植物生态学报 ›› 2017, Vol. 41 ›› Issue (6): 597-609.DOI: 10.17521/cjpe.2017.0011

• 研究论文 •    下一篇

帽儿山不同林龄落叶阔叶林土壤微生物生物量及其季节动态

王薪琪, 韩轶, 王传宽*()   

  1. 东北林业大学生态研究中心, 哈尔滨 150040
  • 收稿日期:2017-05-31 接受日期:2017-01-17 出版日期:2017-06-10 发布日期:2017-07-19
  • 通讯作者: 王传宽
  • 作者简介:* 通信作者Author for correspondence (E-mail:sunzhiqiang1956@sina.com)
  • 基金资助:
    基金项目 国家“十二五”科技支撑项目(2011BAD37B01), 教育部长江学者和创新团队发展计划(IRT_15R09)

Soil microbial biomass and its seasonality in deciduous broadleaved forests with different stand ages in the Mao’ershan region, Northeast China

Xin-Qi WANG, Yi HAN, Chuan-Kuan WANG*()   

  1. Center for Ecological Research, Northeast Forestry University, Harbin 150040, China
  • Received:2017-05-31 Accepted:2017-01-17 Online:2017-06-10 Published:2017-07-19
  • Contact: Chuan-Kuan WANG
  • About author:KANG Jing-yao(1991-), E-mail: kangjingyao_nj@163.com

摘要:

土壤微生物在生态系统生物地球化学循环过程中扮演着重要角色, 对于受到干扰后退化土壤的肥力恢复具有重要的意义, 然而, 采伐后次生林发展过程中土壤微生物生物量的动态尚不明确。在帽儿山森林生态站的落叶阔叶林中设置了一个由采伐后0年(采伐迹地)、10年、25年、56年的林分构成林龄系列样地, 采用氯仿熏蒸浸提法, 在生长季期间(4-10月)每月测定各林分土壤微生物生物量碳含量(Cmic)、微生物生物量氮含量(Nmic)、土壤可溶性有机碳含量(Cdis)、可溶性全氮含量(Ndis)、土壤含水率、温度等因子, 以探索采伐干扰后不同林龄林分土壤微生物生物量的时间动态及其影响因子。结果表明: (1)不同林龄林分土壤微生物生物量生长季均值差异显著, Cmic表现为56年和采伐迹地显著高于25年和10年林分; Nmic表现为采伐迹地、56年显著高于10年林分, 25年林分居中; Cmic/Nmic表现为56年、10年林分显著高于25年林分、采伐迹地。(2)采伐迹地微生物生物量季节变化格局与其他3个林龄林分的差异主要体现在生长季后期, 前者表现为降低, 而后者表现为升高或变化不明显; 10年、25年、56年林分CmicNmic季节变化格局的差异主要体现在生长季前期, 变化幅度随林龄增长而降低; 4个林龄林分Cmic/Nmic季节变化均表现为“W”形。(3)土壤微生物生物量的主要影响因子随林龄而变: 随林龄增长, CmicNmic的影响因子由土壤含水率(采伐迹地、10年生)逐渐转变为土壤可溶性养分含量(10年、25年、56年林分); 采伐迹地Cmic/Nmic影响因子为土壤温度和Cdis, 其他3个林龄林分则为Cdis/Ndis。这些结果说明: 在采伐干扰后的次生林发展过程中, 植被组成和土壤理化性质不断变化, 提高了土壤微生物生物量, 进而改善了土壤养分状况, 显示出地上植被变化与地下微生物动态的密切联系。

关键词: 采伐干扰, 年龄系列, 微生物生物量碳, 微生物生物量氮, 季节动态, 温带森林

Abstract:

Aims Soil microbes play a key role in the biogeochemical cycling in terrestrial ecosystems and are important for the nutrient recovery of degraded soils due to disturbances. However, dynamics in soil microbial biomass during the development of the secondary forest after logging are little known. Our objectives were to examine the temporal dynamics and influencing factors of soil microbial biomass carbon content (Cmic) and nitrogen content (Nmic) along a temperate forest logging chronosequence.Methods The logging chronosequence included four sites with 0-year, 10-year, 25-year, and 56-year sites since clear cutting of a deciduous broadleaved forest and was established in 2014 in the Mao’ershan Forest Ecosystem Research Station, Northeast China. The Cmic and Nmic at all the sites were measured monthly during the growing season (from April to October) with the chloroform fumigation extraction method; the soil dissolved organic carbon content (Cdis), total nitrogen content (Ndis), soil water content and temperature were simultaneously measured. Important findings (1) There were significant differences in soil microbial biomass among the four sites: the means of Cmic at the 56-year and 0-year sites were significantly higher than those at the 25-year and 10-year sites; the means of Nmic at the 0-year and 56-year sites were significantly higher than those at the 10-year site, while the 25-year site had intermediate Nmic; The Cmic/Nmic ratios at the 56-year and 10-year sites were significantly higher than those at the 25-year and 0-year sites. (2) The Cmic and Nmic at the 0-year site tended to decrease at the end of the growing season compared to earlier times, while those at the rest sites showed an increasing trend or no significant change. Soil microbial biomass among the 10-year, 25-year, and 56-year sites differed at the early growing season, and its amplitude of variations decreased as the stand age increased. The Cmic/Nmic ratios at all sites showed a “W-shaped” seasonal pattern. (3) The main influencing factors of the seasonality of soil microbial biomass varied with the stand ages: they switched from soil water content at the 0-year and 10-year sites to the soil dissolved nutrients contents at the 10-year, 25-year, and 56-year sites. The seasonality of Cmic/Nmic ratios at the 0-year site was mainly influenced by soil temperature and Cdis, while those at the other three sites were driven by the Cdis/Ndisratio. It was concluded that with the forest development after clear cutting, the characteristics of vegetation and soil have been changing, inducing increased soil microbial biomass and thereby improved soil nutrient regime, which reflected strong links between aboveground changes in vegetation and belowground dynamics in soil microbes.

Key words: logging disturbance, chronosequence, microbial biomass carbon, microbial biomass nitrogen, seasonal dynamics, temperate forest