植物生态学报 ›› 2017, Vol. 41 ›› Issue (4): 396-408.DOI: 10.17521/cjpe.2016.0191
所属专题: 生态系统碳水能量通量
收稿日期:
2016-05-31
接受日期:
2017-04-05
出版日期:
2017-04-10
发布日期:
2017-05-19
通讯作者:
王传宽
基金资助:
Received:
2016-05-31
Accepted:
2017-04-05
Online:
2017-04-10
Published:
2017-05-19
Contact:
Chuan-Kuan WANG
摘要:
树干CO2释放通量(Es)是森林生态系统碳收支的重要组分, 但是目前对Es的季节动态和树种间差异的调控认识不足。该文采用红外气体分析法于2013年7-10月和2014年3-7月原位测定了东北温带森林中4个针叶树种(红松(Pinus koraiensis)、红皮云杉(Picea koraiensis)、樟子松(Pinus sylvestris var. mongolica)和落叶松(又名兴安落叶松)(Larix gmelinii))的Es、树干温度(Ts)等因子, 旨在比较分析Es的季节动态和树种间差异及其驱动因子。结果发现: 整个测定期间4个树种Es的时间动态总体上与Ts变化一致, 高峰值出现在温度较高和生长迅速的夏季(5月末-7月初), 最小值则出现在温度较低的春季(3月末-4月末)或秋季(10月)。Ts分别解释了所有树种生长季(5-9月)和非生长季(其他月份) Es变异性的42%-91%和56%-89%。进一步分析发现, 除了Ts之外, 生长季期间4个树种的Es与日胸围生长量、樟子松和落叶松的Es与空气相对湿度、樟子松的Es与边材氮浓度也显著相关。这些结果表明Ts是影响Es的主导环境因子, 但影响程度随树种、生长节律变化而变化。同一树种生长季的Es显著高于非生长季, 而同一季节不同树种之间Es差异显著。生长季不同树种Es的温度系数(Q10值)的差异不显著(波动在1.64-2.09之间), 但在非生长季却存在显著性差异(波动在1.80-3.14之间); 并且红皮云杉、樟子松和落叶松生长季的Q10值均显著低于非生长季, 说明不同树种Es对温度变化响应的差异主要表现在非生长季。上述这些温带针叶树Es的季节和种间变化受温度等多因子联合驱动, 因此采用单一的Es温度响应方程会增大Es年通量估测的不确定性。
许飞, 王传宽. 4种温带针叶树种树干CO2释放通量的季节动态及其驱动因子. 植物生态学报, 2017, 41(4): 396-408. DOI: 10.17521/cjpe.2016.0191
Fei XU, Chuan-Kuan WANG. Seasonality and drivers of stem CO2 efflux for four temperate coniferous tree species. Chinese Journal of Plant Ecology, 2017, 41(4): 396-408. DOI: 10.17521/cjpe.2016.0191
树种 Species | 叶性状 Leaf trait | 样本数 Sample size | 胸径 Diameter at breast height (cm) | 边材体积 Sapwood volume (cm3) | ||
---|---|---|---|---|---|---|
范围 Range | 平均值±标准误差 Mean ± SE | 范围 Range | 平均值±标准误差 Mean ± SE | |||
红松 Pinus koraiensis | 常绿 Evergreen | 11 | 8.0-30.1 | 18.7 ± 2.2b | 35.7-297.5 | 115.5 ± 26.2b |
红皮云杉 Picea koraiensis | 常绿 Evergreen | 10 | 17.2-43.4 | 29.1 ± 2.9a | 115.1-389.0 | 285.7 ± 30.5a |
樟子松 Pinus sylvestris var. mongolica | 常绿 Evergreen | 11 | 18.9-34.3 | 25.6 ± 1.6ab | 187.2-381.3 | 287.4 ± 17.7a |
落叶松 Larix gmelinii | 落叶 Deciduous | 12 | 11.7-46.4 | 28.2 ± 3.2a | 34.2-208.6 | 131.2 ± 15.6b |
表1 测定样树的基本特征
Table 1 Basic characteristics of the sampled trees
树种 Species | 叶性状 Leaf trait | 样本数 Sample size | 胸径 Diameter at breast height (cm) | 边材体积 Sapwood volume (cm3) | ||
---|---|---|---|---|---|---|
范围 Range | 平均值±标准误差 Mean ± SE | 范围 Range | 平均值±标准误差 Mean ± SE | |||
红松 Pinus koraiensis | 常绿 Evergreen | 11 | 8.0-30.1 | 18.7 ± 2.2b | 35.7-297.5 | 115.5 ± 26.2b |
红皮云杉 Picea koraiensis | 常绿 Evergreen | 10 | 17.2-43.4 | 29.1 ± 2.9a | 115.1-389.0 | 285.7 ± 30.5a |
樟子松 Pinus sylvestris var. mongolica | 常绿 Evergreen | 11 | 18.9-34.3 | 25.6 ± 1.6ab | 187.2-381.3 | 287.4 ± 17.7a |
落叶松 Larix gmelinii | 落叶 Deciduous | 12 | 11.7-46.4 | 28.2 ± 3.2a | 34.2-208.6 | 131.2 ± 15.6b |
图1 2013年7月1日至2014年7月20日日降水总量(Pre)、日平均气温(Ta)和空气相对湿度(RH)的季节动态。
Fig. 1 Seasonal changes in daily sums of precipitation (Pre) and daily means of air temperature (Ta) and relative air humidity (RH) between July 1, 2013 and July 20, 2014.
