植物生态学报 ›› 2022, Vol. 46 ›› Issue (9): 1077-1085.DOI: 10.17521/cjpe.2021.0481
李一丁1, 桑清田1, 张灏2, 刘龙昌1, 潘庆民3, 王宇1,*(), 刘伟3,*(), 袁文平4
收稿日期:
2021-12-17
接受日期:
2022-04-13
出版日期:
2022-09-20
发布日期:
2022-10-19
通讯作者:
王宇,刘伟
作者简介:
王宇:ORCID:0000-0003-2085-0064(王宇, yuwang911@163.com;基金资助:
LI Yi-Ding1, SANG Qing-Tian1, ZHANG Hao2, LIU Long-Chang1, PAN Qing-Min3, WANG Yu1,*(), LIU Wei3,*(), YUAN Wen-Ping4
Received:
2021-12-17
Accepted:
2022-04-13
Online:
2022-09-20
Published:
2022-10-19
Contact:
WANG Yu,LIU Wei
About author:
(Wang Y, yuwang911@163.com;Supported by:
摘要:
干旱半干旱区约占全球陆地总面积的30%, 植物生长对于水分变化的响应在此区域更为敏感。大气干旱和土壤干旱都会对植物生长产生影响, 目前关于这两者对植物生长的影响已有不少实验研究, 但具体的影响机制尚不清楚。该研究以幼龄樟子松(Pinus sylvestris var. mongolica)为研究对象, 通过设计改变空气湿度与土壤湿度的野外控制实验, 探究空气加湿与土壤加湿对幼龄樟子松生长特性的影响。 结果表明: 1)与对照相比, 空气加湿使饱和水汽压亏缺(VPD)降低了20.5%, 空气加湿和土壤加湿使土壤湿度分别增加了23.4%和21.3%。2)空气加湿显著增加了叶片密度, 土壤加湿显著加粗了枝条直径, 空气与土壤共同加湿对叶片和枝条的生长均有显著的促进作用。3)结合加湿处理对径向生长的影响及结构方程模型的结果发现, 土壤加湿可直接促进树干的径向生长, 空气加湿对径向生长的显著促进作用一方面是由于VPD降低的直接影响, 另一方面是由于空气加湿显著提高了土壤湿度。该研究揭示了半干旱地区幼龄樟子松生长对大气水分和土壤水分改变的响应差异。
李一丁, 桑清田, 张灏, 刘龙昌, 潘庆民, 王宇, 刘伟, 袁文平. 内蒙古半干旱地区空气和土壤加湿对幼龄樟子松生长的影响. 植物生态学报, 2022, 46(9): 1077-1085. DOI: 10.17521/cjpe.2021.0481
LI Yi-Ding, SANG Qing-Tian, ZHANG Hao, LIU Long-Chang, PAN Qing-Min, WANG Yu, LIU Wei, YUAN Wen-Ping. Effects of air and soil humidification on the growth of young Pinus sylvestris var. mongolica trees in semi-arid area of Nei Mongol, China. Chinese Journal of Plant Ecology, 2022, 46(9): 1077-1085. DOI: 10.17521/cjpe.2021.0481
图2 空气加湿和土壤加湿对饱和水汽压亏缺(VPD)(A)和土壤湿度(B)的影响(平均值±标准误)。A, 空气加湿; AS, 空气和土壤共同加湿; CK, 对照; S, 土壤加湿。不同小写字母表示处理间差异显著(p < 0.05)。
Fig. 2 Effects of air and soil humidification on vapor pressure deficit (VPD)(A) and soil moisture (B)(mean ± SE). A, air humidification; AS, air and soil co-humidification; CK, control; S, soil humidification. Different lowercase letters indicate significant difference among treatments (p < 0.05).
