (D) among the four sites during the growing season (mean ± SE). Different capital letters of the same site indicate significant differences between soil layers, and different lowercase letters of the same soil layer indicate significant differences among sites, while the same letter indicates no significant difference.
图3 不同林龄林分土壤5 cm温度生长季平均值(A)及季节动态(B)的比较(平均值±标准误差)。不同小写字母表示不同林分的显著性差异组别。
Fig. 3 Comparisons of the means of soil temperature at 5 cm depth during the growing season among sites and their seasonal dynamics (mean ± SE). Different lowercase letters indicate significant differences among sites.
图4 不同林龄林分土壤微生物生物量碳含量(A)、氮含量(B)及碳氮比(C)的季节动态(平均值±标准误差)。
Fig. 4 Seasonal dynamics in soil microbial biomass carbon content, nitrogen content and microbial biomass carbon and nitrogen ratio at different sites (mean ± SE).
土层 Soil layer (cm) | 微生物生物量 Microbial biomass | Csoil (mg•kg-1) | Nsoil (mg•kg-1) | Csoil/Nsoil | Rmass (g•m-2) | Cdis (mg•kg-1) | Ndis (mg•kg-1) | Cdis/Ndis | pH | WC (%) | T5 (℃) |
---|---|---|---|---|---|---|---|---|---|---|---|
0-10 | Cmic (mg•kg-1) | 0.42 | 0.45 | 0.20 | 0.62* | 0.18 | 0.71* | -0.62* | -0.54 | 0.64* | -0.40 |
Nmic (mg•kg-1) | 0.19 | 0.24 | 0.04 | 0.59* | 0.27 | 0.69* | -0.53 | 0.01 | 0.48 | -0.26 | |
Cmic/Nmic | 0.32 | 0.30 | 0.19 | -0.20 | -0.26 | -0.23 | -0.01 | -0.38 | 0.02 | -0.24 | |
10-20 | Cmic (mg•kg-1) | 0.43 | 0.42 | -0.21 | 0.50 | -0.12 | 0.58* | -0.14 | -0.22 | 0.52 | -0.51 |
Nmic (mg•kg-1) | 0.24 | 0.26 | -0.17 | 0.30 | -0.18 | 0.50 | -0.21 | -0.20 | 0.40 | -0.32 | |
Cmic/Nmic | 0.59* | 0.53 | -0.16 | 0.55 | 0.06 | 0.30 | -0.06 | -0.29 | 0.53 | -0.59* |
表2 土壤微生物生物量与相关因子之间的Pearson相关系数(n = 12)
Table 2 Pearson’s correlation coefficient of soil microbial biomass and related factors (n = 12)
土层 Soil layer (cm) | 微生物生物量 Microbial biomass | Csoil (mg•kg-1) | Nsoil (mg•kg-1) | Csoil/Nsoil | Rmass (g•m-2) | Cdis (mg•kg-1) | Ndis (mg•kg-1) | Cdis/Ndis | pH | WC (%) | T5 (℃) |
---|---|---|---|---|---|---|---|---|---|---|---|
0-10 | Cmic (mg•kg-1) | 0.42 | 0.45 | 0.20 | 0.62* | 0.18 | 0.71* | -0.62* | -0.54 | 0.64* | -0.40 |
Nmic (mg•kg-1) | 0.19 | 0.24 | 0.04 | 0.59* | 0.27 | 0.69* | -0.53 | 0.01 | 0.48 | -0.26 | |
Cmic/Nmic | 0.32 | 0.30 | 0.19 | -0.20 | -0.26 | -0.23 | -0.01 | -0.38 | 0.02 | -0.24 | |
10-20 | Cmic (mg•kg-1) | 0.43 | 0.42 | -0.21 | 0.50 | -0.12 | 0.58* | -0.14 | -0.22 | 0.52 | -0.51 |
Nmic (mg•kg-1) | 0.24 | 0.26 | -0.17 | 0.30 | -0.18 | 0.50 | -0.21 | -0.20 | 0.40 | -0.32 | |
Cmic/Nmic | 0.59* | 0.53 | -0.16 | 0.55 | 0.06 | 0.30 | -0.06 | -0.29 | 0.53 | -0.59* |
因变量 Dependent variable | 林龄 Site age (a) | 0-10 cm土层 0-10 cm soil layer | 10-20 cm土层 0-10 cm soil layer | ||||
