植物生态学报 ›› 2022, Vol. 46 ›› Issue (9): 1038-1049.DOI: 10.17521/cjpe.2021.0399
朱明阳1, 林琳1, 佘雨龙1, 肖城材1, 赵通兴1, 胡春相2, 赵昌佑2, 王文礼1,*()
收稿日期:
2021-11-08
接受日期:
2021-12-13
出版日期:
2022-09-20
发布日期:
2022-10-19
通讯作者:
王文礼
作者简介:
王文礼:ORCID:0000-0003-1536-9890 (wwl@ynu.edu.cn)基金资助:
ZHU Ming-Yang1, LIN Lin1, SHE Yu-Long1, XIAO Cheng-Cai1, ZHAO Tong-Xing1, HU Chun-Xiang2, ZHAO Chang-You2, WANG Wen-Li1,*()
Received:
2021-11-08
Accepted:
2021-12-13
Online:
2022-09-20
Published:
2022-10-19
Contact:
WANG Wen-Li
Supported by:
摘要:
环境对树木的功能和生存具有至关重要的意义, 但环境因素影响树木发育的过程仍有待探究。树木径向生长动态监测是深刻了解树木生长状况及其对气候变化响应的重要手段。该研究以云南轿子山不同海拔树线树种急尖长苞冷杉(Abies georgei var. smithii)为研究对象, 对其年内径向生长动态进行监测, 以期明晰树木径向生长各阶段起止时间的海拔差异, 分析不同海拔树木形成层活动和木质部分化对温度的响应, 辨析树木径向生长的低温阈值。结果表明: (1)海拔越高, 径向生长开始的时间越晚, 结束越早, 生长季缩短。海拔每上升100 m, 急尖长苞冷杉径向生长的开始时间推迟4.7 d, 结束时间提前7.2 d, 生长季缩短12.8 d; (2) 3个海拔急尖长苞冷杉的径向生长具有相似的低温阈值(约5 ℃), 温度控制形成层活动的开始与木质部分化的结束; (3)不同海拔急尖长苞冷杉形成层的细胞分裂活动均在温度较高时(夏至日前后)减弱。 形成层活动的结束与海拔引起的温度变化关系较弱, 光周期可能参与了形成层活动结束的调控, 以确保当年新生细胞能够在冻害来临前完成木质化。该研究结果有助于加深树木生长动态对气候变化响应机制的认识, 为更好地适应和应对气候变化提供科学依据。
朱明阳, 林琳, 佘雨龙, 肖城材, 赵通兴, 胡春相, 赵昌佑, 王文礼. 云南轿子山不同海拔急尖长苞冷杉径向生长动态及其低温阈值. 植物生态学报, 2022, 46(9): 1038-1049. DOI: 10.17521/cjpe.2021.0399
ZHU Ming-Yang, LIN Lin, SHE Yu-Long, XIAO Cheng-Cai, ZHAO Tong-Xing, HU Chun-Xiang, ZHAO Chang-You, WANG Wen-Li. Radial growth and its low-temperature threshold of Abies georgei var. smithii at different altitudes in Jiaozi Mountain, Yunnan, China. Chinese Journal of Plant Ecology, 2022, 46(9): 1038-1049. DOI: 10.17521/cjpe.2021.0399
海拔 Altitude (m) | 编号 No. | 基径 Base diameter (cm) | 胸径 Diameter at breast (cm) | 高度 Height (m) | 树龄 Tree age (a) |
---|---|---|---|---|---|
3 600 | 1 | 32 | 25 | 13.0 | 58 |
2 | 21 | 17 | 11.0 | 27 | |
3 | 23 | 18 | 12.0 | 45 | |
4 | 20 | 16 | 12.0 | 51 | |
5 | 22 | 17 | 12.0 | 40 | |
3 800 | 6 | 45 | 35 | 12.0 | 32 |
7 | 32 | 25 | 11.0 | 24 | |
8 | 16 | 12 | 12.0 | 20 | |
9 | 34 | 27 | 13.0 | 24 | |
10 | 22 | 17 | 10.0 | 18 | |
4 000 | 11 | 20 | 17 | 5.1 | 27 |
12 | 57 | 44 | 6.8 | 55 | |
13 | 19 | 15 | 5.0 | 27 | |
14 | 19 | 15 | 3.9 | 22 | |
15 | 21 | 16 | 5.2 | 20 |
表1 云南轿子山不同海拔急尖长苞冷杉样树特征
Table 1 Sample trees characteristics of Abies georgei var. smithii at different altitudes in Jiaozi Mountain, Yunnan
海拔 Altitude (m) | 编号 No. | 基径 Base diameter (cm) | 胸径 Diameter at breast (cm) | 高度 Height (m) | 树龄 Tree age (a) |
---|---|---|---|---|---|
3 600 | 1 | 32 | 25 | 13.0 | 58 |