图3 空气加湿和土壤加湿对幼龄樟子松叶面积(A)、叶片密度(B)和枝条总叶面积(C)的影响(平均值±标准误)。A, 空气加湿; AS, 空气和土壤共同加湿; CK, 对照; S, 土壤加湿。不同小写字母表示处理间差异显著(p < 0.05)。
Fig. 3 Effects of air and soil humidification on leaf area (A), leaf number of one twig (B), and total leaf area on one twig (C) of young Pinus sylvestris var. mongolica trees (mean ± SE). A, air humidification; AS, air and soil co-humidification; CK, control; S, soil humidification. Different lowercase letters indicate significant difference among treatments (p < 0.05).
图4 幼龄樟子松叶片持水率的时间动态变化(平均值±标准误)。A, 空气加湿; AS, 空气和土壤共同加湿; CK,对照; S, 土壤加湿。
Fig. 4 Temporal changes in leaf water holding capacity of young Pinus sylvestris var. mongolica trees (mean ± SE). A, air humidification; AS, air and soil co-humidification; CK, control; S, soil humidification.
图5 幼龄樟子松枝条长度生长动态变化(A)及空气和土壤加湿对枝条长度(B)和枝条直径(C)的影响(平均值±标准误)。A, 空气加湿; AS, 空气和土壤共同加湿; CK, 对照; S, 土壤加湿。不同小写字母表示处理间差异显著(p < 0.05)。
Fig. 5 Temporal changes in twig growth (A) and the effects of air and soil humidification on twig length (B) and twig diameter (C) of young Pinus sylvestris var. mongolica trees (mean ± SE). A, air humidification; AS, air and soil co-humidification; CK, control; S, soil humidification. Different lowercase letters indicate significant difference among treatments (p < 0.05).
图6 空气和土壤加湿对幼龄樟子松径向生长的影响(平均值±标准误)。A, 空气加湿; AS, 空气和土壤共同加湿; CK, 对照; S, 土壤加湿。不同小写字母表示处理间差异显著(p < 0.05)。
Fig. 6 Effects of air and soil humidification on the stem radial growth of young Pinus sylvestris var. mongolica trees (mean ± SE). A, air humidification; AS, air and soil co-humidification; CK, control; S, soil humidification. Different lowercase letters indicate significant difference among treatments (p < 0.05).
图7 空气加湿与土壤加湿对樟子松叶、枝和径向生长的影响。箭头旁的数值是每个路径的标准化回归系数和显著性, 虚线箭头表示不显著的路径(p > 0.05)。R2表示对目标因变量总变化的解释度。*, p < 0.05; **, p < 0.01; ***, p < 0.001。
Fig. 7 Structural equation modeling analysis for the effects of air and soil humidification on the growth of leaf, twig and radial in Pinus sylvestris var. mongolica. Standardized regression coefficients and significance are shown next to the arrow for each path, dashed arrows indicate insignificant effects (p > 0.05). R2 represents the degree of explanation for the total change of the target dependent variable. *, p < 0.05; **, p < 0.01; ***, p < 0.001.
VPD | SM | |
---|---|---|
叶面积 Leaf area | -0.207 | 0.435 |
叶密度 Leaf density | -0.395 | - |
枝条长 Twig length | -0.304 | 0.637 |
枝条直径 Twig diameter | -0.320 | 0.671 |
径向生长 Radial growth | -0.375 | 0.535 |
表1 饱和水汽压亏缺(VPD)和土壤湿度(SM)对樟子松叶、枝、径向生长影响的总效应
Table 1 Standardized total effects of vapor pressure deficit (VPD) and soil moisture (SM) on the leaf, twig and radial growth in Pinus sylvestris var. mongolica
VPD | SM | |
---|---|---|
叶面积 Leaf area | -0.207 | 0.435 |
叶密度 Leaf density | -0.395 | - |
枝条长 Twig length | -0.304 | 0.637 |
枝条直径 Twig diameter | -0.320 | 0.671 |
径向生长 Radial growth | -0.375 | 0.535 |
[1] |
Adams HD, Collins AD, Briggs SP, Vennetier M, Dickman LT, Sevanto SA, Garcia-Forner N, Powers HH, McDowell NG (2015). Experimental drought and heat can delay phenological development and reduce foliar and shoot growth in semiarid trees. Global Change Biology, 21, 4210-4220.