---|---|---|---|---|---|---|---|
预测变量 Predictors | R2 | p | 预测变量 Predictors | R2 | p | ||
Cmic | 0 | NS | WC (+) | 0.371 | 0.003 | ||
10 | Ndis (+) | 0.373 | 0.003 | Ndis (+) | 0.352 | 0.005 | |
Ndis (+), T5 (+) | 0.506 | 0.002 | Ndis (+), WC (+) | 0.556 | 0.001 | ||
25 | Cdis/Ndis (-) | 0.232 | 0.027 | Ndis (+) | 0.232 | 0.027 | |
56 | NS | Cdis (+) | 0.509 | <0.001 | |||
Nmic | 0 | NS | WC (+) | 0.255 | 0.020 | ||
10 | Ndis (+) | 0.242 | 0.024 | WC | 0.296 | 0.011 | |
Ndis (+), T5 (+), Cdis (+) | 0.579 | 0.002 | |||||
25 | NS | Cdis (+) | 0.195 | 0.044 | |||
56 | Cdis/Ndis (+) | 0.251 | 0.021 | Cdis/Ndis (+) | 0.497 | <0.001 | |
Cdis/Ndis (+), Cdis (+), T5 (+) | 0.752 | <0.001 | |||||
Cmic/Nmic | 0 | T5 (-) | 0.342 | 0.005 | T5 (-) | 0.351 | 0.005 |
T5 (-), Cdis (-) | 0.557 | 0.001 | T5 (-), Cdis (-) | 0.709 | <0.001 | ||
10 | NS | Cdis/Ndis (-) | 0.496 | <0.001 | |||
25 | Cdis/Ndis (-) | 0.256 | 0.019 | Cdis/Ndis (-) | 0.253 | 0.020 | |
56 | Cdis/Ndis (-) | 0.313 | 0.008 | Cdis/Ndis (-) | 0.402 | 0.002 | |
Cdis/Ndis (-), T5 (-) | 0.650 | <0.001 |
表3 土壤微生物生物量与相关因子的逐步多元回归结果(n = 21)
Table 3 Results of stepwise regression of soil microbial biomass on related factors (n = 21)
因变量 Dependent variable | 林龄 Site age (a) | 0-10 cm土层 0-10 cm soil layer | 10-20 cm土层 0-10 cm soil layer | ||||
---|---|---|---|---|---|---|---|
预测变量 Predictors | R2 | p | 预测变量 Predictors | R2 | p | ||
Cmic | 0 | NS | WC (+) | 0.371 | 0.003 | ||
10 | Ndis (+) | 0.373 | 0.003 | Ndis (+) | 0.352 | 0.005 | |
Ndis (+), T5 (+) | 0.506 | 0.002 | Ndis (+), WC (+) | 0.556 | 0.001 | ||
25 | Cdis/Ndis (-) | 0.232 | 0.027 | Ndis (+) | 0.232 | 0.027 | |
56 | NS | Cdis (+) | 0.509 | <0.001 | |||
Nmic | 0 | NS | WC (+) | 0.255 | 0.020 | ||
10 | Ndis (+) | 0.242 | 0.024 | WC | 0.296 | 0.011 | |
Ndis (+), T5 (+), Cdis (+) | 0.579 | 0.002 | |||||
25 | NS | Cdis (+) | 0.195 | 0.044 | |||
56 | Cdis/Ndis (+) | 0.251 | 0.021 | Cdis/Ndis (+) | 0.497 | <0.001 | |
Cdis/Ndis (+), Cdis (+), T5 (+) | 0.752 | <0.001 | |||||
Cmic/Nmic | 0 | T5 (-) | 0.342 | 0.005 | T5 (-) | 0.351 | 0.005 |
T5 (-), Cdis (-) | 0.557 | 0.001 | T5 (-), Cdis (-) | 0.709 | <0.001 | ||
10 | NS | Cdis/Ndis (-) | 0.496 | <0.001 | |||
25 | Cdis/Ndis (-) | 0.256 | 0.019 | Cdis/Ndis (-) | 0.253 | 0.020 | |
56 | Cdis/Ndis (-) | 0.313 | 0.008 | Cdis/Ndis (-) | 0.402 | 0.002 | |
Cdis/Ndis (-), T5 (-) | 0.650 | <0.001 |
图5 不同林龄林分土壤可溶性有机碳含量(A)、可溶性全氮含量(B)、可溶性有机碳/可溶性全氮(C)及含水率(D)的季节动态(平均值±标准误差)。
Fig. 5 Seasonal dynamics in soil dissolved organic carbon content (A), total nitrogen content (B), dissolved organic carbon and nitrogen ratio (C), and water content (D) at different sites (mean ± SE).