2 | 21 | 17 | 11.0 | 27 | |
3 | 23 | 18 | 12.0 | 45 | |
4 | 20 | 16 | 12.0 | 51 | |
5 | 22 | 17 | 12.0 | 40 | |
3 800 | 6 | 45 | 35 | 12.0 | 32 |
7 | 32 | 25 | 11.0 | 24 | |
8 | 16 | 12 | 12.0 | 20 | |
9 | 34 | 27 | 13.0 | 24 | |
10 | 22 | 17 | 10.0 | 18 | |
4 000 | 11 | 20 | 17 | 5.1 | 27 |
12 | 57 | 44 | 6.8 | 55 | |
13 | 19 | 15 | 5.0 | 27 | |
14 | 19 | 15 | 3.9 | 22 | |
15 | 21 | 16 | 5.2 | 20 |
图2 云南轿子山急尖长苞冷杉径向生长各阶段示意图。CZ, 休眠形成层; EN, 细胞增大; M, 细胞成熟; WT, 细胞壁增厚。
Fig. 2 Schematic diagram of each stage of radial growth of Abies georgei var. smithii in Jiaozi Mountain, Yunnan. CZ, dormant cambium; EN, cell enlargement; M, cell maturation; WT, cell wall-thickening.
图3 2020年云南轿子山不同海拔样地微生境平均温度变化趋势图。
Fig. 3 Mean temperature trends of microhabitats at different altitude sample sites in Jiaozi Mountain, Yunnan in 2020.
空气温度 Air temperature (℃) | 土壤温度 Soil temperature (℃) | |||||||
---|---|---|---|---|---|---|---|---|
海拔 Altitude (m) | 平均 Mean | 最高 Maximum | 最低 Minimum | 直减率 Direct reduction rate (℃·m-1) | 平均 Mean | 最高 Maximum | 最低 Minimum | 直减率 Direct reduction rate (℃·m-1) |
3 600 | 5.56 | 14.25 | -4.66 | 0.005 9 ± 0.000 7 | 5.82 | 11.26 | -0.39 | 0.005 7 ± 0.000 6 |
3 800 | 4.25 | 10.06 | -7.49 | 4.57 | 11.30 | -3.73 | ||
4 000 | 3.20 | 10.41 | -9.04 | 3.54 | 9.33 | -1.10 |
表2 2020年云南轿子山不同海拔样地内空气、土壤年平均温度、最高温度、最低温和直减率(平均值±标准误)
Table 2 Mean, maximum, minimum temperature and lapse rate (mean ± SE) of air and soil at different altitudes in Jiaozi Mountain, Yunnan in 2020
空气温度 Air temperature (℃) | 土壤温度 Soil temperature (℃) | |||||||
---|---|---|---|---|---|---|---|---|
海拔 Altitude (m) | 平均 Mean | 最高 Maximum | 最低 Minimum | 直减率 Direct reduction rate (℃·m-1) | 平均 Mean | 最高 Maximum | 最低 Minimum | 直减率 Direct reduction rate (℃·m-1) |
3 600 | 5.56 | 14.25 | -4.66 | 0.005 9 ± 0.000 7 | 5.82 | 11.26 | -0.39 | 0.005 7 ± 0.000 6 |
3 800 | 4.25 | 10.06 | -7.49 | 4.57 | 11.30 | -3.73 | ||
4 000 | 3.20 | 10.41 | -9.04 | 3.54 | 9.33 | -1.10 |
图5 2020年云南轿子山不同海拔急尖长苞冷杉径向生长各发育阶段的起止时间(平均值±标准误)。
Fig. 5 Start and end time of each development stage of radial growth of Abies georgei var. smithii at different altitudes in Jiaozi Mountain, Yunnan in 2020 (mean ± SE).
图6 2020年云南轿子山不同海拔急尖长苞冷杉径向生长各发育阶段细胞数随时间变化图(平均值±标准误)。
Fig. 6 Variation of cell number in each development stage with time of radial growth of Abies georgei var. smithii at different altitudes in Jiaozi Mountain, Yunnan in 2020 (mean ± SE).
