植物生态学报 ›› 2022, Vol. 46 ›› Issue (9): 1064-1076.DOI: 10.17521/cjpe.2021.0338
所属专题: 光合作用
周洁1, 杨晓东1,2,3,*()(), 王雅芸1, 隆彦昕1, 王妍1, 李浡睿1, 孙启兴1, 孙楠2,3
收稿日期:
2021-09-22
接受日期:
2021-12-22
出版日期:
2022-09-20
发布日期:
2022-10-19
通讯作者:
杨晓东
基金资助:
ZHOU Jie1, YANG Xiao-Dong1,2,3,*()(), WANG Ya-Yun1, LONG Yan-Xin1, WANG Yan1, LI Bo-Rui1, SUN Qi-Xing1, SUN Nan2,3
Received:
2021-09-22
Accepted:
2021-12-22
Online:
2022-09-20
Published:
2022-10-19
Contact:
YANG Xiao-Dong
Supported by:
摘要:
该研究目的在于揭示干旱荒漠中2个优势种梭梭(Haloxylon ammodendron)和骆驼刺(Alhagi sparsifolia)是否在适应干旱的策略上存在差异。在新疆艾比湖自然保护区内自然形成的干旱胁迫梯度上, 首先测量梭梭和骆驼刺的3类功能性状(叶、光合和水力性状); 其后分析性状随干旱梯度的变化, 性状在两个物种之间的差别, 两物种应对干旱胁迫时所采用策略的差异性。结果显示: 梭梭和骆驼刺的功能性状在干旱梯度上的变化存在不同。除干物质含量外, 其余10个功能性状在梭梭和骆驼刺间均存在显著差异, 但在干旱梯度与物种的共同作用下, 梭梭与骆驼刺之间性状差异呈现缩小趋势。Pearson相关分析表明, 骆驼刺显著相关的性状仅有10对, 而梭梭有15对。主成分分析可将梭梭11个功能性状分为与植物抗旱能力有关的2个典型性状组合类别, 即干旱胁迫-碳获取组和抗干旱胁迫组。但对骆驼刺, 很难划分出与抗旱有关的性状组合。该研究结果表明, 相较梭梭, 骆驼刺具有更强的耐旱能力, 属于保守型物种, 性状之间联系不显著, 但梭梭的性状之间联系紧密, 它利用各种性状之间的权衡和补偿关系尽可能地减小干旱胁迫。该研究揭示了干旱荒漠中不同生活型植物面对干旱胁迫时的性状间关系和环境适应策略, 丰富了水分生理学和植物生态学的相关理论, 可对荒漠植物的保育和多样性的维持提供一定理论参考。
周洁, 杨晓东, 王雅芸, 隆彦昕, 王妍, 李浡睿, 孙启兴, 孙楠. 梭梭和骆驼刺对干旱的适应策略差异. 植物生态学报, 2022, 46(9): 1064-1076. DOI: 10.17521/cjpe.2021.0338
ZHOU Jie, YANG Xiao-Dong, WANG Ya-Yun, LONG Yan-Xin, WANG Yan, LI Bo-Rui, SUN Qi-Xing, SUN Nan. Difference in adaptation strategy between Haloxylon ammodendron and Alhagi sparsifolia to drought. Chinese Journal of Plant Ecology, 2022, 46(9): 1064-1076. DOI: 10.17521/cjpe.2021.0338
图1 艾比湖流域研究区采样示意图。D1、D2和D3表示轻度、中度和重度干旱的样地。
Fig. 1 Sample sites in study region of Ebinur Lake Basin. D1, D2, and D3 represent sampling plots with mild, moderate, and severe drought.