[1] | An R, Gong JR, You X, Ge ZW, Duan QW, Yan X (2011). Seasonal dynamics of soil microorganisms and soil nutrients in fast-growingPopulus plantation forests of different ages in Yili, Xinjiang, China. Chinese Journal of Plant Ecology, 35, 389-401. (in Chinese with English abstract)[安然, 龚吉蕊, 尤鑫, 葛之葳, 段庆伟, 晏欣 (2011). 不同龄级速生杨人工林土壤微生物数量与养分动态变化. 植物生态学报, 35, 389-401.] |
[2] | Binkley D, Fisher R (2012). Ecology and Management of Forest Soils. John Wiley and Sons, New York. 151-153. |
[3] | Björk RG, Björkman MP, Andersson MX, Klemedtsson L (2008). Temporal variation in soil microbial communities in Alpine tundra.Soil Biology & Biochemistry, 40, 266-268. |
[4] | Chapin III FS, Matson PA, Vitousek PM (2011). Principles of Terrestrial Ecosystem Ecology. 2nd edn. Springer, New York. |
[5] | Chodak M, Pietrzykowski M, Niklińska M (2009). Development of microbial properties in a chronosequence of sandy mine soils.Applied Soil Ecology, 41, 259-268. |
[6] | Deng RJ, Yang WQ, Feng RF, Hu JL, Qin JL, Xiong XJ (2009). Mass loss and element release of litter in the subalpine forest over one freeze-thaw season.Acta Ecologica Sinica, 29, 5730-5735. (in Chinese with English abstract)[邓仁菊, 杨万勤, 冯瑞芳, 胡建利, 秦嘉励, 熊雪晶 (2009). 季节性冻融期间亚高山森林凋落物的质量损失及元素释放. 生态学报, 29, 5730-5735.] |
[7] | Ding S, Wang CK (2009). Soil microbial biomass in Larlix gmelinii forests along a latitudinal gradient during soil thawing. Chinese Journal of Applied Ecology, 20, 2072-2078. (in Chinese with English abstract)[丁爽, 王传宽 (2009). 春季解冻期不同纬度兴安落叶松林的土壤微生物生物量. 应用生态学报, 20, 2072-2078.] |
[8] | Edwards KA, Jefferies RL (2013). Inter-annual and seasonal dynamics of soil microbial biomass and nutrients in wet and dry low-Arctic sedge meadows.Soil Biology & Biochemistry, 57, 83-90. |
[9] | Edwards KA, McCulloch J, Kershaw GP, Jefferies RL (2006). Soil microbial and nutrient dynamics in a wet Arctic sedge meadow in late winter and early spring.Soil Biology & Biochemistry, 38, 2843-2851. |
[10] | Fierer N, Schimel JP, Holden PA (2003). Variations in microbial community composition through two soil depth profiles.Soil Biology & Biochemistry, 35, 167-176. |
[11] | Foote J, Boutton T, Scott D (2015). Soil C and N storage and microbial biomass in US southern pine forests: Influence of forest management.Forest Ecology and Management, 355, 48-57. |
[12] | Freppaz M, Said-Pullicino D, Filippa G, Celi L, Zanini E, Curtaz F (2014). Winter-spring transition induces changes in nutrients and microbial biomass in mid-alpine forest soils.Soil Biology & Biochemistry, 78, 54-57. |
[13] | Frouz J, Nováková A (2005). Development of soil microbial properties in topsoil layer during spontaneous succession in heaps after brown coal mining in relation to humus microstructure development.Geoderma, 129, 54-64. |
[14] | Guariguata MR, Ostertag R (2001). Neotropical secondary forest succession: Changes in structural and functional characteristics.Forest Ecology and Management, 148, 185-206. |