图7 2020年云南轿子山急尖长苞冷杉径向生长各阶段生长时间所占比例。CZ, 形成层; EN, 细胞膨大; M, 成熟细胞; WT, 细胞壁加厚。
Fig. 7 Proportion of growth time in each stage of radial growth of Abies georgei var. smithii in Jiaozi Mountain, Yunnan in 2020. CZ, cambium; EN, enlargement; M, maturation; WT, wall-thickening.
形成层细胞 Cambial cell | 细胞膨大 Cell enlarging | 细胞壁加厚 Cell wall-thickening | 细胞成熟 Mature cells | |
---|---|---|---|---|
开始 Onset | 0.001** | 0.001** | 0.016* | 0.826 |
结束 Ending | 0.534 | 0.024* | 0.311 | 0.011* |
持续 Duration | 0.096 | 0.001** | 0.02* | 0.015* |
表3 2020年云南轿子山不同海拔急尖长苞冷杉径向生长各阶段开始、结束以及持续时间单因素方差分析
Table 3 One-way ANOVA for the onset, ending and duration of each stage of radial growth of Abies georgei var. smithii at different altitudes in Jiaozi Mountain, Yunnan in 2020
形成层细胞 Cambial cell | 细胞膨大 Cell enlarging | 细胞壁加厚 Cell wall-thickening | 细胞成熟 Mature cells | |
---|---|---|---|---|
开始 Onset | 0.001** | 0.001** | 0.016* | 0.826 |
结束 Ending | 0.534 | 0.024* | 0.311 | 0.011* |
持续 Duration | 0.096 | 0.001** | 0.02* | 0.015* |
空气温度 Air temperature (℃) | 土壤温度 Soil temperature (℃) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
海拔 Altitude (m) | 最低 Minimum | 最高 Maximum | 平均 Mean | >0 ℃积温 >0 ℃ accumulation | >5 ℃积温 >5 ℃ accumulation | 最低 Minimum | 最高 Maximum | 平均 Mean | >0 ℃积温 >0 ℃ accumulation | >5 ℃积温 >5 ℃ accumulation | 生长季长度 (平均值±标准差) Growing season length (mean ± SD) (d) | ||||||||
3 600 | 0.06 | 14.25 | 8.87 | 1 775.83 | 1 730.18 | 2.80 | 11.26 | 8.78 | 1 718.75 | 1 654.99 | 195 ± 4 | ||||||||
3 800 | 1.52 | 10.06 | 7.63 | 1 419.37 | 1 389.24 | 2.79 | 11.30 | 7.90 | 1 457.26 | 1 420.16 | 177 ± 1 | ||||||||
4 000 | 2.40 | 10.41 | 7.19 | 1 000.10 | 959.21 | 2.70 | 9.33 | 7.33 | 983.20 | 927.57 | 144 ± 16 |
表4 云南轿子山2020年不同海拔样地生长季空气、土壤温度
Table 4 Air and soil temperature during the growing season at different altitudes sample sites in Jiaozi Mountain, Yunnan in 2020
空气温度 Air temperature (℃) | 土壤温度 Soil temperature (℃) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
海拔 Altitude (m) | 最低 Minimum | 最高 Maximum | 平均 Mean | >0 ℃积温 >0 ℃ accumulation | >5 ℃积温 >5 ℃ accumulation | 最低 Minimum | 最高 Maximum | 平均 Mean | >0 ℃积温 >0 ℃ accumulation | >5 ℃积温 >5 ℃ accumulation | 生长季长度 (平均值±标准差) Growing season length (mean ± SD) (d) | ||||||||
3 600 | 0.06 | 14.25 | 8.87 | 1 775.83 | 1 730.18 | 2.80 | 11.26 | 8.78 | 1 718.75 | 1 654.99 | 195 ± 4 | ||||||||