编号 Number | 土壤含水量 Soil water content (%) | 干旱程度 Drought level |
---|---|---|
D1 | 12.74 ± 1.25 | 轻度 Mild |
D2 | 9.38 ± 0.80 | 中度 Moderate |
D3 | 3.63 ± 0.66 | 重度 Severe |
表1 艾比湖流域干旱梯度划分(平均值±标准差)
Table 1 Division of drought gradient of Ebinur Lake Basin (mean ± SD)
编号 Number | 土壤含水量 Soil water content (%) | 干旱程度 Drought level |
---|---|---|
D1 | 12.74 ± 1.25 | 轻度 Mild |
D2 | 9.38 ± 0.80 | 中度 Moderate |
D3 | 3.63 ± 0.66 | 重度 Severe |
图2 骆驼刺(As)和梭梭(Ha)的叶功能性状随干旱程度的变化以及种间差异(平均值±标准差)。D1、D2和D3表示轻度、中度和重度干旱。大写字母是单因素方差分析的结果, 表示同物种的功能性状随干旱程度的变化, 不同字母表示显著差异(p < 0.05)。小写字母是独立样本t检验的结果, 表示在同一干旱程度下, 功能性状在梭梭和骆驼刺之间的差异, 不同字母表示显著差异(p < 0.05)。
Fig. 2 Variance of leaf traits across the drought levels and between Alhagi sparsifolia (As) and Haloxylon ammodendron (Ha) (mean ± SD). D1, D2 and D3 are mild, moderate and severe drought, respectively. Uppercase letters are the result of one-way AVOVA, different letters show significant difference under different drought levels of same species (p < 0.05). Lowercase letters are the result of independent sample t test, different letters show significant difference between species under same drought level (p < 0.05).
图3 骆驼刺(As)和梭梭(Ha)的光合性状随同干旱程度的变化以及种间差异(平均值±标准差)。D1、D2和D3表示轻度、中度和重度干旱。大写字母是单因素方差分析的结果, 表示同物种的功能性状随干旱程度的变化, 不同字母表示显著差异(p < 0.05)。小写字母是独立样本t检验的结果, 表示在同一干旱程度下, 功能性状在梭梭和骆驼刺之间的差异, 不同字母表示显著差异(p < 0.05)。
Fig. 3 Variance of photosynthetic traits across the drought levels and between Alhagi sparsifolia (As) and Haloxylon ammodendron (Ha)(mean ± SD). D1, D2 and D3 are mild, moderate and severe drought, respectively. Uppercase letters are the result of one-way AVOVA, different letters show significant difference under different drought levels of same species (p < 0.05). Lowercase letters are the result of independent sample t test, different letters show significant difference between species under same drought level (p < 0.05).
图4 骆驼刺(As)和梭梭(Ha)的水力性状随同干旱程度的变化以及种间差异(平均值±标准差)。D1、D2和D3表示轻度、中度和重度干旱。大写字母是单因素方差分析的结果, 表示同物种的功能性状随干旱程度的变化, 不同字母表示显著差异(p < 0.05)。小写字母是独立样本t检验的结果, 表示在同一干旱程度下, 功能性状在梭梭和骆驼刺之间的差异, 不同字母表示显著差异(p < 0.05)。
Fig. 4 Variance of hydraulic traits across the drought levels and between Alhagi sparsifolia (As) and Haloxylon ammodendron (Ha)(mean ± SD). D1, D2 and D3 are mild, moderate and severe drought, respectively. Uppercase letters are the result of one-way AVOVA, different letters show significant difference under different drought levels of same species (p < 0.05). Lowercase letters are the result of independent sample t test, different letters show significant difference between species under same drought level (p < 0.05).