[15] | Guo D, Mou P, Jones RH, Mitchell RJ (2004). Spatio-temporal patterns of soil available nutrients following experimental disturbance in a pine forest.Oecologia, 138, 613-621. |
[16] | Jia GM, Cao J, Wang C, Wang G (2005). Microbial biomass and nutrients in soil at the different stages of secondary forest succession in Ziwulin, northwest China.Forest Ecology and Management, 217, 117-125. |
[17] | Kaiser C, Franklin O, Dieckmann U, Richter A (2014). Microbial community dynamics alleviate stoichiometric constraints during litter decay.Ecology Letters, 17, 680-690. |
[18] | Kaiser C, Fuchslueger L, Koranda M, Gorfer M, Stange CF, Kitzler B, Rasche F, Strauss J, Sessitsch A, Zechmeister- Boltenstern S (2011). Plants control the seasonal dynamics of microbial N cycling in a beech forest soil by belowground C allocation.Ecology, 92, 1036-1051. |
[19] | Li XF, Zhang Y, Niu LJ, Han SJ (2007). Litter decomposition processes in the pure birch (Betula platyphlla) forest and the birch and poplar(Populus davidiana) mixed forest. Acta Ecologica Sinica, 27, 1782-1790. (in Chinese with English abstract)[李雪峰, 张岩, 牛丽君, 韩士杰 (2007). 长白山白桦(Betula platyphlla)纯林和白桦山杨(Populus davidiana)混交林凋落物的分解. 生态学报, 27, 1782-1790.] |
[20] | Lin G, Mccormack ML, Ma C, Guo D (2016). Similar below- ground carbon cycling dynamics but contrasting modes of nitrogen cycling between arbuscular mycorrhizal and ectomycorrhizal forests.New Phytologist, 213, 1440-1451. |
[21] | Litton CM, Ryan MG, Knight DH, Stahl PD (2003). Soil-surface carbon dioxide efflux and microbial biomass in relation to tree density 13 years after a stand replacing fire in a lodgepole pine ecosystem.Global Change Biology, 9, 680-696. |
[22] | Liu C, Liu YK, Jin GZ (2014). Seasonal dynamics of soil microbial biomass in six forest types in Xiaoxing’an Mountains, China.Acta Ecologica Sinica, 34, 451-459.(in Chinese with English abstract)[刘纯, 刘延坤, 金光泽 (2014). 小兴安岭6种森林类型土壤微生物量的季节变化特征. 生态学报, 34, 451-459.] |
[23] | Liu S, Wang CK (2010). Spatio-temporal patterns of soil microbial biomass carbon and nitrogen in five temperate forest ecosystems.Acta Ecologica Sinica, 30, 3135-3143. (in Chinese with English abstract)[刘爽, 王传宽 (2010). 五种温带森林土壤微生物生物量碳氮的时空格局. 生态学报, 30, 3135-3143.] |
[24] | Mäkiranta P, Laiho R, Penttilä T, Minkkinen K (2012). The impact of logging residue on soil GHG fluxes in a drained peatland forest.Soil Biology & Biochemistry, 48, 1-9. |
[25] | Mao R, Zeng DH, Li LJ, Hu YL (2012). Changes in labile soil organic matter fractions following land use change from monocropping to poplar-based agroforestry systems in a semiarid region of Northeast China.Environmental Monitoring and Assessment, 184, 6845-6853. |
[26] | Odum EP (1969). The strategy of ecosystem development.Science, 164, 262-270. |
[27] | Pandey CB, Singh GB, Singh SK, Singh RK (2010). Soil nitrogen and microbial biomass carbon dynamics in native forests and derived agricultural land uses in a humid tropical climate of India.Plant and Soil, 333, 453-467. |
[28] | R Core Team (2012). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. |