3 800 | 1.52 | 10.06 | 7.63 | 1 419.37 | 1 389.24 | 2.79 | 11.30 | 7.90 | 1 457.26 | 1 420.16 | 177 ± 1 | ||||||||
4 000 | 2.40 | 10.41 | 7.19 | 1 000.10 | 959.21 | 2.70 | 9.33 | 7.33 | 983.20 | 927.57 | 144 ± 16 |
海拔 Altitude (m) | 细胞总数 Total number of cells | 最大生长速率 Maximum growth rate (cell·d-1) | 加速拐点 Accelerated inflection point (d) | 平均生长速率 Mean growth rate (cell·d-1) | n |
---|---|---|---|---|---|
3 600 | 75.79 ± 3.86 | 0.64 ± 0.03 | 159.90 ± 2.70 | 0.39 ± 0.02 | 5 |
3 800 | 58.81 ± 3.55 | 0.67 ± 0.03 | 157.63 ± 3.26 | 0.41 ± 0.02 | 5 |
4 000 | 82.68 ± 9.13 | 0.76 ± 0.11 | 171.33 ± 9.00 | 0.47 ± 0.07 | 5 |
p | 0.008 | 0.147 | 0.055 | 0.147 |
表5 2020年云南轿子山不同海拔急尖长苞冷杉的生长量和生长速率(平均值±标准误)
Table 5 Radial growth volume and rate of Abies georgei var. smithii at different altitudes in Jiaozi Mountain, Yunnan in 2020 (mean ± SE)
海拔 Altitude (m) | 细胞总数 Total number of cells | 最大生长速率 Maximum growth rate (cell·d-1) | 加速拐点 Accelerated inflection point (d) | 平均生长速率 Mean growth rate (cell·d-1) | n |
---|---|---|---|---|---|
3 600 | 75.79 ± 3.86 | 0.64 ± 0.03 | 159.90 ± 2.70 | 0.39 ± 0.02 | 5 |
3 800 | 58.81 ± 3.55 | 0.67 ± 0.03 | 157.63 ± 3.26 | 0.41 ± 0.02 | 5 |
4 000 | 82.68 ± 9.13 | 0.76 ± 0.11 | 171.33 ± 9.00 | 0.47 ± 0.07 | 5 |
p | 0.008 | 0.147 | 0.055 | 0.147 |
图8 2020年云南轿子山急尖长苞冷杉不同海拔径向生长的Gompertz生长曲线(平均值±标准误)。
Fig. 8 Gompertz growth curve for radial growth of Abies georgei var. smithii at different altitudes in Jiaozi Mountain, Yunnan in 2020 (mean ± SE).
图9 2020年云南轿子山急尖长苞冷杉径向生长开始和结束与温度变量的皮尔逊相关指数。ADDS > 0 ℃, 大于0 ℃的空气积温; ADDS > 5 ℃, 大于5 ℃的空气积温; SDDS > 0 ℃, 大于0 ℃的土壤积温; SDDS > 5 ℃, 大于5 ℃的土壤积温; Tamax, 最高气温; Tamean, 平均气温; Tamin, 最低气温; Tsmax, 最高土壤温度; Tsmean, 平均土壤温度; Tsmin, 最低土壤温度。
Fig. 9 Pearson’s correlation index of radial growth onset and end of radial growth of Abies georgei var. smithii with temperature variables in 2020. ADDS > 0 °C, air accumulation temperature greater than 0 °C; ADDS > 5 °C, air accumulation temperature greater than 5 °C; SDDS > 0 °C, soil accumulation temperature greater than 0 °C; SDDS > 5 °C, soil accumulation temperature greater than 5 °C; Tamax, maximum air temperature; Tamean, average air temperature; Tamin, minimum air temperature; Tsmax, maximum soil temperature; Tsmean, average soil temperature; Tsmin, minimum soil temperature.
