植物生态学报 ›› 2017, Vol. 41 ›› Issue (3): 279-289.DOI: 10.17521/cjpe.2016.0222
• 研究论文 • 下一篇
常永兴, 陈振举*(), 张先亮, 白学平, 赵学鹏, 李俊霞, 陆旭
出版日期:
2017-03-10
发布日期:
2017-04-12
通讯作者:
陈振举
作者简介:
* 通信作者Author for correspondence (E-mail:基金资助:
Yong-Xing CHANG, Zhen-Ju CHEN*(), Xian-Liang ZHANG, Xue-Ping BAI, Xue-Peng ZHAO, Jun-Xia LI, Xu LU
Online:
2017-03-10
Published:
2017-04-12
Contact:
Zhen-Ju CHEN
About author:
KANG Jing-yao(1991-), E-mail: 摘要:
大兴安岭是我国气候变暖的敏感地区。为比较在升温过程中不同地区落叶松(Larix gmelinii)径向生长对温度的响应差异, 在大兴安岭主脉南段、中段和北段进行树木年轮取样, 建立了各点年轮宽度年表, 根据年表第一主成分载荷系数分类最终合成南部、中部和北部各区年轮指数。利用相关函数分析了落叶松径向生长与温度变化的关系, 结合主成分分析对比了不同地区树木年轮宽度变化对温度的响应差异。结果表明: 落叶松径向生长对温度变化的响应呈现明显的南北差异(中部>北部>南部); 南部年轮指数与上年11月到当年4月的平均温度显著相关, 中部年轮指数与上年生长季(6-8月)和当年3-10月的平均温度显著负相关, 北部年轮指数与生长季前(4-5月)的平均温度极显著正相关。气候变暖背景下, 高温引起的区域暖干化使土壤水分成为限制落叶松径向生长的主要因子, 土壤干旱程度加剧使落叶松生长对温度变化的响应增强。胸高断面积增量指示的落叶松生产力经历了从响应低温胁迫到响应高温引起的水分胁迫的转变。未来几十年, 若温度持续升高, 大兴安岭地区落叶松径向生长量将呈南部和中部降低、北部升高的趋势。
常永兴, 陈振举, 张先亮, 白学平, 赵学鹏, 李俊霞, 陆旭. 气候变暖下大兴安岭落叶松径向生长对温度的响应. 植物生态学报, 2017, 41(3): 279-289. DOI: 10.17521/cjpe.2016.0222
Yong-Xing CHANG, Zhen-Ju CHEN, Xian-Liang ZHANG, Xue-Ping BAI, Xue-Peng ZHAO, Jun-Xia LI, Xu LU. Responses of radial growth to temperature in Larix gmelinii of the Da Hinggan Ling under climate warming. Chinese Journal of Plant Ecology, 2017, 41(3): 279-289. DOI: 10.17521/cjpe.2016.0222
图1 研究区气象站和采样点分布位置。AEL, 阿尔山采样点; MHL, 漠河采样点; THL, 塔河采样点; TLH, 图里河采样点; YTL, 伊图里河采样点。
Fig. 1 Locations of sampling sites and meteorological stations in the study area. AEL, sampling site of Arxan; MHL, sampling site of Mohe; THL, sampling site of Tahe; TLH, sampling site of Tulihe; YTL, sampling site of Yitulihe.
图2 研究区月平均温度(曲线)和月降水量(柱形)。M, 大兴安岭主脉中段; N, 大兴安岭主脉北段; S, 大兴安岭主脉南段。
Fig. 2 Monthly mean temperature (curves) and monthly precipitation (bars) in the study area. M, middle section of the Da Hinggan Ling; N, northern section of the Da Hinggan Ling; S, southern section of the Da Hinggan Ling.