功能性状 Functional trait | 干旱程度×物种 Drought level × species | ||
---|---|---|---|
F | p | ||
叶性状 Leaf trait | 叶厚或嫩枝叶直径 Leaf thickness or shoot diameter | 0.43 | 0.81 |
叶面积 Leaf area | 0.30 | 0.75 | |
比叶面积 Specific leaf area | 8.91 | <0.01 | |
干物质含量 Dry matter content | 1.22 | 0.54 | |
光合性状 Photosynthetic trait | 净光合速率 Net photosynthetic rate | 0.85 | 0.66 |
气孔导度 Stomatal conductance | 1.89 | 0.39 | |
蒸腾速率 Transpiration rate | 0.01 | 0.99 | |
水分利用效率 Water use efficiency | 14.28 | <0.01 | |
水力性状 Hydraulic trait | 叶水势 Leaf water potential | 6.46 | <0.05 |
枝水势 Twig water potential | 5.23 | <0.05 | |
枝比导率 Twig specific hydraulic conductance | 2.11 | 0.17 |
表2 干旱程度和物种对骆驼刺和梭梭功能性状的协同影响
Table 2 Collaborative influences of drought level and species on functional traits of Alhagi sparsifolia and Haloxylon ammodendron tested using two-way ANOVA
功能性状 Functional trait | 干旱程度×物种 Drought level × species | ||
---|---|---|---|
F | p | ||
叶性状 Leaf trait | 叶厚或嫩枝叶直径 Leaf thickness or shoot diameter | 0.43 | 0.81 |
叶面积 Leaf area | 0.30 | 0.75 | |
比叶面积 Specific leaf area | 8.91 | <0.01 | |
干物质含量 Dry matter content | 1.22 | 0.54 | |
光合性状 Photosynthetic trait | 净光合速率 Net photosynthetic rate | 0.85 | 0.66 |
气孔导度 Stomatal conductance | 1.89 | 0.39 | |
蒸腾速率 Transpiration rate | 0.01 | 0.99 | |
水分利用效率 Water use efficiency | 14.28 | <0.01 | |
水力性状 Hydraulic trait | 叶水势 Leaf water potential | 6.46 | <0.05 |
枝水势 Twig water potential | 5.23 | <0.05 | |
枝比导率 Twig specific hydraulic conductance | 2.11 | 0.17 |
图5 骆驼刺(As)和梭梭(Ha)的性状之间的相关性。Cond, 气孔导度; Ks, 枝比导率; LA, 叶面积; LD, 叶直径; LDMC, 叶干物质含量; LP, 叶水势; LT, 叶厚; Pn, 净光合速率; SLA, 比叶面积; TP, 枝水势; Tr, 蒸腾速率; WUE, 水分利用效率。
Fig. 5 Correlation among functional traits of Alhagi sparsifolia (As) and Haloxylon ammodendron (Ha). Cond, stomatal conductance; Ks, twig specific hydraulic conductance; LA, leaf area; LD, leaf diameter; LDMC, leaf dry matter content; LP, leaf water potential; LT, leaf thickness; Pn, net photosynthetic rate; SLA, specific leaf area; TP, twig water potential; Tr, transpiration rate; WUE, water use efficiency.
图6 骆驼刺(A)和梭梭(B)干旱胁迫下11个性状的主成分(PC)分析结果。Cond, 气孔导度; Ks, 枝比导率; LA, 叶面积; LD, 叶直径; LDMC, 叶干物质含量; LP, 叶水势; LT, 叶厚; Pn, 净光合速率; SLA, 比叶面积; TP, 枝水势; Tr, 蒸腾速率; WUE, 水分利用效率。
Fig. 6 Principal component (PC) analysis of 11 functional traits of Alhagi sparsifolia (A) and Haloxylon ammodendron (B) under drought stress. Cond, stomatal conductance; Ks, twig specific hydraulic conductance; LA, leaf area; LD, leaf diameter; LDMC, leaf dry matter content; LP, leaf water potential; LT, leaf thickness; Pn, net photosynthetic rate; SLA, specific leaf area; TP, twig water potential; Tr, transpiration rate; WUE, water use efficiency.
[1] |
Anderegg WRL, Anderegg LDL (2013). Hydraulic and carbohydrate changes in experimental drought-induced mortality of saplings in two conifer species. Tree Physiology, 33, 252-260.
DOI PMID |
[2] | Bai XF, Zhu JJ, Wang ZL, Tan YQ, Liu LD (2012). Relationship between the salt accumulation and the drought resistance in several woody plants in arid zone. Scientia Silvae Sinicae, 48(7), 45-49. |
[柏新富, 朱建军, 王仲礼, 谭永芹, 刘林德 (2012). 干旱区木本植物盐分积累与其耐旱性的关系. 林业科学, 48(7), 45-49.] | |
[3] |
Bouche PS, Larter M, Domec JC, Burlett R, Gasson P, Jansen S, Delzon S (2014). A broad survey of hydraulic and mechanical safety in the xylem of conifers. Journal of Experimental Botany, 65, 4419-4431.