图2 2013年5月10日至2014年7月3日4个树种的树干CO2释放通量(Es) (A)、树干温度(Ts) (B)、日胸围生长量(Si) (C)和边材氮浓度([N]) (D)的季节动态(平均值±标准误差; n = 6-12)。Es和Ts是一天内测定5-7次10-12株树的平均值。
Fig. 2 Seasonal changes in stem CO2 efflux (Es) (A), stem temperature (Ts) (B), daily stem circumference increment (Si) (C), and sapwood nitrogen concentration ([N]) (D) for the four tree species (mean ± SE; n = 6-12) between May 10, 2013 and July 3, 2014. The values of Es or Ts are means of 10 to 12 trees measured five to seven times a day.
图3 不同季节4个树种树干CO2释放通量(Es) (A)、树干温度(Ts) (B)、年胸围生长量(Gi) (C)和边材氮浓度([N]) (D)的均值比较(平均值±标准误差; n = 6-12)。不同小写字母(a-d)表示同一季节不同树种间的平均Es、Ts、Gi和[N]存在显著差异(p < 0.05), 星号(*)表示同一树种不同季节间的均值存在显著差异(p < 0.05)。
Fig. 3 Comparisons of mean values of stem CO2 efflux (Es) (A), stem temperature (Ts) (B), annual stem circumference increment (Gi) (C), and sapwood nitrogen concentration ([N]) (D) between the growing and non-growing seasons for the four tree species (mean ± SE; n = 6-12). Different lowercase letters (a-d) stand for significant differences (p < 0.05) in mean values of Es, Ts, Gi, and [N] among different species in the same season, while stars (*) represent significant differences (p < 0.05) in those of Es, Ts, and [N] between the two seasons for the same species.
图4 不同季节4个树种树干CO2释放通量(Es)与树干温度(Ts)的关系。每个点表示10-12株样木的平均值。
Fig. 4 Relationships between stem CO2 efflux (Es) and stem temperature (Ts) for the four tree species during the growing and non-growing seasons. Each point is the mean of 10 to 12 trees.
图5 不同季节4个树种树干CO2释放通量的温度系数(Q10)比较(平均值±标准误差; n = 10-12)。不同小写字母(a-d)表示同一季节不同树种间的Q10值存在显著差异(p < 0.05), 星号(*)表示同一树种不同季节间的Q10值存在显著差异(p < 0.05)。
Fig. 5 Comparisons of temperature sensitivity (Q10) of stem CO2 efflux between the growing and non-growing seasons for the four tree species (mean ± SE; n = 10-12). Different lowercase letters (a-d) stand for significant differences (p < 0.05) in Q10 values among different species in the same season, while stars (*) represent significant differences (p < 0.05) in Q10 values between the two seasons for the same species.
图6 生长季4个树种树干CO2释放通量(Es)与日胸围生长量(Si) (A)、空气相对湿度(RH) (B)和边材氮浓度([N]) (C)的关系(平均值±标准误差; n = 6-12)。黑色三角(▼)表示樟子松2014年5月末的最大Si (A)和2013年9月中旬生长缓慢时的[N] (C), 二者在拟合模型时去除。
Fig. 6 Relationships of stem CO2 efflux (Es) with daily stem circumference increment (Si) (A), air relative humidity (RH) (B), and sapwood nitrogen concentration ([N]) (C) during the growing season for the four tree species (mean ± SE; n = 6-12). The black triangles (▼) indicate the maximum Si at the end of May 2014 (A) and [N] at the time of slow growth in mid-September 2013 (C) for Pinus sylvestris var. mongolica, both of which are excluded when fitting models.