采样点 Sampling site | 阿尔山 Arxan | 图里河 Tulihe | 伊图里河 Yitulihe | 塔河 Tahe | 漠河 Mohe | |
---|---|---|---|---|---|---|
年表代号 Codes of chronologies | AEL | TLH | YTL | THL | MHL | |
样芯/树 Number of cores/sample trees | 71/33 | 64/31 | 63/31 | 85/50 | 68/39 | |
平均敏感度 Mean sensitivity | 0.191 | 0.196 | 0.149 | 0.152 | 0.180 | |
标准偏差 Standard deviation | 0.226 | 0.230 | 0.163 | 0.195 | 0.206 | |
样本总体代表性 Expressed population signal | 0.957 | 0.976 | 0.928 | 0.964 | 0.974 | |
信噪比 Signal to noise ratio | 22.267 | 40.567 | 12.846 | 26.813 | 37.763 | |
成分载荷矩阵 Component matrix | PC1 PC2 | 0.431 0.694 | 0.890 0.304 | 0.820 0.219 | 0.722 -0.525 | 0.668 -0.555 |
表1 落叶松年表统计特征
Table 1 Statistical characteristics in the Larix gmelinii chronologies
采样点 Sampling site | 阿尔山 Arxan | 图里河 Tulihe | 伊图里河 Yitulihe | 塔河 Tahe | 漠河 Mohe | |
---|---|---|---|---|---|---|
年表代号 Codes of chronologies | AEL | TLH | YTL | THL | MHL | |
样芯/树 Number of cores/sample trees | 71/33 | 64/31 | 63/31 | 85/50 | 68/39 | |
平均敏感度 Mean sensitivity | 0.191 | 0.196 | 0.149 | 0.152 | 0.180 | |
标准偏差 Standard deviation | 0.226 | 0.230 | 0.163 | 0.195 | 0.206 | |
样本总体代表性 Expressed population signal | 0.957 | 0.976 | 0.928 | 0.964 | 0.974 | |
信噪比 Signal to noise ratio | 22.267 | 40.567 | 12.846 | 26.813 | 37.763 | |
成分载荷矩阵 Component matrix | PC1 PC2 | 0.431 0.694 | 0.890 0.304 | 0.820 0.219 | 0.722 -0.525 | 0.668 -0.555 |
图3 区域平均温度(Tr)、伊万诺夫干湿指数(K值)、冻结指数(F值)、胸高断面积增量(BAI)的变化及其31年滑动趋势系数。A, 区域平均温度及其11年滑动平均值(11 Mov)。B, K值。C, F值。D, 落叶松胸高断面积增量。E、F、G、H分别为Tr、K值、F值、BAI的趋势变化。M, 大兴安岭主脉中段; N, 大兴安岭主脉北段; S, 大兴安岭主脉南段。
Fig. 3 Changes in the regional mean temperature (Tr), Mr Ivanov dry wet index (K value), freezing index (F value), the basal area increment (BAI) and their 31-year moving trend coefficients. A, Regional mean temperature and its 11-year moving mean (11 Mov). B, K value of various parts. C, F value of various parts. D, The basal area increment in Larix gmelinii in various parts. E, F, G and H presented the tendency coefficient of Tr, K value, F value and BAI. M, middle section of the Da Hinggan Ling; N, northern section of the Da Hinggan Ling; S, southern section of the Da Hinggan Ling.