DOI PMID |
[4] | Cai HX, Wu FZ, Yang WQ (2011). Effects of drought stress on the photosynthesis of Salix paraqplesia and Hippophae rhamnoides seedlings. Acta Ecologica Sinica, 31, 2430-2436. |
[蔡海霞, 吴福忠, 杨万勤 (2011). 干旱胁迫对高山柳和沙棘幼苗光合生理特征的影响. 生态学报, 31, 2430-2436.] | |
[5] | Chen YP, Zhou HH, Zhu CG (2021). A review of water transport processes of Populus euphratica in the lower reaches of Tarim River. Arid Land Geography, 44, 612-619. |
[陈亚鹏, 周洪华, 朱成刚 (2021). 塔里木河下游胡杨水分传输过程研究综述. 干旱区地理, 44, 612-619.] | |
[6] |
Choat B (2013). Predicting thresholds of drought-induced mortality in woody plant species. Tree Physiology, 33, 669-671.
DOI PMID |
[7] |
Dai AG (2011). Drought under global warming: a review. Wiley Interdisciplinary Reviews: Climate Change, 2, 45-65.
DOI URL |
[8] | Dai YX, Wang L, Wang XC (2015). Progress on researches of drought-induced tree mortality mechanisms. Chinese Journal of Ecology, 34, 3228-3236. |
[代永欣, 王林, 万贤崇 (2015). 干旱导致树木死亡机制研究进展. 生态学杂志, 34, 3228-3236.] | |
[9] |
DeSoto L, Cailleret M, Sterck F, Jansen S, Kramer K, Robert EMR, Aakala T, Amoroso MM, Bigler C, Camarero JJ, Čufar K, Gea-Izquierdo G, Gillner S, Haavik LJ, Hereş AM, et al. (2020). Low growth resilience to drought is related to future mortality risk in trees. Nature Communications, 11, 545. DOI: 10.1038/s41467-020-14300-5.
DOI |
[10] | Feng QH, Shi ZM, Dong LL, Liu SR (2010). Relationships among functional traits of Quercus species and their response to meteorological factors in the temperate zone of the North-South Transect of Eastern China. Chinese Journal of Plant Ecology, 34, 619-627. |
[冯秋红, 史作民, 董莉莉, 刘世荣 (2010). 南北样带温带区栎属树种功能性状间的关系及其对气象因子的响应. 植物生态学报, 34, 619-627.]
DOI |
|
[11] | Fu GQ, Xu XY, Xu MS, Meng YY, Zhao P, Liu J (2016). A study of fractal properties of spatial distribution of Reaumuria soongorica population and its influencing factors in Minqin Oasis fringe. Acta Ecologica Sinica, 36, 5768-5776. |
[付贵全, 徐先英, 徐梦莎, 孟源源, 赵鹏, 刘江 (2016). 民勤绿洲边缘2种生境红砂种群分形特征及影响因素. 生态学报, 36, 5768-5776.] | |
[12] |
Galle A, Esper J, Feller U, Ribas-Carbo M, Fonti P (2010). Responses of wood anatomy and carbon isotope composition of Quercus pubescens saplings subjected to two consecutive years of summer drought. Annals of Forest Science, 67, 809. DOI: 10.1051/forest/2010045.
DOI |
[13] | Gong XW, Lü GH (2017). Species diversity and dominant species’ niches of eremophyte communities of the Tugai forest in the Ebinur basin of Xinjiang, China. Biodiversity Science, 25, 34-45. |
[龚雪伟, 吕光辉 (2017). 艾比湖流域杜加依林荒漠植物群落多样性及优势种生态位. 生物多样性, 25, 34-45.]
DOI |
|
[14] | Han G, Zhao Z (2010). Light response characteristics of photosynthesis of four xerophilous shrubs under different soil moistures. Acta Ecologica Sinica, 30, 4019-4026. |
[韩刚, 赵忠 (2010). 不同土壤水分下4种沙生灌木的光合光响应特性. 生态学报, 30, 4019-4026.] | |
[15] |
Hartmann H, Adams HD, Anderegg WRL, Jansen S, Zeppel MJB (2015). Research frontiers in drought-induced tree mortality: crossing scales and disciplines. New Phytologist, 205, 965-969.
DOI PMID |
[16] |
He YY, Guo SL, Wang Z (2019). Research progress of trade-off relationships of plant functional traits. Chinese Journal of Plant Ecology, 43, 1021-1035.
DOI URL |
[何芸雨, 郭水良, 王喆 (2019). 植物功能性状权衡关系的研究进展. 植物生态学报, 43, 1021-1035.]