[1] | Amthor JS (1991). Respiration in a future, higher-CO2 world.Plant, Cell & Environment, 14, 13-20. |
[2] | Araki MG, Kajimoto T, Han QM, Kawasaki T, Utsugi H, Gyokusen K, Chiba Y (2015). Effect of stem radial growth on seasonal and spatial variations in stem CO2 efflux of Chamaecyparis obtusa.Trees, 29, 499-514. |
[3] | Araki MG, Utsugi H, Kajimoto T, Han QM, Kawasaki T, Chiba Y (2010). Estimation of whole-stem respiration, incorporating vertical and seasonal variations in stem CO2 efflux rate, of Chamaecyparis obtusa trees.Journal of Forest Research, 15, 115-122. |
[4] | Atkin OK, Tjoelker MG (2003). Thermal acclimation and the dynamic response of plant respiration to temperature.TRENDS in Plant Science, 8, 343-351. |
[5] | Bowman WP, Barbour MM, Turnbull MH, Tissue DT, Whitehead D, Griffin KL (2005). Sap flow rates and sapwood density are critical factors in within- and between-tree variation in CO2 efflux from stems of mature Dacrydium cupressinum trees.New Phytologist, 167, 815-828. |
[6] | Brito P, Morales D, Wieser G, Jiménez MS (2010). Spatial and seasonal variations in stem CO2 efflux of Pinus canariensis at their upper distribution limit.Trees, 24, 523-531. |
[7] | Cavaleri MA, Oberbauer SF, Ryan MG (2006). Wood CO2 efflux in a primary tropical rain forest.Global Change Biology, 12, 2442-2458. |
[8] | Ceschia É, Damesin C, Lebaube S, Pontailler J-Y, Dufrêne É (2002). Spatial and seasonal variations in stem respiration of beech trees (Fagus sylvatica).Annals of Forest Science, 59, 801-812. |
[9] | Gruber A, Wieser G, Oberhuber W (2009). Intra-annual dynamics of stem CO2 efflux in relation to cambial activity and xylem development in Pinus cembra.Tree Physiology, 29, 641-649. |
[10] | Jiang LF, Shi FC, Zu YG, Wang WJ, Koike T (2003). Study on stem respiration of Larix gmelinii of different ages and its relationship to environmental factors.Bulletin of Botanical Research, 23, 296-301. |
[11] | Joseph G, Kelsey RG (2004). Ethanol synthesis and aerobic respiration in the laboratory by leader segments of Douglas-fir seedlings from winter and spring.Journal of Experimental Botany, 55, 1095-1103. |
[12] | Katayama A, Kume T, Ohashi M, Matsumoto K, Nakagawa M, Saito T, Kumagai T, Otsuki K (2016). Characteristics of wood CO2 efflux in a Bornean tropical rainforest.Agricultural and Forest Meteorology, 220, 190-199. |
[13] | Köcher P, Horna V, Leuschner C (2012). Environmental control of daily stem growth patterns in five temperate broad-leaved tree species.Tree Physiology, 32, 1021-1032. |
[14] | Lavigne MB, Little CHA, Riding RT (2004). Changes in stem respiration rate during cambial reactivation can be used to refine estimates of growth and maintenance respiration.New Phytologist, 162, 81-93. |
[15] | Lavigne MB, Ryan MG (1997). Growth and maintenance respiration rates of aspen, black spruce and jack pine stems at northern and southern BOREAS sites.Tree Physiology, 17, 543-551. |
[16] | Maier CA (2001). Stem growth and respiration in loblolly pine plantations differing in soil resource availability.Tree Physiology, 21, 1183-1193. |