图4 落叶松年轮宽度指数与温度的相关关系。A, 大兴安岭南部落叶松年轮宽度指数与温度的相关系数。B, 大兴安岭中部落叶松年轮宽度指数与温度的相关系数。 C, 大兴安岭北部落叶松年轮宽度指数与温度的相关系数。P6, 前一年的6月; P7, 前一年的7月; P8, 前一年的8月; P9, 前一年的9月; P10, 前一年的10月; P11, 前一年的11月; P12, 前一年的12月; BG, 生长季前; CG, 当年生长季; PA, 上年秋季; PG, 上年生长季; PW, 上年冬季; Tm, 月/季度平均温度; Tmax, 月/季度平均最高温度; Tmin, 月/季度平均最低温度。
Fig. 4 Correlations between tree-ring width index in Larix gmelinii and temperature. A, Correlation coefficients between tree-ring width index and temperature in the southern section of the Da Hinggan Ling. B, Correlation coefficients between tree-ring width index and temperature in the middle section of the Da Hinggan Ling. C, Correlation coefficients between tree-ring width index and temperature in the northern section of the Da Hinggan Ling. P6, last June; P7, last July; P8, last August; P9, last September; P10, last October; P11, last November; P12, last December; BG, pre-growth season; CG, current growth season; PA, last autumn; PG, last growth season; PW, last winter. Tm, mean temperature on a monthly and seasonal basis; Tmax, mean maximum temperature on a monthly and seasonal basis; Tmin, mean minimum temperature on a monthly and seasonal basis.
图5 落叶松年轮宽度指数对温度变化响应的稳定性。A, 大兴安岭南部落叶松年轮宽度指数与11-4月区域平均温度的31年滑动响应系数和11-4月区域平均温度的趋势系数随时间的变化。B, 大兴安岭中部落叶松年轮宽度指数与3-10月区域平均温度的31年滑动响应系数和3-10月区域平均温度的趋势系数随时间的变化。C, 大兴安岭北部落叶松年轮宽度指数与4-5月区域平均温度的31年滑动响应系数和4-5月区域平均温度趋势系数随时间的变化。柱形为31年滑动响应系数, 曲线为温度趋势系数。
Fig. 5 The climate response stabilities of tree-ring width index to temperature variations in Larix gmelinii. A, Temporal changes of 31-year moving response coefficient between tree-ring width index in L. gmelinii in the southern part of the Da Hinggan Ling and the regional mean temperature of November to April, together with the tendency coefficient of the regional mean temperature of November to April. B, Temporal changes of 31-year moving response coefficient between tree-ring width index in L. gmelinii in the middle part of the Da Hinggan Ling and the regional mean temperature of March to October, together with the tendency coefficient of the regional mean temperature of March to October. C, Temporal changes of 31-year moving response coefficient between tree-ring width index in L. gmelinii in the northern part of the Da Hinggan Ling and the regional mean temperature of April to May, together with the tendency coefficient of the regional mean temperature of April to May. Cylindrical bars represent the 31-year moving response coefficients, and the thick curves represented the thermal tendency coefficients.
[1] | Alverson KD, Oldfield F, Bradley RS (2000). Past global changes and their significance for the future. Journal of Quaternary Science, 15, 657-658. |
[2] | Andreu L, Gutierrez E, Macias M, Ribas M, Bosch O, Camarero JJ (2007). Climate increases regional tree- growth variability in Iberian pine forests. Global Change Biology, 13, 807-815. |