DOI |
|
[17] | Huang CB, Zeng FJ, Lei JQ (2016). Growth and functional trait responses of Alhagi sparsifolia seedlings to water and nitrogen addition. Acta Prataculturae Sinica, 25, 150-160. |
[黄彩变, 曾凡江, 雷加强 (2016). 骆驼刺幼苗生长和功能性状对不同水氮添加的响应. 草业学报, 25, 150-160.] | |
[18] |
Jin Y, Wang CK (2015). Trade-offs between plant leaf hydraulic and economic traits. Chinese Journal of Plant Ecology, 39, 1021-1032.
DOI |
[金鹰, 王传宽 (2015). 植物叶片水力与经济性状权衡关系的研究进展. 植物生态学报, 39, 1021-1032.]
DOI |
|
[19] | Li SJ, Su PX, Zhang HN, Zhou ZJ, Xie TT (2013). Characteristics and relationships of foliar water and leaf functional traits of desert plants. Plant Physiology Journal, 49, 153-160. |
[李善家, 苏培玺, 张海娜, 周紫鹃, 解婷婷 (2013). 荒漠植物叶片水分和功能性状特征及其相互关系. 植物生理学报, 49, 153-160.] | |
[20] |
Li WJ, Li Y, Lv J, He XM, Wang JL, Teng DX, Jiang LM, Wang HF, Lü GH (2022). Rhizosphere effect alters the soil microbiome composition and C, N transformation in an arid ecosystem. Applied Soil Ecology, 170, 104296.
DOI URL |
[21] | Li XY, Zhang XM, He XY, Zeng FJ, Foetzki A, Thomas F (2004). Water relation characteristics of four perennial plant species growing in the transition zone between oasis and open desert. Acta Ecologica Sinica, 24, 1164-1171. |
[李向义, 张希明, 何兴元, 曾凡江, Foetzki A, Thomas F (2004). 沙漠-绿洲过渡带四种多年生植物水分关系特征. 生态学报, 24, 1164-1171.] | |
[22] |
Liu YB, Li XR, Li MM, Liu D, Zhang WL (2016). Leaf (or assimilation branch) epidermal micromorphology of desert plant in arid and semiarid areas of China. Chinese Journal of Plant Ecology, 40, 1189-1207.
DOI URL |
[刘玉冰, 李新荣, 李蒙蒙, 刘丹, 张雯莉 (2016). 中国干旱半干旱区荒漠植物叶片(或同化枝)表皮微形态特征. 植物生态学报, 40, 1189-1207.]
DOI |
|
[23] |
Luo WT, Zuo XA, Ma W, Xu C, Li A, Yu Q, Knapp AK, Tognetti R, Dijkstra FA, Li MH, Han GD, Wang ZW, Han XG (2018). Differential responses of canopy nutrients to experimental drought along a natural aridity gradient. Ecology, 99, 2230-2239.
DOI PMID |
[24] | Ma HY, Yang XD, Lü GH, He XM, Zhang XN, Wang XY, Li Y (2017). Water sources of dominant desert species in ebinur lake wetland nature reserve, Xinjiang, China. Acta Ecologica Sinica, 37, 829-840. |
[马辉英, 杨晓东, 吕光辉, 何学敏, 张雪妮, 汪溪远, 李岩 (2017). 新疆艾比湖湿地自然保护区荒漠优势种体内的水分来源. 生态学报, 37, 829-840.] | |
[25] | Ma TG, Li XY, Lin LS, Li L, Li SM, Wang B (2018). The effects of shade on leaf traits and water physiological characteristics in Alhagi sparsifolia. Acta Ecologica Sinica, 38, 8466-8474. |
[马天光, 李向义, 林丽莎, 李磊, 李世民, 王波 (2018). 遮阴对骆驼刺叶性状和水分生理的影响. 生态学报, 38, 8466-8474.] | |
[26] |
Markham J (2019). Niche differentiation of tallgrass prairie plants species along soil hydrological gradients. Botany, 97, 487-494.
DOI |
[27] |
McDowell N, Pockman WT, Allen CD, Breshears DD, Cobb N, Kolb T, Plaut J, Sperry J, West A, Williams DG, Yepez EA (2008). Mechanisms of plant survival and mortality during drought: Why do some plants survive while others succumb to drought? New Phytologist, 178, 719-739.