温度变量 Temperature variables | 径向生长开始 Radial growth onset | n | p | 径向生长结束 End of radial growth | n | p | 形成层活动结束 End of cambium active | n | p | |
---|---|---|---|---|---|---|---|---|---|---|
空气温度 Air temperature (℃) | 平均 Mean | 4.78 ± 0.13 | 12 | 0.81 | 5.13 ± 0.20 | 12 | 0.14 | 8.38 ± 0.57 | 12 | 0.64 |
最高 Maximum | 6.91 ± 0.23 | 12 | 0.00** | 6.98 ± 0.38 | 12 | 0.00** | 16.27 ± 8.01 | 12 | 0.38 | |
最低 Minimum | 2.35 ± 0.31 | 12 | 0.00** | 3.27 ± 0.35 | 12 | 0.00** | 5.65 ± 0.30 | 12 | 0.02* | |
土壤温度 Soil temperature (℃) | 平均 Mean | 4.02 ± 0.19 | 12 | 0.10 | 4.96 ± 0.19 | 12 | 0.14 | 8.07 ± 0.50 | 12 | 0.68 |
最高 Maximum | 5.20 ± 0.26 | 12 | 0.00** | 6.33 ± 0.21 | 12 | 0.01* | 8.44 ± 0.57 | 12 | 0.17 | |
最低 Minimum | 2.58 ± 0.22 | 12 | 0.00** | 3.70 ± 0.41 | 12 | 0.00** | 7.81 ± 0.46 | 12 | 0.26 |
表6 2020年云南轿子山急尖长苞冷杉径向生长的温度阈值(平均值±标准误)
Table 6 Temperature thresholds for the onset and end of radial growth of Abies georgei var. smithii (mean ± SE) in 2020
温度变量 Temperature variables | 径向生长开始 Radial growth onset | n | p | 径向生长结束 End of radial growth | n | p | 形成层活动结束 End of cambium active | n | p | |
---|---|---|---|---|---|---|---|---|---|---|
空气温度 Air temperature (℃) | 平均 Mean | 4.78 ± 0.13 | 12 | 0.81 | 5.13 ± 0.20 | 12 | 0.14 | 8.38 ± 0.57 | 12 | 0.64 |
最高 Maximum | 6.91 ± 0.23 | 12 | 0.00** | 6.98 ± 0.38 | 12 | 0.00** | 16.27 ± 8.01 | 12 | 0.38 | |
最低 Minimum | 2.35 ± 0.31 | 12 | 0.00** | 3.27 ± 0.35 | 12 | 0.00** | 5.65 ± 0.30 | 12 | 0.02* | |
土壤温度 Soil temperature (℃) | 平均 Mean | 4.02 ± 0.19 | 12 | 0.10 | 4.96 ± 0.19 | 12 | 0.14 | 8.07 ± 0.50 | 12 | 0.68 |
最高 Maximum | 5.20 ± 0.26 | 12 | 0.00** | 6.33 ± 0.21 | 12 | 0.01* | 8.44 ± 0.57 | 12 | 0.17 | |
最低 Minimum | 2.58 ± 0.22 | 12 | 0.00** | 3.70 ± 0.41 | 12 | 0.00** | 7.81 ± 0.46 | 12 | 0.26 |
[1] |
Alvarez-Uria P, Körner C (2007). Low temperature limits of root growth in deciduous and evergreen temperate tree species. Functional Ecology, 21, 211-218.
DOI URL |
[2] |
Antonucci S, Rossi S, Deslauriers A, Lombardi F, Marchetti M, Tognetti R (2015). Synchronisms and correlations of spring phenology between apical and lateral meristems in two boreal conifers. Tree Physiology, 35, 1086-1094.
DOI PMID |
[3] |
Bai XP, Zhang XL, Li JX, Duan XY, Jin YT, Chen ZJ (2019). Altitudinal disparity in growth of Dahurian larch (Larix gmelinii Rupr.) in response to recent climate change in northeast China. Science of the Total Environment, 670, 466-477.
DOI URL |
[4] |
Creber GT, Chaloner WG (1984). Influence of environmental factors on the wood structure of living and fossil trees. The Botanical Review, 50, 357-448.
DOI URL |
[5] |
Cullen LE, Palmer JG, Duncan RP, Stewart GH (2001). Climate change and tree-ring relationships of Nothofagus menziesii tree-line forests. Canadian Journal of Forest Research, 31, 1981-1991.
DOI URL |
[6] |
Deslauriers A, Morin H, Begin Y (2003). Cellular phenology of annual ring formation of Abies balsamea in the Quebec boreal forest (Canada). Canadian Journal of Forest Research, 33, 190-200.
DOI URL |
[7] |
Deslauriers A, Rossi S, Anfodillo T, Saracino A (2008). Cambial phenology, wood formation and temperature thresholds in two contrasting years at high altitude in southern Italy. Tree Physiology, 28, 863-871.
PMID |
[8] | Du XL, Du F, Zeng H, Chen Y, Yao Y, Zhang H, Li ZY (2010). A study on the community of Abies georgei var. smithii in Jiaozi Mountain Nature Reserve. Journal of Yunnan University (Natural Sciences Edition), 32, 358-364. |
[杜小浪, 杜凡, 曾辉, 陈勇, 姚莹, 张辉, 李朝阳 (2010). 轿子山自然保护区急尖长苞冷杉林群落特征研究. 云南大学学报(自然科学版), 32, 358-364.] | |
[9] |
Elliott GP, Bailey SN, Cardinal SJ (2021). Hotter drought as a disturbance at upper treeline in the southern rocky mountains. Annals of the American Association of Geographers, 111, 756-770.