DOI PMID |
[2] |
Braun S, Schindler C, Rihm B, Flückiger W (2007). Shoot growth of mature Fagus sylvatica and Picea abies in relation to ozone. Environmental Pollution, 146, 624-628.
DOI URL |
[3] | Campbell GS, Norman JM (1977). An Introduction to Environmental Biophysics. Springer, New York. |
[4] | Cao JC, Zheng YF, Zhao H, Xu JX (2018). Influence of open- top chamber on growth and yield of winter wheat. Crops, (1), 88-95. |
[曹嘉晨, 郑有飞, 赵辉, 徐静馨 (2018). 开顶式气室对冬小麦的生长及产量的影响. 作物杂志, (1), 88-95.] | |
[5] | Cunningham SC (2004). Stomatal sensitivity to vapour pressure deficit of temperate and tropical evergreen rainforest trees of Australia. Trees, 18, 399-407. |
[6] | Du QJ, Song XM, Bai P, Jiao XC, Ding JP, Zhang JY, Li JM, Ding M (2020). Effects of different vapor pressure deficits on gas exchange parameters and growth of tomatoes and comprehensive evaluation. Acta Agriculturae Boreali- Occidentalis Sinica, 29, 66-74. |
[杜清洁, 宋小明, 柏萍, 焦晓聪, 丁崌平, 张嘉宇, 李建明, 丁明 (2020). 不同水汽压差对番茄气体交换参数和生长的影响及综合评价. 西北农业学报, 29, 66-74.] | |
[7] | Eller CB, Lima AL, Oliveira RS (2013). Foliar uptake of fog water and transport belowground alleviates drought effects in the cloud forest tree species, Drimys brasiliensis (Winteraceae). New Phytologist, 199, 151-162. |
[8] | Huo ZG, Bai YM, Wen M, Chen L, Hu YL, Ye CL (2001). The experimental research on water stress effects on growth and development of winter wheat. Acta Ecologica Sinica, 21, 1527-1535. |
[霍治国, 白月明, 温民, 陈林, 胡延龙, 叶彩玲 (2001). 水分胁迫效应对冬小麦生长发育影响的试验研究. 生态学报, 21, 1527-1535.] | |
[9] | Johnson JD (1984). A rapid technique for estimating total surface area of pine needles. Forest Science, 30, 913-921. |
[10] |
Kupper P, Sõber J, Sellin A, Lõhmus K, Tullus A, Räim O, Lubenets K, Tulva I, Uri V, Zobel M, Kull O, Sõber A (2011). An experimental facility for free air humidity manipulation (FAHM) can alter water flux through deciduous tree canopy. Environmental and Experimental Botany, 72, 432-438.
DOI URL |
[11] |
Lihavainen J, Keinänen M, Keski-Saari S, Kontunen-Soppela S, Sõber A, Oksanen E (2016). Artificially decreased vapour pressure deficit in field conditions modifies foliar metabolite profiles in birch and aspen. Journal of Experimental Botany, 67, 4367-4378.
DOI PMID |
[12] |
Lyu LX, Büntgen U, Treydte K, Yu KL, Liang HX, Reinig F, Nievergelt D, Li MH, Cherubini P (2019). Tree rings reveal hydroclimatic fingerprints of the Pacific Decadal Oscillation on the Tibetan Plateau. Climate Dynamics, 53, 1023-1037.
DOI URL |
[13] | Ma XY, Zhou GS, Li G (2020). Classification of drought degree during vegetative growth stage of maize based on threshold indicator taxa analysis (TITAN). Chinese Journal of Agrometeorology, 41, 446-458. |
[麻雪艳, 周广胜, 李根 (2020). 基于阈值指标分类法的玉米营养生长阶段受旱程度分级. 中国农业气象, 41, 446-458.] | |
[14] |
Niglas A, Kupper P, Tullus A, Sellin A (2014). Responses of sap flow, leaf gas exchange and growth of hybrid aspen to elevated atmospheric humidity under field conditions. AoB PLANTS, 6, plu021. DOI: 10.1093/aobpla/plu021.