[17] | Maier CA, Albaugh TJ, Allen HL, Dougherty PM (2004). Respiratory carbon use and carbon storage in mid-rotation loblolly pine (Pinus taeda L.) plantations: The effect of site resources on the stand carbon balance.Global Change Biology, 10, 1335-1350. |
[18] | Maier CA, Johnsen KH, Clinton BD, Ludovici KH (2010). Relationships between stem CO2 efflux, substrate supply, and growth in young loblolly pine trees.New Phytologist, 185, 502-513. |
[19] | Maier CA, Zarnoch SJ, Dougherty PM (1998). Effects of temperature and tissue nitrogen on dormant season stem and branch maintenance respiration in a young loblolly pine (Pinus taeda) plantation.Tree Physiology, 18, 11-20. |
[20] | Rodríguez-Calcerrada J, López R, Salomón R, Gordaliza GG, Valbuena-Carabaña M, Oleksyn J, Gil L (2015). Stem CO2 efflux in six co-occurring tree species: Underlying factors and ecological implications.Plant, Cell & Environment, 38, 1104-1115. |
[21] | Rodríguez-Calcerrada J, Martin-StPaul NK, Lempereur M, Ourcival J-M, del Rey MdC, Joffre R, Rambal S (2014). Stem CO2 efflux and its contribution to ecosystem CO2 efflux decrease with drought in a Mediterranean forest stand.Agricultural and Forest Meteorology, 195, 61-72. |
[22] | Ryan MG (1990). Growth and maintenance respiration in stems of Pinus contorta and Picea engelmannii.Canadian Journal of Forest Research, 20, 48-57. |
[23] | Ryan MG (1991). Effects of climate change on plant respiration.Ecological Applications, 1, 157-167. |
[24] | Ryan MG, Gower ST, Hubbard RM, Waring RH, Gholz HL, Cropper Jr. WP, Running SW (1995). Woody tissue maintenance respiration of four conifers in contrasting climates.Oecologia, 101, 133-140. |
[25] | Ryan MG, Linder S, Vose JM, Hubbard RM (1994). Dark respiration of pines.Ecological Bulletins, 43, 50-63. |
[26] | Saveyn A, Steppe K, Lemeur R (2007). Drought and the diurnal patterns of stem CO2 efflux and xylem CO2 concentration in young oak (Quercus robur).Tree Physiology, 27, 365-374. |
[27] | Saveyn A, Steppe K, McGuire MA, Lemeur R, Teskey RO (2008). Stem respiration and carbon dioxide efflux of young Populus deltoides trees in relation to temperature and xylem carbon dioxide concentration.Oecologia, 154, 637-649. |
[28] | Shi XL, Wang CK, Xu F, Wang XC (2010). Temporal dynamics and influencing factors of stem respiration for four temperate tree species.Acta Ecologica Sinica, 30, 3994-4003. (in Chinese with English abstract)[石新立, 王传宽, 许飞, 王兴昌 (2010). 四个温带树种树干呼吸的时间动态及其影响因子. 生态学报, 30, 3994-4003.] |
[29] | Sorz J, Hietz P (2006). Gas diffusion through wood: Implications for oxygen supply.Trees, 20, 34-41. |
[30] | Sprugel DG, Benecke U (1991). Measuring woody-tissue respiration and photosynthesis. In: Lassoie JP, Hinckley TM eds. Techniques and Approaches in Forest Tree Ecophysiology. CRC Press, Boca Raton, USA. 329-355. |
[31] | Stahl C, Burban B, Goret J-Y, Bonal D (2011). Seasonal variations in stem CO2 efflux in the neotropical rainforest of French Guiana.Annals of Forest Science, 68, 771-782. |
[32] | Steppe K, Saveyn A, McGuire MA, Lemeur R, Teskey RO (2007). Resistance to radial CO2 diffusion contributes to between-tree variation in CO2 efflux of Populus deltoides stems.Functional Plant Biology, 34, 785-792. |