DOI URL |
[10] |
Gao LL, Gou XH, Deng Y, Yang MX, Zhang F (2017). Assessing the influences of tree species, elevation and climate on tree-ring growth in the Qilian Mountains of northwest China. Trees, 31, 393-404.
DOI URL |
[11] |
Gruber A, Baumgartner D, Zimmermann J, Oberhuber W (2008). Temporal dynamic of wood formation in Pinus cembra along the alpine treeline ecotone and the effect of climate variables. Trees, 23, 623-635.
DOI URL |
[12] | Häsler R, Streule A, Turner H (1999). Shoot and root growth of young Larix decidua in contrasting microenvironments near the alpine timberline. Phyton-Annales Rei Botanicae, 39, 47-52. |
[13] | Huang JG, Ma QQ, Rossi S, Biondi F, Deslauriers A, Fonti P, Liang EY, Mäkinen H, Oberhuber W, Rathgeber CBK, Tognetti R, Treml V, Yang B, Zhang JL, Antonucci S, et al. (2020). Photoperiod and temperature as dominant environmental drivers triggering secondary growth resumption in Northern Hemisphere conifers. Proceedings of the National Academy of Sciences of the United States of America, 117, 20645-20652. |
[14] |
James JC, Grace J, Hoad SP (1994). Growth and photosynthesis of Pinus sylvestris at its altitudinal limit in Scotland. Journal of Ecology, 82, 297-306.
DOI URL |
[15] |
Jiménez-Noriega MS, López-Mata L, Terrazas T (2021). Cambial activity and phenology in three understory species along an altitude gradient in Mexico. Forests, 12, 506. DOI: 10.3390/f12040506.
DOI |
[16] |
Jochner M, Bugmann H, Nötzli M, Bigler C (2018). Tree growth responses to changing temperatures across space and time: a fine-scale analysis at the treeline in the Swiss Alps. Trees, 32, 645-660.
DOI URL |
[17] | Körner C (2012). Alpine Treelines: Functional Ecology of the Global High Elevation Tree Limits. Springer-Verlag, Heidelberg. |
[18] |
Körner C, Paulsen J (2004). A world-wide study of high altitude treeline temperatures. Journal of Biogeography, 31, 713-732.
DOI URL |
[19] | Lenz A, Hoch G, Körner C (2013). Early season temperature controls cambial activity and total tree ring width at the alpine treeline. Plant Ecology & Diversity, 6, 365-375. |
[20] |
Li XX, Liang EY, Gričar J, Rossi S, Čufar K, Ellison AM (2017). Critical minimum temperature limits xylogenesis and maintains treelines on the southeastern Tibetan Plateau. Science Bulletin, 62, 804-812.
DOI URL |
[21] | Li ZY, Liu K, Chen Y, Yao Y, Du XL, Zhang H (2010). Studies on the vegetation form and distribution characteristics in Jiaozishan Nature Reserve. Journal of Shandong Forestry Science and Technology, 40(2), 32-35. |
[李朝阳, 刘恺, 陈勇, 姚莹, 杜小浪, 张辉 (2010). 轿子山自然保护区植被类型及其分布特点研究. 山东林业科技, 40(2), 32-35.] | |
[22] |
Lin YT, Whitman WB, Coleman DC, Jien SH, Wang HC, Chiu CY (2021). Soil bacterial communities at the treeline in subtropical alpine areas. CATENA, 201, 105205. DOI: 10.1016/j.catena.2021.105205.
DOI |
[23] |
Liu B, Li Y, Eckstein D, Zhu LP, Dawadi B, Liang EY (2013). Has an extending growing season any effect on the radial growth of Smith fir at the timberline on the southeastern Tibetan Plateau? Trees, 27, 441-446.
DOI URL |
[24] |
Luo TX, Liu XS, Zhang L, Li X, Pan YD, Wright IJ (2018). Summer solstice marks a seasonal shift in temperature sensitivity of stem growth and nitrogen-use efficiency in cold-limited forests. Agricultural and Forest Meteorology, 248, 469-478.
DOI URL |
[25] |
Malik R, Rossi S, Sukumar R (2020). Cambial phenology in Abies pindrow (Pinaceae) along an altitudinal gradient in northwestern Himalaya. IAWA Journal, 41, 186-201.
DOI URL |
[26] |
McIntyre S, Lavorel S, Landsberg J, Forbes TDA (1999). Disturbance response in vegetation—Towards a global perspective on functional traits. Journal of Vegetation Science, 10, 621-630.