DOI PMID |
[28] |
McDowell NG (2011). Mechanisms linking drought, hydraulics, carbon metabolism, and vegetation mortality. Plant Physiology, 155, 1051-1059.
DOI PMID |
[29] | Pan YF, Chen XB, Jiang Y, Liang SC, Lu ZR, Huang YX, Ni MY, Qin CL, Liu RH (2018). Changes in leaf functional traits and soil environmental factors in response to slope gradient in karst hills of Guilin. Acta Ecologica Sinica, 38, 1581-1589. |
[盘远方, 陈兴彬, 姜勇, 梁士楚, 陆志任, 黄宇欣, 倪鸣源, 覃彩丽, 刘润红 (2018). 桂林岩溶石山灌丛植物叶功能性状和土壤因子对坡向的响应. 生态学报, 38, 1581-1589.] | |
[30] | Qie YD, Jiang LM, Lü GH, Yang XD, Wang HF, Teng DX (2018). Response of plant leaf functional traits to soil aridity and salinity in temperate desert ecosystem. Ecology and Environmental Sciences, 27, 2000-2010. |
[郄亚栋, 蒋腊梅, 吕光辉, 杨晓东, 王恒方, 滕德雄 (2018). 温带荒漠植物叶片功能性状对土壤水盐的响应. 生态环境学报, 27, 2000-2010.] | |
[31] |
Réjou-Méchain M, Mortier F, Bastin JF, Cornu G, Barbier N, Bayol N, Bénédet F, Bry X, Dauby G, Deblauwe V, Doucet JL, Doumenge C, Fayolle A, Garcia C, Kibambe Lubamba JP, et al. (2021). Unveiling African rainforest composition and vulnerability to global change. Nature, 593, 90-94.
DOI URL |
[32] | Ren Y, Lu Q, Wu B, Liu MH (2015). Specific leaf area and leaf dry matter content of Nitraria tangutorum in the artificially simulated precipitation. Acta Ecologica Sinica, 35, 4707-4715. |
[任昱, 卢琦, 吴波, 刘明虎 (2015). 不同模拟增雨下白刺比叶面积和叶干物质含量的比较. 生态学报, 35, 4707-4715.] | |
[33] |
Sala AN, Piper F, Hoch G (2010). Physiological mechanisms of drought-induced tree mortality are far from being resolved. New Phytologist, 186, 274-281.
DOI PMID |
[34] |
Scholz A, Stein A, Choat B, Jansen S (2014). How drought and deciduousness shape xylem plasticity in three Costa Rican woody plant species. IAWA Journal, 35, 337-355.
DOI URL |
[35] | Sevanto S, McDowell NG, Dickman LT, Pangle R, Pockman WT (2014). How do trees die? A test of the hydraulic failure and carbon starvation hypotheses. Plant, Cell & Environment, 37, 153-161. |
[36] |
Stephenson NL, Das AJ (2020). Height-related changes in forest composition explain increasing tree mortality with height during an extreme drought. Nature Communications, 11, 3402. DOI: 10.1038/s41467-019-12380-6.
DOI |
[37] |
Tang GL, Li XY, Lin LS, Li L, Lu JR (2013). Change of different shading on moisture conditions and the physiological response in Alhagi sparsifolia. Chinese Journal of Plant Ecology, 37, 354-364.
DOI URL |
[唐钢梁, 李向义, 林丽莎, 李磊, 鲁建荣 (2013). 骆驼刺在不同遮阴下的水分状况变化及其生理响应. 植物生态学报, 37, 354-364.]
DOI |
|
[38] |
Vastag E, Orlović S, Konôpková A, Kurjak D, Cocozza C, Pšidová E, Lapin K, Kesić L, Stojnić S (2020). Magnolia grandiflora L. shows better responses to drought than Magnolia × soulangeana in urban environment. IForest, 13, 575-583.
DOI URL |
[39] |
Volaire F (2018). A unified framework of plant adaptive strategies to drought: crossing scales and disciplines. Global Change Biology, 24, 2929-2938.