[33] | Stockfors J, Linder S (1998). Effect of nitrogen on the seasonal course of growth and maintenance respiration in stems of Norway spruce trees.Tree Physiology, 18, 155-166. |
[34] | Sun T, Liu RP, Li XH, Mao ZJ, Huang W, Dong LL (2015). Effects of simulated nitrogen deposition on stem respiration of Larix gmelinii Rupr.in Northeastern China. Acta Ecologica Sinica, 35, 3684-3691. (in Chinese with English abstract)[孙涛, 刘瑞鹏, 李兴欢, 毛子军, 黄唯, 董利利 (2015). 模拟氮沉降对东北地区兴安落叶松树干呼吸的影响. 生态学报, 35, 3684-3691.] |
[35] | Wang CK, Yang JY (2005). Carbon dioxide fluxes from soil respiration and woody debris decomposition in boreal forests.Acta Ecologica Sinica, 25, 633-638. (in Chinese with English abstract)[王传宽, 杨金艳 (2005). 北方森林土壤呼吸和木质残体分解释放出的CO2通量. 生态学报, 25, 633-638.] |
[36] | Wang CK, Yang JY, Zhang QZ (2006). Soil respiration in six temperate forests in China.Global Change Biology, 12, 2103-2114. |
[37] | Wang M, Wu YX, Wu JL (2008). Stem respiration of dominant tree species in broad-leaved Korean pine mixed forest in Changbai Mountains.Chinese Journal of Applied Ecology, 19, 956-960. (in Chinese with English abstract)[王淼, 武耀祥, 武静莲 (2008). 长白山红松针阔叶混交林主要树种树干呼吸速率. 应用生态学报, 19, 956-960.] |
[38] | Wang WJ, Yang FJ, Zu YG, Wang HM, Takagi K, Sasa K, Koike T (2003). Stem respiration of a larch ( Larix gmelini) plantation in Northeast China.Acta Botanica Sinica, 45, 1387-1397. |
[39] | Wang XW, Mao ZJ, Sun T, Wu HJ (2011). Effects of temperature and sap flow velocity on CO2 efflux from stems of three tree species in spring and autumn in Northeast China.Acta Ecologica Sinica, 31, 3358-3367. (in Chinese with English abstract)[王秀伟, 毛子军, 孙涛, 吴海军 (2011). 春、秋季节树干温度和液流速度对东北3树种树干表面CO2释放通量的影响. 生态学报, 31, 3358-3367.] |
[40] | Wertin TM, Teskey RO (2008). Close coupling of whole-plant respiration to net photosynthesis and carbohydrates.Tree Physiology, 28, 1831-1840. |
[41] | Wittmann C, Pfanz H, Loreto F, Centritto M, Pietrini F, Alessio G (2006). Stem CO2 release under illumination: Corticular photosynthesis, photorespiration or inhibition of mitochondrial respiration?Plant, Cell & Environment, 29, 1149-1158. |
[42] | Xiao FM, Wang SL, Du TZ, Chen LC, Yu XJ (2005). Respiration of Chinese fir in plantations in Huitong, Hu’nan Province.Acta Ecologica Sinica, 25, 2514-2519. (in Chinese with English abstract)[肖复明, 汪思龙, 杜天真, 陈龙池, 于小军 (2005). 湖南会同林区杉木人工林呼吸量测定. 生态学报, 25, 2514-2519.] |
[43] | Xu F, Wang CK (2015). Diurnal dynamics in stem maintenance respiration in spring and autumn for four temperate coniferous tree species in northeastern China.Acta Ecologica Sinica, 35, 3233-3243. (in Chinese with English abstract)[许飞, 王传宽 (2015). 温带4种针叶树种春、秋季节树干维持呼吸的日动态. 生态学报, 35, 3233-3243.] |
[44] | Xu F, Wang CK, Wang XC (2011). Intra- and inter-specific variations in stem respiration for 14 temperate tree species in northeastern China.Acta Ecologica Sinica, 31, 3581-3589. (in Chinese with English abstract)[许飞, 王传宽, 王兴昌 (2011). 东北东部14个温带树种树干呼吸的种内种间变异. 生态学报, 31, 3581-3589.] |