DOI URL |
[27] |
Moser L, Fonti P, Büntgen U, Esper J, Luterbacher J, Franzen J, Frank D (2009). Timing and duration of European larch growing season along altitudinal gradients in the Swiss Alps. Tree Physiology, 30, 225-233.
DOI URL |
[28] |
Oberhuber W (2004). Influence of climate on radial growth of Pinus cembra within the alpine timberline ecotone. Tree Physiology, 24, 291-301.
PMID |
[29] | Quinn GP, Keough MJ (2002). Experimental Design and Data Analysis for Biologists. Cambridge University Press, Cambridge, UK. |
[30] |
Rahman MH, Kudo K, Yamagishi Y, Nakamura Y, Nakaba S, Begum S, Nugroho WD, Arakawa I, Kitin P, Funada R (2020). Winter-spring temperature pattern is closely related to the onset of cambial reactivation in stems of the evergreen conifer Chamaecyparis pisifera. Scientific Reports, 10, 14341. DOI: 10.1038/S41598-020-70356-9.
DOI |
[31] |
Rathgeber CBK, Rossi S, Bontemps JD (2011). Cambial activity related to tree size in a mature silver-fir plantation. Annals of Botany, 108, 429-438.
DOI PMID |
[32] |
Rossi S, Anfodillo T, Čufar K, Cuny HE, Deslauriers A, Fonti P, Frank D, Gričar J, Gruber A, Huang JG, Jyske T, Kašpar J, King G, Krause C, Liang E et al. (2016). Pattern of xylem phenology in conifers of cold ecosystems at the Northern Hemisphere. Global Change Biology, 22, 3804-3813.
DOI PMID |
[33] |
Rossi S, Deslauriers A, Anfodillo T, Carraro V (2007). Evidence of threshold temperatures for xylogenesis in conifers at high altitudes. Oecologia, 152, 1-12.
DOI PMID |
[34] |
Rossi S, Deslauriers A, Anfodillo T, Morin H, Saracino A, Motta R, Borghetti M (2006). Conifers in cold environments synchronize maximum growth rate of tree-ring formation with day length. New Phytologist, 170, 301-310.
PMID |
[35] |
Rossi S, Deslauriers A, Griçar J, Seo JW, Rathgeber CB, Anfodillo T, Morin H, Levanic T, Oven P, Jalkanen R (2008). Critical temperatures for xylogenesis in conifers of cold climates. Global Ecology and Biogeography, 17, 696-707.
DOI URL |
[36] |
Sakio H, Masuzawa T (1985). Ecological studies on the timberline of Mt. Fuji. The Botanical Magazine, 98, 15-28.
DOI URL |
[37] |
Splechtna BE, Dobrys J, Klinka K (2000). Tree-ring characteristics of subalpine fir (Abies lasiocarpa (Hook.) Nutt.) in relation to elevation and climatic fluctuations. Annals of Forest Science, 57, 89-100.
DOI URL |
[38] |
Stangler DF, Kahle HP, Raden M, Larysch E, Seifert T, Spiecker H (2021). Effects of intra-seasonal drought on kinetics of tracheid differentiation and seasonal growth dynamics of Norway spruce along an elevational gradient. Forests, 12, 274. DOI: 10.3390/f12030274.
DOI |
[39] |
Treml V, Kašpar J, Kuželová H, Gryc V (2015). Differences in intra-annual wood formation in Picea abies across the treeline ecotone, Giant Mountains, Czech Republic. Trees, 29, 515-526.
DOI URL |
[40] |
Usmani A, Silvestro R, Zhang SK, Huang JG, Saracino A, Rossi S (2020). Ecotypic differentiation of black spruce populations: temperature triggers bud burst but not bud set. Trees, 34, 1313-1321.
DOI URL |
[41] |
Vaganov EA, Hughes MK, Kirdyanov AV, Schweingruber FH, Silkin PP (1999). Influence of snowfall and melt timing on tree growth in subarctic Eurasia. Nature, 400, 149-151.
DOI URL |
[42] |
Verrall B, Pickering CM (2020). Alpine vegetation in the context of climate change: a global review of past research and future directions. Science of the Total Environment, 748, 141344. DOI: 10.1016/j.scitotenv.2020.141344.
DOI |
[43] |
Wei CY, Karger DN, Wilson AM (2020). Spatial detection of alpine treeline ecotones in the Western United States. Remote Sensing of Environment, 240, 111672. DOI: 10.1016/j.rse.2020.111672.