DOI PMID |
[40] | Wang F, Guo SJ, Fan BL, Zhang WX, Wang FL, Han FG, Zhang YN, Sun T (2020). Variation in leaf functional traits of different-aged Haloxylon ammodendron communities, and the relationship with soil factors. Pratacultural Science, 37, 2486-2496. |
[王飞, 郭树江, 樊宝丽, 张卫星, 王方琳, 韩福贵, 张裕年, 孙涛 (2020). 不同年代梭梭叶功能性状差异及其与土壤因子的关系. 草业科学, 37, 2486-2496.] | |
[41] |
Xue BL, Wang GQ, Xiao JF, Helman D, Sun WC, Wang JH, Liu TX (2020). Global convergence but regional disparity in the hydrological resilience of ecosystems and watersheds to drought. Journal of Hydrology, 591, 125589.
DOI URL |
[42] | Yang XD, Gong XW, Zhu LA, Lü GH (2017). Relationships among Populous euphratica hydraulic redistribution, niche breadth and biodiversity of its companion species in Tugai forests. Journal of Desert Research, 37, 933-941. |
[杨晓东, 龚雪伟, 朱丽安, 吕光辉 (2017). 胡杨(Populus euphratica)水分再分配与其伴生种多样性和生态位的关系. 中国沙漠, 37, 933-941.] | |
[43] |
Yang XD, Lü GH (2011). Estimation of hydraulic redistribution of Populus euphratica in Ebinur Lake Wetland Nature Reserve in Xinjiang Uygur Autonomous Region, China. Chinese Journal of Plant Ecology, 35, 816-824.
DOI URL |
[杨晓东, 吕光辉 (2011). 新疆艾比湖湿地自然保护区胡杨根系水分再分配的估算. 植物生态学报, 35, 816-824.]
DOI |
|
[44] | Yuan Y (2009). Photosynthetic and Water Physiological Characteristics of Populus euphratica in Ebinhu Lake Basin. Master degree dissertation, Xinjiang University, Ürümqi. |
[ 袁月 (2009). 艾比湖流域胡杨光合与水分生理特征研究. 硕士学位论文, 新疆大学, 乌鲁木齐.] | |
[45] | Yue XY, Zuo XA, Yu Q, Xu C, Lv P, Zhang J (2018). Effects of precipitation and short term extreme drought on leaf traits in Inner Mongolia typical steppe. Journal of Desert Research, 38, 1009-1016. |
[岳喜元, 左小安, 庾强, 徐翀, 吕朋, 张晶 (2018). 降水量和短期极端干旱对典型草原植物群落及优势种羊草(Leymus chinensis)叶性状的影响. 中国沙漠, 38, 1009-1016.] | |
[46] | Zhang XL, Zeng FJ, Liu B, Liu Z, An GX, Zhang H (2011). Effects of irrigation on root growth and distribution of the seedlings of Alhagi sparsifolia Shap. in the Taklimakan Desert. Journal of Desert Research, 31, 1459-1466. |
[张晓蕾, 曾凡江, 刘波, 刘镇, 安桂香, 张慧 (2011). 塔干沙漠南缘骆驼刺幼苗根系生长和分布对不同灌溉量的响应. 中国沙漠, 31, 1459-1466.] | |
[47] |
Zhang XN, Yang XD, Li Y, He XM, Lü GH, Yang JJ (2018). Influence of edaphic factors on plant distribution and diversity in the arid area of Xinjiang, Northwest China. Arid Land Research and Management, 32, 38-56.
DOI URL |
[48] | Zhao SL, Zeng FJ, Zhang B, Liu B, Gao HH, Luo HL (2016). Effects of salt stress on leaf traits of Alhagi sparsifolia. Pratacultural Science, 33, 1770-1778. |
[赵生龙, 曾凡江, 张波, 刘波, 高欢欢, 罗瀚林 (2016). 盐分胁迫对骆驼刺幼苗叶片性状的影响. 草业科学, 33, 1770-1778.] | |
[49] |
Zhou HH, Li WH, Ayup M, Xu Q (2012). Xylem hydraulic conductivity and embolism properties of desert riparian forest plants and its response to drought stress. Chinese Journal of Plant Ecology, 36, 19-29.
DOI URL |
[周洪华, 李卫红, 木巴热克·阿尤普, 徐茜(2012). 荒漠河岸林植物木质部导水与栓塞特征及其对干旱胁迫的响应. 植物生态学报, 36, 19-29.]