[3] | Biondi F, Waikul K (2004). Dendroclim2002: A C++ program for statistical calibration of climate signals in tree-ring chronologies. Computers and Geosciences, 30, 303-311. |
[4] | Branning A (1999). Dendroclimatological potential of drought- sensitive tree stands in southern Tibet for the reconstru¬ction of monsoonal activity. Lawa Journal, 20, 325-338. |
[5] | Briffa KR, Schweingruber FH, Jones PD, Osborn TJ, Shiyatov SG, Vaganov EA (2010). Reduced sensitivity of recent tree-growth to temperature at high northern latitudes. Nature, 391, 678-682. |
[6] | Bryukhanova M, Fonti P, Kirdyanov A, Saurer M, Siegwolf R, Pochebit N, Sidorova O, Prokushkin A (2013). Growth of trees on permafrost: Habitat driven response to climate. EGU General Assembly, 15, 469-473. |
[7] | Chen ZJ, Zhang XL, He XY, Davi NK, Cui MX, Peng JJ (2013). Extension of summer (Jun.-August) temperature records for northern Inner Mongolia (1715-2008), China using tree rings. Quaternary International, 283, 21-29. |
[8] | Cook ER (1985). A Time Series Analysis Approach to Tree Ring Standardization. University of Arizona Press, Tucson, USA. |
[9] | Cook ER, Kairiukstis LA (1990). Methods of Dendrochro¬nology: Applications in the Environment Sciences. Kluwer Academic Publishers, Boston, USA. |
[10] | Dai JB, Li EY (1981). Influence of snow cover to the ground temperature in the permafrost region in the northern part of the Great Xinan Mountain. Journal of Glaciology and Geocryology, 3(1), 10-18. (in Chinese with English abstract)[戴竞波, 李恩英 (1981). 大兴安岭北部多年冻土地区雪盖对地温的影响. 冰川冻土, 3(1), 10-18.] |
[11] | D’Arrigo R, Wilson R, Liepert B, Cherubini P (2008). On the “divergence problem” in northern forests: A review of the tree-ring evidence and possible causes. Global and Planetary Change, 60, 289-305. |
[12] | Fang KY, Yang B, Zheng HZ, Li YJ, Zhou FF, Dong ZP, Cao CF, Li DW, Chen YJ (2015). Applying tree-ring methods in the global changes studies. Quaternary Sciences, 35, 1283-1893. (in Chinese with English abstract)[方克艳, 杨保, 郑怀舟, 李颖俊, 周非飞, 董志鹏, 曹春福, 李大稳, 陈亚君 (2015). 树轮学研究方法及其在全球变化中的应用. 第四纪研究, 35, 1283-1893.] |
[13] | Fritts HC (1976). Tree Rings and Climate. Academic Press, New York. |
[14] | Gao YG, Zhao HY, Gao F, Zhu HX, Qu HH, Zhao F (2016). Climate change trend in future and its influence on wetlands in the Great Khingan Mountains. Journal of Glaciology and Geocryology, 38(1), 47-56. (in Chinese with English abstract)[高永刚, 赵慧颖, 高峰, 朱海霞, 曲辉辉, 赵放 (2016). 大兴安岭区域未来气候变化趋势及其对湿地的影响. 冰川冻土, 38(1), 47-56.] |
[15] | Holmes RL (1983). Computer-assisted quality control in tree- ring dating and measurement. Tree-Ring Bulletin, 43, 69-78. |
[16] | IPCC (Intergovernmental Panel on Climate Change) (2013). Climate Change 2013: The Physical Science Basis. Cambridge University Press, Cambridge, UK. |