[29] | Robert J, Nalan W, Katea E, Jack D (2010). Is the decline of soil microbial biomass in late winter coupled to changes in the physical state of cold soils?Soil Biology & Biochemistry, 42, 129-135. |
[30] | Saynes V, Hidalgo C, Etchevers JD, Campo JE (2005). Soil C and N dynamics in primary and secondary seasonally dry tropical forests in Mexico.Applied Soil Ecology, 29, 282-289. |
[31] | Smith AP, Marín-Spiotta E, Balser T (2015). Successional and seasonal variations in soil and litter microbial community structure and function during tropical post-agricultural forest regeneration: A multi-year study.Global Change Biology, 21, 3532-3547. |
[32] | Song P, Ren H, Jia Q, Guo J, Zhang N, Ma K (2015). Effects of historical logging on soil microbial communities in a subtropical forest in southern China.Plant and Soil, 397, 115-126. |
[33] | Spohn M, Novák TJ, Incze J, Giani L (2016). Dynamics of soil carbon, nitrogen, and phosphorus in calcareous soils after land-use abandonment—A chronosequence study.Plant and Soil, 401, 185-196. |
[34] | Sterner RW,Elser JJ(2002). Ecological Stoichiometry: The Biology of Elements from Molecules to the Biosphere. Princeton University Press, Princeton, USA. |
[35] | Susyan EA, Wirth S, Ananyeva ND, Stolnikova EV (2011). Forest succession on abandoned arable soils in European Russia—Impacts on microbial biomass, fungal-bacterial ratio, and basal CO2 respiration activity.European Journal of Soil Biology, 47, 169-174. |
[36] | Trap J, Laval K, Akpa-Vinceslas M, Gangneux C, Bureau F, Decaëns T, Aubert M (2011). Humus macro-morphology and soil microbial community changes along a 130-year- oldFagus sylvatica chronosequence. Soil Biology & Biochemistry, 43, 1553-1562. |
[37] | Vance E, Brookes P, Jenkinson D (1987). An extraction method for measuring soil microbial biomass C.Soil Biology & Biochemistry, 19, 703-707. |
[38] | Walker LR, Wardle DA, Bardgett RD, Clarkson BD (2010). The use of chronosequences in studies of ecological succession and soil development.Journal of Ecology, 98, 725-736. |
[39] | Wang CK, Yang JY, Zhang QZ (2006). Soil respiration in six temperate forests in China.Global Change Biology, 12, 2103-2114. |
[40] | Wang FL, Bettany JR (1993). Influence of freeze-thaw and flooding on the loss of soluble organic carbon and carbon dioxide from soil.Journal of Environmental Quality, 22, 709-714. |
[41] | Wang XQ, Wang CK, Han Y (2015). Effects of tree species on soil organic carbon density: A common garden experiment of five temperate tree species.Chinese Journal of Plant Ecology, 39, 1033-1043. (in Chinese with English abstract)[王薪琪, 王传宽, 韩轶 (2015). 树种对土壤有机碳密度的影响: 5种温带树种同质园试验. 植物生态学报, 39, 1033-1043.] |
[42] | Wen L, Lei P, Xiang W, Yan W, Liu S (2014). Soil microbial biomass carbon and nitrogen in pure and mixed sites of Pinus massoniana and Cinnamomum camphora differing in stand age. Forest Ecology and Management, 328, 150-158. |