DOI |
|
[50] | Zhou ZB, Li PJ (2002). A review on the phytotomy research of xerophytes in China. Arid Zone Research, 19, 35-40. |
[周智彬, 李培军 (2002). 我国旱生植物的形态解剖学研究. 干旱区研究, 19, 35-40.] | |
[51] | Zhu YH, Wu YQ (2003). Water consumption of natural plant Alhagi sparsifalia in arid desert region. Bulletin of Soil and Water Conservation, 23, 43-45. |
[朱永华, 仵彦卿 (2003). 干旱荒漠区植物骆驼刺的耗水规律. 水土保持通报, 23, 43-45.] |
[1] | 赵孟娟, 金光泽, 刘志理. 阔叶红松林3种典型蕨类叶功能性状的垂直变异[J]. 植物生态学报, 2023, 47(8): 1131-1143. |
[2] | 陈雪纯, 刘虹, 朱少琦, 孙铭遥, 宇振荣, 王庆刚. 漓江流域不同弃耕年限下4种常见草本植物功能性状种内变化及其影响因素[J]. 植物生态学报, 2023, 47(4): 559-570. |
[3] | 刘建新, 刘瑞瑞, 刘秀丽, 贾海燕, 卜婷, 李娜. 外源硫化氢对盐碱胁迫下裸燕麦光合碳代谢的调控[J]. 植物生态学报, 2023, 47(3): 374-388. |
[4] | 陈图强, 徐贵青, 刘深思, 李彦. 干旱胁迫下梭梭水力性状调整与非结构性碳水化合物动态[J]. 植物生态学报, 2023, 47(10): 1407-1421. |
[5] | 林雍, 陈智, 杨萌, 陈世苹, 高艳红, 刘冉, 郝彦宾, 辛晓平, 周莉, 于贵瑞. 中国干旱半干旱区生态系统光合参数的时空变异及其影响因素[J]. 植物生态学报, 2022, 46(12): 1461-1472. |
[6] | 刘丽燕, 冯锦霞, 刘文鑫, 万贤崇. 干旱胁迫对转PtPIP2;8基因84K杨苗木光合、生长和根系结构的影响[J]. 植物生态学报, 2020, 44(6): 677-686. |
[7] | 徐丽娇, 郝志鹏, 谢伟, 李芳, 陈保冬. 丛枝菌根真菌根外菌丝跨膜H +和Ca 2+流对干旱胁迫的响应[J]. 植物生态学报, 2018, 42(7): 764-773. |
[8] | 钟巧连, 刘立斌, 许鑫, 杨勇, 郭银明, 许海洋, 蔡先立, 倪健. 黔中喀斯特木本植物功能性状变异及其适应策略[J]. 植物生态学报, 2018, 42(5): 562-572. |
[9] | 王曦,胡红玲,胡庭兴,张城浩,王鑫,刘丹. 干旱胁迫对桢楠幼树渗透调节与活性氧代谢的影响及施氮的缓解效应[J]. 植物生态学报, 2018, 42(2): 240-251. |
[10] | 罗丹丹, 王传宽, 金鹰. 植物水分调节对策: 等水与非等水行为[J]. 植物生态学报, 2017, 41(9): 1020-1032. |
[11] | 李义博, 宋贺, 周莉, 许振柱, 周广胜. C4植物玉米的光合-光响应曲线模拟研究[J]. 植物生态学报, 2017, 41(12): 1289-1300. |
[12] | 岑宇, 刘美珍. 凝结水对干旱胁迫下羊草和冰草生理生态特征及叶片形态的影响[J]. 植物生态学报, 2017, 41(11): 1199-1207. |
[13] | 郭瑞, 周际, 杨帆, 李峰, 李昊如, 夏旭, 刘琪. 拔节孕穗期小麦干旱胁迫下生长代谢变化规律[J]. 植物生态学报, 2016, 40(12): 1319-1327. |
[14] | 安东升, 曹娟, 黄小华, 周娟, 窦美安. 基于Lake模型的叶绿素荧光参数在甘蔗苗期抗旱性研究中的应用[J]. 植物生态学报, 2015, 39(4): 398-406. |
[15] | 厉广辉, 万勇善, 刘风珍, 张昆. 苗期干旱及复水条件下不同花生品种的光合特性[J]. 植物生态学报, 2014, 38(7): 729-739. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19