[17] | Jacoby GC, D’Arrigo RD (1995). Tree ring width and density evidence of climatic and potential forest change in Alaska. Global Biogeochemical Cycles, 9, 227-234. |
[18] | Kujansuu J, Yasue K, Koike T, Abaimov AP, Kajimoto M, Matsuura Y (2007). Climatic responses of tree-ring widths of Larix gmelinii on contrasting north-facing and south-facing slopes in central Siberia. Journal of Wood Science, 53, 87-93. |
[19] | Li F, Zhou GS, Cao MC (2006). Responses of Larix gmelinii geographical distribution to future climate change: A simulation study. Chinese Journal of Applied Ecology, 17, 2255-2260. (in Chinese with English abstract)[李峰, 周广胜, 曹铭昌 (2006). 兴安落叶松地理分布对气候变化响应的模拟. 应用生态学报, 17, 2255-2260.] |
[20] | Li T, He XY, Chen ZJ (2014). Tree growth responses of Mongolian oak (Quercus mongolica) to climate change in southern Northeast: A case study in Qianshan Mountains. Chinese Journal of Applied Ecology, 25, 1841-1848. (in Chinese with English abstract)[李腾, 何兴元, 陈振举 (2014). 东北南部蒙古栎径向生长对气候变化的响应——以千山地区为例. 应用生态学报, 25, 1841-1848.] |
[21] | Li XE (2012). The Chorography of Forestry Management Bureau of the Da Hinggan Range, Forest Industry Enterprise Group of Nei Mongol, China. Inner Mongolian Culture Press, Hulun Buir, Nei Mongol. (in Chinese)[李喜恩 (2012). 中国内蒙古森工集团内蒙古大兴安岭林管局志. 内蒙古文化出版社, 内蒙古呼伦贝尔.] |
[22] | Linares JC, Tiscar PA (2010). Climate change impacts and vulnerability of the southern populations of Pinus nigra subsp. salzmannii. Tree Physiology, 30, 795-806. |
[23] | Liu HB, Shao XM (2003). Reconstruction of early-spring temperature of Qinling Mountains using tree-ring chronologies. Acta Geographica Sinica, 58, 879-884. (in Chinese with English abstract)[刘洪滨, 邵雪梅 (2003). 利用树轮重建秦岭地区历史时期初春温度变化. 地理学报, 58, 879-884.] |
[24] | Liu YL, Zhu TW (2009). The Chorography of Mohe County. Heilongjiang People’s Publishing House, Harbin. (in Chinese)[刘艳玲, 朱天伟 (2009). 漠河县志. 黑龙江人民出版社, 哈尔滨.] |
[25] | Lloyd AH, Fastie CL (2002). Spacial and temporal variability in the growth and climate response of treeline trees in Alaska. Climate Change, 52, 481-509. |
[26] | Lü JJ, Li XZ, Hu YM, Wang XW, Sun J (2008). Application of frost number model in northeast China permafrost regionalization. Chinese Journal of Applied Ecology, 19, 2271-2276. (in Chinese with English abstract)[吕久俊, 李秀珍, 胡远满, 王宪伟, 孙菊 (2008). 冻结数模型在中国东北多年冻土分区中的应用. 应用生态学报, 19, 2271-2276.] |
[27] | Melvin TM, Briffa KR (2008). A “signal-free” approach to dendroclimatic standardisation. Dendrochronologia, 26, 71-86. |
[28] | Nelson FE, Anisimov OA (1997). Permafrost zonation and climate change in the northern hemisphere: Results from transient general circulation models. Climate Change, 35, 241-258. |
[29] | Oberhuber W (2004). Influence of climate on radial growth of Pinus cembra within the alpine timberline ecotone. Tree Physiology, 24, 291-301. |