DOI |
[15] | Pan ZL, Guo W, Wang T, Li YP, Yang SJ (2021). Research progress on foliar water uptake. Plant Physiology Journal, 57(1), 19-32. |
[潘志立, 郭雯, 王婷, 李永萍, 杨石建 (2021). 叶片吸收水分的研究进展. 植物生理学报, 57(1), 19-32.] | |
[16] |
Qi JH, Zhang YJ, Zhang YP, Liu YH, Lu ZY, Wu CS, Wen HD (2013). The impacts of the Southwest China drought on the litterfall and leaf area index of an evergreen broadleaf forest on Ailao Mountain. Acta Ecologica Sinica, 33, 2877-2885.
DOI URL |
[杞金华, 章永江, 张一平, 刘玉洪, 鲁志云, 武传胜, 温韩东 (2013). 西南干旱对哀牢山常绿阔叶林凋落物及叶面积指数的影响. 生态学报, 33, 2877-2885. | |
[17] | Qin L, Shang HM, Yu SL, Zhang HL, Jiang SX, Zhang TW, Liu KX, Gou XX, Zhang RB (2021). Response of tree-ring growth and intrinsic water-use efficiency to climate elements in the western Tianshan Mountains under global change. Desert and Oasis Meteorology, 15(3), 1-9. |
[秦莉, 尚华明, 喻树龙, 张合理, 姜盛夏, 张同文, 刘可祥, 苟晓霞, 张瑞波 (2021). 全球变化背景下天山西部雪岭云杉径向生长和水分利用效率对气候要素的响应. 沙漠与绿洲气象, 15(3), 1-9.] | |
[18] |
Rosenvald K, Lõhmus K, Rohula-Okunev G, Lutter R, Kupper P, Tullus A (2020). Elevated atmospheric humidity prolongs active growth period and increases leaf nitrogen resorption efficiency of silver birch. Oecologia, 193, 449-460.
DOI PMID |
[19] |
Sellin A, Niglas A, Õunapuu-Pikas E, Kupper P (2014). Rapid and long-term effects of water deficit on gas exchange and hydraulic conductance of silver birch trees grown under varying atmospheric humidity. BMC Plant Biology, 14, 72. DOI: 10.1186/1471-2229-14-72.
DOI |
[20] |
Tullus A, Kupper P, Sellin A, Parts L, Sõber J, Tullus T, Lõhmus K, Sõber A, Tullus H (2012). Climate change at northern latitudes: rising atmospheric humidity decreases transpiration, N-uptake and growth rate of hybrid aspen. PLOS ONE, 7, e42648. DOI: 10.1371/journal.pone.0042648.
DOI |
[21] | Wimmer R, Grabner M (1997). Effects of climate on vertical resin duct density and radial growth of Norway spruce. Trees, 11, 271-276. |
[22] |
Xia JY, Lu RL, Zhu C, Cui EQ, Du Y, Huang K, Sun BY (2020). Response and adaptation of terrestrial ecosystem processes to climate warming. Chinese Journal of Plant Ecology, 44, 494-514.
DOI URL |
[夏建阳, 鲁芮伶, 朱辰, 崔二乾, 杜莹, 黄昆, 孙宝玉 (2020). 陆地生态系统过程对气候变暖的响应与适应. 植物生态学报, 44, 494-514.]
DOI |
|
[23] | Xu ZZ, Wang CA, Li H (2004). Effects of soil drought on photosynthesis, nitrogen and nitrogen translocation efficiency in wheat leaves. Agricultural Research in the Arid Areas, 22, 75-79. |
[许振柱, 王崇爱, 李晖 (2004). 土壤干旱对小麦叶片光合和氮素水平及其转运效率的影响. 干旱地区农业研究, 22, 75-79.] | |
[24] | Yin J, Qiu GY, He F, He KN, Tian JH, Zhang WQ, Xiong YJ, Zhao SH, Liu JX (2008). Leaf area characteristics of plantation stands in semi-arid loess hill-gully region of China. Journal of Plant Ecology (Chinese Version), 32, 440-447. |
[尹婧, 邱国玉, 何凡, 贺康宁, 田晶会, 张卫强, 熊育久, 赵少华, 刘建新 (2008). 半干旱黄土丘陵区人工林叶面积特征. 植物生态学报, 32, 440-447.]