DOI |
[44] | Wilson BF, Wodzicki TJ, Zahner R (1966). Differentiation of cambial derivatives: proposed terminology. Forest Science, 12, 438-440. |
[45] | Yang JW, Cooper DJ, Zhang X, Song WQ, Li ZS, Zhang YD, Zhao HY, Han SJ, Wang XC (2021). Climatic controls of Pinus pumila radial growth along an altitude gradient. New Forests, 2, 319-335. |
[46] |
Zhai LH, Bergeron Y, Huang JG, Berninger F (2012). Variation in intra-annual wood formation, and foliage and shoot development of three major Canadian boreal tree species. American Journal of Botany, 99, 827-837.
DOI PMID |
[47] |
Zhang JZ, Alexander MR, Gou XH, Deslauriers A, Fonti P, Zhang F, Pederson N (2020). Extended xylogenesis and stem biomass production in Juniperus przewalskii Kom. during extreme late-season climatic events. Annals of Forest Science, 77, 1-11.
DOI URL |
[48] |
Zhang JZ, Gou XH, Pederson N, Zhang F, Niu HG, Zhao SD, Wang F (2018). Cambial phenology in Juniperus przewalskii along different altitudinal gradients in a cold and arid region. Tree Physiology, 38, 840-852.
DOI URL |
[49] |
Zhang YP, Jiang Y, Wen Y, Ding XY, Wang B, Xu JL (2019). Comparing primary and secondary growth of co-occurring deciduous and evergreen conifers in an alpine habitat. Forests, 10, 574. DOI: 10.3390/f10070574.
DOI |
[50] |
Zhou P, Huang JG, Liang HX, Rossi S, Bergeron Y, Shishov VV, Jiang SW, Kang J, Zhu HX, Dong ZC (2021). Radial growth of Larix sibirica was more sensitive to climate at low than high altitudes in the Altai Mountains, China. Agricultural and Forest Meteorology, 304, 108392. DOI: 10.1016/j.agrformet.2021.108392.
DOI |
[1] | 刘美君, 陈秋文, 吕金林, 李国庆, 杜盛. 黄土丘陵区辽东栎和刺槐树干径向生长与微变化季节动态特征[J]. 植物生态学报, 2023, 47(2): 227-237. |
[2] | 李一丁, 桑清田, 张灏, 刘龙昌, 潘庆民, 王宇, 刘伟, 袁文平. 内蒙古半干旱地区空气和土壤加湿对幼龄樟子松生长的影响[J]. 植物生态学报, 2022, 46(9): 1077-1085. |
[3] | 李肖, PIALUANG Bounthong, 康文辉, 冀晓东, 张海江, 薛治国, 张志强. 近几十年来冀西北山地白桦次生林径向生长对气候变化的响应[J]. 植物生态学报, 2022, 46(8): 919-931. |
[4] | 季倩雯, 郑成洋, 张磊, 曾发旭. 河北塞罕坝樟子松径向生长动态变化及其与气象因子的关系[J]. 植物生态学报, 2020, 44(3): 257-265. |
[5] | 康剑, 梁寒雪, 蒋少伟, 朱火星, 周鹏, 黄建国. 竞争和气候对新疆阿尔泰山西伯利亚五针松树木径向生长的影响[J]. 植物生态学报, 2020, 44(12): 1195-1202. |
[6] | 郭霞丽, 余碧云, 梁寒雪, 黄建国. 结合微树芯方法的树木生长生理生态学研究进展[J]. 植物生态学报, 2017, 41(7): 795-804. |
[7] | 常永兴, 陈振举, 张先亮, 白学平, 赵学鹏, 李俊霞, 陆旭. 气候变暖下大兴安岭落叶松径向生长对温度的响应[J]. 植物生态学报, 2017, 41(3): 279-289. |
[8] | 张军周, 勾晓华, 赵志千, 刘文火, 张芬, 曹宗英, 周非飞. 树轮生态学研究中微树芯石蜡切片制作的方法探讨[J]. 植物生态学报, 2013, 37(10): 972-977. |
[9] | 董满宇, 江源, 杨浩春, 王明昌, 张文涛, 郭媛媛. 芦芽山林线白杄生长季径向生长动态[J]. 植物生态学报, 2012, 36(9): 956-964. |
[10] | 张春雨, 高露双, 赵亚洲, 贾玉珍, 李金鑫, 赵秀海. 东北红豆杉雌雄植株径向生长对邻体竞争和气候因子的响应[J]. 植物生态学报, 2009, 33(6): 1177-1183. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19