[45] | Xu M, DeBiase TA, Qi Y (2000). A simple technique to measure stem respiration using a horizontally oriented soil chamber.Canadian Journal of Forest Research, 30, 1555-1560. |
[46] | Yan YP, Sha LQ, Cao M (2008). Stem respiration rates of dominant tree species in a tropical seasonal rain forest in Xishuangbanna, Yunnan, southwest China.Journal of Plant Ecology (Chinese Version), 32, 23-30. (in Chinese with English abstract)[严玉平, 沙丽清, 曹敏 (2008). 西双版纳热带季节雨林优势树种树干呼吸特征. 植物生态学报, 32, 23-30.] |
[47] | Yang JY, He YJ, Aubrey DP, Zhuang QL, Teskey RO (2016). Global patterns and predictors of stem CO2 efflux in forest ecosystems.Global Change Biology, 22, 1433-1444. |
[48] | Yang JY, Teskey RO, Wang CK (2012a). Stem CO2 efflux of ten species in temperate forests in Northeastern China.Trees, 26, 1225-1235. |
[49] | Yang QP, Xu M, Chi YG, Zheng YP, Shen RC, Li PX, Dai HT (2012b). Temporal and spatial variations of stem CO2 efflux of three species in subtropical China.Journal of Plant Ecology, 5, 229-237. |
[50] | Zabuga VF, Zabuga GA, Zinov'eva VP (1983). Ecological characteristics of respiratory CO2 exchange in the growing trunk of Scotch pine.Soviet Plant Physiology, 29, 934-939. |
[51] | Zach A, Horna V, Leuschner C, Zimmermann R (2010). Patterns of wood carbon dioxide efflux across a 2,000-m elevation transect in an Andean moist forest.Oecologia, 162, 127-137. |
[52] | Zha TS, Kellomäki S, Wang KY, Ryyppö A, Niinistö S (2004). Seasonal and annual stem respiration of Scots pine trees under boreal conditions.Annals of Botany, 94, 889-896. |
[53] | Zhang HY, Wang CK, Wang XC (2014). Spatial variations in non-structural carbohydrates in stems of twelve temperate tree species.Trees, 28, 77-89. |
[1] | 王袼, 胡姝娅, 李阳, 陈晓鹏, 李红玉, 董宽虎, 何念鹏, 王常慧. 不同类型草原土壤净氮矿化速率的温度敏感性[J]. 植物生态学报, 2024, 48(4): 523-533. |
[2] | 张计深, 史新杰, 刘宇诺, 吴阳, 彭守璋. 气候变化下中国潜在自然植被生态系统碳储量动态[J]. 植物生态学报, 2024, 48(4): 428-444. |
[3] | 陈雪萍, 赵学勇, 张晶, 王瑞雄, 卢建男. 基于地理探测器的科尔沁沙地植被NDVI时空变化特征及其驱动因素[J]. 植物生态学报, 2023, 47(8): 1082-1093. |
[4] | 代景忠, 白玉婷, 卫智军, 张楚, 辛晓平, 闫玉春, 闫瑞瑞. 羊草功能性状对施肥的动态响应[J]. 植物生态学报, 2023, 47(7): 943-953. |
[5] | 张敏, 桑英, 宋金凤. 水培富贵竹的根压及其影响因素[J]. 植物生态学报, 2023, 47(7): 1010-1019. |
[6] | 沈健, 何宗明, 董强, 郜士垒, 林宇. 轻度火烧对滨海沙地人工林土壤呼吸速率和非生物因子的影响[J]. 植物生态学报, 2023, 47(7): 1032-1042. |
[7] | 李卫英, 章正仁, 辛雅萱, 王飞, 辛培尧, 高洁. 云南松、思茅松和卡西亚松天然种群间的针叶表型变异[J]. 植物生态学报, 2023, 47(6): 833-846. |
[8] | 夏璟钰, 张扬建, 郑周涛, 赵广, 赵然, 朱艺旋, 高洁, 沈若楠, 李文宇, 郑家禾, 张雨雪, 朱军涛, 孙建新. 青藏高原那曲高山嵩草草甸植物物候对增温的异步响应[J]. 植物生态学报, 2023, 47(2): 183-194. |
[9] | 叶洁泓, 于成龙, 卓少菲, 陈新兰, 杨科明, 文印, 刘慧. 木兰科植物叶片光合系统耐热性与叶片形态及温度生态位的关系[J]. 植物生态学报, 2023, 47(10): 1432-1440. |
[10] | 朱明阳, 林琳, 佘雨龙, 肖城材, 赵通兴, 胡春相, 赵昌佑, 王文礼. 云南轿子山不同海拔急尖长苞冷杉径向生长动态及其低温阈值[J]. 植物生态学报, 2022, 46(9): 1038-1049. |
[11] | 董涵君, 王兴昌, 苑丹阳, 柳荻, 刘玉龙, 桑英, 王晓春. 温带不同材性树种树干非结构性碳水化合物的径向分配差异[J]. 植物生态学报, 2022, 46(6): 722-734. |
[12] | 熊博文, 李桐, 黄樱, 鄢春华, 邱国玉. 不同参考温度取值对三温模型反演植被蒸腾精度的影响[J]. 植物生态学报, 2022, 46(4): 383-393. |
[13] | 丛楠, 张扬建, 朱军涛. 北半球中高纬度地区近30年植被春季物候温度敏感性[J]. 植物生态学报, 2022, 46(2): 125-135. |
[14] | 杨萌, 于贵瑞. 中国干旱半干旱区土壤CO2与CH4通量的耦联解耦及其对温度的响应[J]. 植物生态学报, 2022, 46(12): 1497-1507. |
[15] | 于海英, 杨莉琳, 付素静, 张志敏, 姚琦馥. 暖温带森林木本植物展叶始期对低温和热量累积变化的响应[J]. 植物生态学报, 2022, 46(12): 1573-1584. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19