DOI |
|
[25] | Yu GR, Niu SL, Li FD, Zhang LM, Chen WN (2021). Manipulative experiments networks on response and adaptation of terrestrial ecosystems to environmental changes: building the research methods and technology system. Chinese Journal of Applied Ecology, 32, 2275-2289. |
[于贵瑞, 牛书丽, 李发东, 张雷明, 陈卫楠 (2021). 陆地生态系统环境控制实验的研究方法及技术体系. 应用生态学报, 32, 2275-2289.]
DOI |
|
[26] | Zeng DH, Jiang FQ, Fan ZP, Zhu JJ (1996). Stability of Mongolian pine plantations on sandy land. Chinese Journal of Applied Ecology, 7, 337-343. |
[曾德慧, 姜凤岐, 范志平, 朱教君 (1996). 樟子松人工固沙林稳定性的研究. 应用生态学报, 7, 337-343.] | |
[27] | Zhang B, Lin JH, Lin RX, Gao J, Zeng SC (2016). Study on water holding capacity of leaves of four tree species in South China. Journal of Central South University of Forestry & Technology, 36, 47-51. |
[张兵, 林佳慧, 林荣晓, 高婕, 曾曙才 (2016). 华南地区4个树种叶片持水能力研究. 中南林业科技大学学报, 36, 47-51.] | |
[28] |
Zhang HM, Wu BF, Yan NN (2014). Remote sensing estimates of vapor pressure deficit: an overview. Advances in Earth Science, 29, 559-568.
DOI |
[张红梅, 吴炳方, 闫娜娜 (2014). 饱和水汽压差的卫星遥感研究综述. 地球科学进展, 29, 559-568.]
DOI |
|
[29] | Zhang M, Shi SL, Shi CM, Bai H, Li ZS, Peng PH (2021). Radial growth responses of four typical coniferous species to climatic factors in the Western Sichuan Plateau, China. Chinese Journal of Ecology, 40, 1947-1957. |
[张萌, 石松林, 石春明, 白海, 李宗善, 彭培好 (2021). 川西高原4种典型针叶树径向生长对气候因子的响应. 生态学杂志, 40, 1947-1957.] | |
[30] | Zhang P (2021). Measurement and Simulation of the Effects of Varied Vapour Pressure Deficits and Soil Water Deficits on Crop Water Use Efficiency. PhD dissertation, Northwest A&E University, Yangling, Shaanxi. 86. |
[ 张鹏 (2021). 不同饱和水汽压亏缺和土壤干旱环境对作物水分利用效率的影响机理及模拟研究. 博士学位论文, 西北农林科技大学, 陕西杨凌. 86.] | |
[31] |
Zhu B, Chen Y (2020). Techniques and methods for field warming manipulation experiments in terrestrial ecosystems. Chinese Journal of Plant Ecology, 44, 330-339.
DOI |
[朱彪, 陈迎 (2020). 陆地生态系统野外增温控制实验的技术与方法. 植物生态学报, 44, 330-339.]
DOI |
|
[32] |
Zhu JJ, Fan ZP, Zeng DH, Jiang FQ, Takeshi M (2003). Comparison of stand structure and growth between artificial and natural forests of Pinus sylvestris var. mongolica on sandy land. Journal of Forestry Research, 14, 103-111.