[30] | Sano M, Furuta F, Sweda T (2009). Tree-ring-width chronology of Larix gemelinii as an indicator of changes in early summer temperature in east-central Kamchatka. Journal of Forest Research, 14, 147-154. |
[31] | Sugimoto A, Yanagisawa N, Naito D, Fujita N, Maximov TC (2002). Importance of permafrost as a source of water for plants in east Siberian taiga. Ecological Research, 17, 493-503. |
[32] | Sun GY, YU SP, Wang HX (2007). Causes, south borderline and surbareas of permafrost in Da Hinggan Mountains and Xiao Hinggan Mountains. Acta Geographica Sinica, 27(1), 68-74. (in Chinese with English abstract)[孙广友, 于少鹏, 王海霞 (2007). 大小兴安岭多年冻土的主导成因及分布模式. 地理科学, 27(1), 68-74.] |
[33] | Wang LL, Shao XM, Huang L, Liang EY (2005). Tree-ring characteristics of Larix gmelinii and Pinus sylvestris var. mongolica and their response to climate in Mohe, China. Acta Phytoecologica Sinica, 29, 380-385. (in Chinese with English abstract)[王丽丽, 邵雪梅, 黄磊, 梁尔源 (2005). 黑龙江漠河兴安落叶松与樟子松树轮生长特性及其对气候的响应. 植物生态学报, 29, 380-385.] |
[34] | Wang SW, Ye JL (1995). A analysis of global warming during the last one hundred years. Chinese Journal of Atmospheric Sciences, 19, 545-553. (in Chinese with English abstract)[王绍武, 叶瑾琳 (1995). 近百年全球气候变暖的分析. 大气科学, 19, 545-553.] |
[35] | Wang SW, Ye JL, Gong DY, Zhu JH, Yao CD (1998). Con¬struction of mean annual temperature series for the last one hundred years in China. Quarterly Journal of Applied Meteorology, 9, 392-401. (in Chinese with English abstract)[王绍武, 叶瑾琳, 龚道溢, 朱锦红, 姚檀栋 (1998). 近百年中国年气温序列的建立. 应用气象学报, 9, 392-401.] |
[36] | Wang XC, Zhang YD, Mcrae DJ (2009). Spatial and age- dependent tree-ring growth responses of Larix gmelinii to climate in northeastern China. Trees, 23, 875-885. |
[37] | Wei J, Ma ZG (2003). Comparison of Palmer drought severity index, percentage of precipitation anomaly and surface humid index. Acta Geographica Sinica, 58, 117-124. (in Chinese with English abstract)[卫捷, 马柱国 (2003). Palmer干旱指数、地表湿润指数与降水距平的比较. 地理学报, 58, 117-124.] |
[38] | Wu XC, Liu HY, Guo DL, Anenkhonov OA, Badmeava NK, Sandanov DV (2012). Growth decline linked to warming-induced limitation in Hemi-Boreal forests. PLOS ONE, 7, e42619. doi: 10.1371/j.pone.0042619. |
[39] | Wu XD (1990). Tree-Rings and Climate Change. China Meteorological Press, Beijing. (in Chinese)[吴祥定 (1990). 树木年轮与气候变化. 气象出版社, 北京.] |
[40] | Yang ZX, Zhou GS, Yin XJ, Jia BR (2014). Geographic distribution of Larix gmelinii natural forest in China and its climatic suitability. Chinese Journal of Ecology, 33, 1429-1436. (in Chinese with English abstract)[杨志香, 周广胜, 殷晓洁, 贾丙瑞 (2014). 中国兴安落叶松天然林地理分布及其气候适宜性. 生态学杂志, 33, 1429-1436.] |