[43] | Xu XF, Schimel JP, Thornton PE, Song X, Yuan FM, Goswami S (2014). Substrate and environmental controls on microbial assimilation of soil organic carbon: A framework for Earth system models.Ecology Letter, 17, 547-555. |
[44] | Xu XF, Thornton PE, Post WM (2013). A global analysis of soil microbial biomass carbon, nitrogen and phosphorus in terrestrial ecosystems.Global Ecology and Biogeography, 22, 737-749. |
[45] | Yang K, Zhu JJ, Zhang JX, Run QL (2009). Seasonal dynamics of soil microbial biomass C and N in two larch plantation forests with different ages in Northeastern China.Acta Ecologica Sinica, 29, 5500-5507. (in Chinese with English abstract)[杨凯, 朱教君, 张金鑫, 闰巧玲 (2009). 不同林龄落叶松人工林土壤微生物生物量碳氮的季节变化. 生态学报, 29, 5500-5507.] |
[46] | Yang Y, Luo Y, Finzi AC (2011). Carbon and nitrogen dynamics during forest stand development: A global synthesis.New Phytologist, 190, 977-989. |
[47] | Yuan BC, Yue DX (2012). Soil microbial and enzymatic activities across a chronosequence of Chinese pine plantation development on the Loess Plateau of China.Pedosphere, 22, 1-12. |
[48] | Zhou ZH, Wang CK (2015). Reviews and syntheses: Soil resources and climate jointly drive variations in microbial biomass carbon and nitrogen in China’s forest ecosystems.Biogeosciences Discussions, 12, 6751-6760. |
[49] | Zhu N, Jiang H, Jin YY (1990). A phenology study on the common tree species of natural secondary forests in Northeast China.Acta Phytoecologica et Geobotanica Sinica, 14, 336-349. (in Chinese)[祝宁, 江洪, 金永岩 (1990). 中国东北天然次生林主要树种的物候研究. 植物生态学与地植物学学报, 14, 336-349.] |
[1] | 付粱晨, 丁宗巨, 唐茂, 曾辉, 朱彪. 北京东灵山白桦和蒙古栎的根际效应及其季节动态[J]. 植物生态学报, 2024, 48(4): 508-522. |
[2] | 王袼, 胡姝娅, 李阳, 陈晓鹏, 李红玉, 董宽虎, 何念鹏, 王常慧. 不同类型草原土壤净氮矿化速率的温度敏感性[J]. 植物生态学报, 2024, 48(4): 523-533. |
[3] | 罗娜娜, 盛茂银, 王霖娇, 石庆龙, 何宇. 长期植被恢复对中国西南喀斯特石漠化土壤活性有机碳组分含量和酶活性的影响[J]. 植物生态学报, 2023, 47(6): 867-881. |
[4] | 杜婷, 陈玉莲, 毕境徽, 杨玉婷, 张丽, 游成铭, 谭波, 徐振锋, 王丽霞, 刘思凝, 李晗. 林窗对川西亚高山凋落叶总酚和缩合单宁损失动态的影响[J]. 植物生态学报, 2023, 47(5): 660-671. |
[5] | 刘美君, 陈秋文, 吕金林, 李国庆, 杜盛. 黄土丘陵区辽东栎和刺槐树干径向生长与微变化季节动态特征[J]. 植物生态学报, 2023, 47(2): 227-237. |
[6] | 董涵君, 王兴昌, 苑丹阳, 柳荻, 刘玉龙, 桑英, 王晓春. 温带不同材性树种树干非结构性碳水化合物的径向分配差异[J]. 植物生态学报, 2022, 46(6): 722-734. |
[7] | 于海英, 杨莉琳, 付素静, 张志敏, 姚琦馥. 暖温带森林木本植物展叶始期对低温和热量累积变化的响应[J]. 植物生态学报, 2022, 46(12): 1573-1584. |
[8] | 王毅, 孙建, 叶冲冲, 曾涛. 气候因子通过土壤微生物生物量氮促进青藏高原高寒草地地上生态系统功能[J]. 植物生态学报, 2021, 45(5): 434-443. |
[9] | 熊星烁, 蔡宏宇, 李耀琪, 马文红, 牛克昌, 陈迪马, 刘娜娜, 苏香燕, 景鹤影, 冯晓娟, 曾辉, 王志恒. 内蒙古典型草原植物叶片碳氮磷化学计量特征的季节动态[J]. 植物生态学报, 2020, 44(11): 1138-1153. |
[10] | 邹安龙,李修平,倪晓凤,吉成均. 模拟氮沉降对北京东灵山辽东栎林树木生长的影响[J]. 植物生态学报, 2019, 43(9): 783-792. |
[11] | 李品, 木勒德尔•吐尔汗拜, 田地, 冯兆忠. 全球森林土壤微生物生物量碳氮磷化学计量的季节动态[J]. 植物生态学报, 2019, 43(6): 532-542. |
[12] | 李建军, 刘恋, 陈迪马, 许丰伟, 程军回, 白永飞. 底座入土深度和面积对典型草原土壤呼吸测定结果的影响[J]. 植物生态学报, 2019, 43(2): 152-164. |
[13] | 王祥, 朱亚琼, 郑伟, 关正翾, 盛建东. 昭苏山地草甸4种典型土地利用方式下的土壤呼吸特征[J]. 植物生态学报, 2018, 42(3): 382-396. |
[14] | 武启骞, 王传宽. 控雪处理下红松和蒙古栎凋落叶分解动态[J]. 植物生态学报, 2018, 42(2): 153-163. |
[15] | 许飞, 王传宽. 4种温带针叶树种树干CO2释放通量的季节动态及其驱动因子[J]. 植物生态学报, 2017, 41(4): 396-408. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19