DOI URL |
[33] | Zhu JJ, Kang HZ, Li ZH, Wang GC, Zhang RS (2005). Impact of water stress on survival and photosynthesis of Mongolian pine seedlings on sandy land. Acta Ecologica Sinica, 25, 2527-2533. |
[朱教君, 康宏樟, 李智辉, 王国臣, 张日升 (2005). 水分胁迫对不同年龄沙地樟子松幼苗存活与光合特性影响. 生态学报, 25, 2527-2533.] |
[1] | 白皓然 侯盟 刘艳杰. 少花蒺藜草入侵与干旱对羊草草原生产力的影响机制[J]. 植物生态学报, 2024, 48(5): 577-589. |
[2] | 韩路, 冯宇, 李沅楷, 王雨晴, 王海珍. 地下水埋深对灰胡杨叶片与土壤养分生态化学计量特征及其内稳态的影响[J]. 植物生态学报, 2024, 48(1): 92-102. |
[3] | 吴瀚, 白洁, 李均力, 古丽•加帕尔, 包安明. 新疆地区植被覆盖度时空变化及其影响因素分析[J]. 植物生态学报, 2024, 48(1): 41-55. |
[4] | 马常钦, 黄海龙, 彭政淋, 吴纯泽, 韦庆钰, 贾红涛, 卫星. 水曲柳雌雄株复叶类型及光合功能对不同生境的响应[J]. 植物生态学报, 2023, 47(9): 1287-1297. |
[5] | 韩聪, 母艳梅, 查天山, 秦树高, 刘鹏, 田赟, 贾昕. 2012-2016年宁夏盐池毛乌素沙地黑沙蒿灌丛生态系统通量观测数据集[J]. 植物生态学报, 2023, 47(9): 1322-1332. |
[6] | 施梦娇, 李斌, 伊力塔, 刘美华. 美洲黑杨幼苗生长和生理生态指标对干旱-复水响应的性别差异[J]. 植物生态学报, 2023, 47(8): 1159-1170. |
[7] | 王晓悦, 许艺馨, 李春环, 余海龙, 黄菊莹. 长期降水量变化下荒漠草原植物生物量、多样性的变化及其影响因素[J]. 植物生态学报, 2023, 47(4): 479-490. |
[8] | 刘美君, 陈秋文, 吕金林, 李国庆, 杜盛. 黄土丘陵区辽东栎和刺槐树干径向生长与微变化季节动态特征[J]. 植物生态学报, 2023, 47(2): 227-237. |
[9] | 余俊瑞, 万春燕, 朱师丹. 热带亚热带喀斯特森林木本植物的水力脆弱性分割[J]. 植物生态学报, 2023, 47(11): 1576-1584. |
[10] | 张志山, 韩高玲, 霍建强, 黄日辉, 薛书文. 固沙灌木柠条锦鸡儿和中间锦鸡儿木质部导水与叶片光合能力对土壤水分的响应[J]. 植物生态学报, 2023, 47(10): 1422-1431. |
[11] | 陈图强, 徐贵青, 刘深思, 李彦. 干旱胁迫下梭梭水力性状调整与非结构性碳水化合物动态[J]. 植物生态学报, 2023, 47(10): 1407-1421. |
[12] | 朱明阳, 林琳, 佘雨龙, 肖城材, 赵通兴, 胡春相, 赵昌佑, 王文礼. 云南轿子山不同海拔急尖长苞冷杉径向生长动态及其低温阈值[J]. 植物生态学报, 2022, 46(9): 1038-1049. |
[13] | 周洁, 杨晓东, 王雅芸, 隆彦昕, 王妍, 李浡睿, 孙启兴, 孙楠. 梭梭和骆驼刺对干旱的适应策略差异[J]. 植物生态学报, 2022, 46(9): 1064-1076. |
[14] | 李肖, PIALUANG Bounthong, 康文辉, 冀晓东, 张海江, 薛治国, 张志强. 近几十年来冀西北山地白桦次生林径向生长对气候变化的响应[J]. 植物生态学报, 2022, 46(8): 919-931. |
[15] | 王子龙, 胡斌, 包维楷, 李芳兰, 胡慧, 韦丹丹, 杨婷惠, 黎小娟. 西南干旱河谷植物群落组分生物量的纬度格局及其影响因素[J]. 植物生态学报, 2022, 46(5): 539-551. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19