[41] | Yu DP, Wang SZ, Tang LN, Dai LM, Wang QL, Wang SX (2005). Relationship between tree-ring chronology of Larix olgensis in Changbai Mountains and the climate change. Chinese Journal of Applied Ecology, 16, 14-20. (in Chinese with English abstract)[于大炮, 王顺忠, 唐立娜, 代力民, 王庆礼, 王绍先 (2005). 长白山北坡落叶松年轮年表及其与气候变化的关系. 应用生态学报, 16, 14-20.] |
[42] | Yuan YJ, Li JF (1999). Reconstruction and analysis of 450 year’s winter temperature series in Ürümqi River source of Tianshan Mountains. Journal of Glaciology and Geocry¬ology, 21(1), 64-70. (in Chinese with English abstract)[袁玉江, 李江风 (1999). 天山乌鲁木齐河源450 a冬季温度序列的重建与分析. 冰川冻土, 21(1), 64-70.] |
[43] | Zhang QB (1994). The responses of vegetation on northern part of Mt. Daxinganling to strongly enforced permafrost environment and environmental disturbances. Journal of Glaciology and Geocryology, 16(2), 97-103. (in Chinese with English abstract)[张齐兵 (1994). 大兴安岭北部植被对高胁迫冻土环境及干扰的响应. 冰川冻土, 16(2), 97-103.] |
[44] | Zhang XL, Zhang XL, Cui MX, Ma YJ, Wu T, Chen ZJ, Ding WH (2010). Larix gmelinii tree-ring width chronology and its response to climate change in Kuduer, Great Xing’an Mountains. Chinese Journal of Applied Ecology, 21, 2501-2507. (in Chinese with English abstract)[张先亮, 崔明星, 马艳军, 吴涛, 陈振举, 丁玮航 (2010). 大兴安岭库都尔地区兴安落叶松年轮宽度年表及其与气候变化的关系. 应用生态学报, 21, 2501-2507.] |
[45] | Zhu B (2000). The Chorography of Tahe County. Zhonghua Book Company, Beijing. (in Chinese)[朱波 (2000). 塔河县志. 中华书局, 北京.] |
[1] | 李文博 孙龙 娄虎 于澄 韩宇 胡同欣. 火干扰对兴安落叶松种子萌发的影响[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 臧妙涵, 王传宽, 梁逸娴, 刘逸潇, 上官虹玉, 全先奎. 基于纬度移栽的落叶松叶、枝、根生态化学计量特征对气候变暖的响应[J]. 植物生态学报, 2024, 48(4): 469-482. |
[3] | 梁逸娴, 王传宽, 臧妙涵, 上官虹玉, 刘逸潇, 全先奎. 落叶松径向生长和生物量分配对气候变暖的响应[J]. 植物生态学报, 2024, 48(4): 459-468. |
[4] | 秦文宽, 张秋芳, 敖古凯麟, 朱彪. 土壤有机碳动态对增温的响应及机制研究进展[J]. 植物生态学报, 2024, 48(4): 403-415. |
[5] | 牛一迪, 蔡体久. 大兴安岭北部次生林演替过程中物种多样性的变化及其影响因子[J]. 植物生态学报, 2024, 48(3): 349-363. |
[6] | 白雨鑫, 苑丹阳, 王兴昌, 刘玉龙, 王晓春. 东北地区3种桦木木质部导管特征对气候变化响应的趋同与差异[J]. 植物生态学报, 2023, 47(8): 1144-1158. |
[7] | 胡同欣, 李蓓, 李光新, 任玥霄, 丁海磊, 孙龙. 火烧黑碳对生长季兴安落叶松林外生菌根真菌群落物种组成的影响[J]. 植物生态学报, 2023, 47(6): 792-803. |
[8] | 刘美君, 陈秋文, 吕金林, 李国庆, 杜盛. 黄土丘陵区辽东栎和刺槐树干径向生长与微变化季节动态特征[J]. 植物生态学报, 2023, 47(2): 227-237. |
[9] | 和璐璐, 张萱, 章毓文, 王晓霞, 刘亚栋, 刘岩, 范子莹, 何远洋, 席本野, 段劼. 辽东山区不同坡向长白落叶松人工林树冠特征与林木生长关系[J]. 植物生态学报, 2023, 47(11): 1523-1539. |
[10] | 李一丁, 桑清田, 张灏, 刘龙昌, 潘庆民, 王宇, 刘伟, 袁文平. 内蒙古半干旱地区空气和土壤加湿对幼龄樟子松生长的影响[J]. 植物生态学报, 2022, 46(9): 1077-1085. |
[11] | 朱明阳, 林琳, 佘雨龙, 肖城材, 赵通兴, 胡春相, 赵昌佑, 王文礼. 云南轿子山不同海拔急尖长苞冷杉径向生长动态及其低温阈值[J]. 植物生态学报, 2022, 46(9): 1038-1049. |
[12] | 李肖, PIALUANG Bounthong, 康文辉, 冀晓东, 张海江, 薛治国, 张志强. 近几十年来冀西北山地白桦次生林径向生长对气候变化的响应[J]. 植物生态学报, 2022, 46(8): 919-931. |
[13] | 于海英, 杨莉琳, 付素静, 张志敏, 姚琦馥. 暖温带森林木本植物展叶始期对低温和热量累积变化的响应[J]. 植物生态学报, 2022, 46(12): 1573-1584. |
[14] | 李雪莹, 朱文泉, 李培先, 谢志英, 赵涔良. 气候变暖背景下青藏高原草本植物物候变化空间换时间预测[J]. 植物生态学报, 2020, 44(7): 742-751. |
[15] | 夏建阳, 鲁芮伶, 朱辰, 崔二乾, 杜莹, 黄昆, 孙宝玉. 陆地生态系统过程对气候变暖的响应与适应[J]. 植物生态学报, 2020, 44(5): 494-514. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19