植物生态学报 ›› 2017, Vol. 41 ›› Issue (11): 1199-1207.DOI: 10.17521/cjpe.2017.0114
岑宇1,2, 刘美珍1,2,*
收稿日期:
2017-05-03
接受日期:
2017-10-16
出版日期:
2017-11-10
发布日期:
2017-11-10
通讯作者:
刘美珍
基金资助:
Yu CEN1,2, Mei-Zhen LIU1,2,*
Received:
2017-05-03
Accepted:
2017-10-16
Online:
2017-11-10
Published:
2017-11-10
Contact:
Mei-Zhen LIU
摘要:
为了探讨凝结水对植物生长的作用, 该文研究了干旱处理下模拟凝结水对羊草(Leymus chinensis)和冰草(Agropyron cristatum)生理性状和叶片表面结构的影响。试验设计了干旱无凝结水、干旱每周发生3次和5次凝结水以及正常浇水不发生凝结水4个处理, 通过超声波加湿器模拟凝结水的发生, 研究凝结水对两种植物叶片相对含水量、水势、净光合速率、水分利用效率、生物量以及叶片表面结构等的影响。结果表明: 凝结水显著增加了干旱胁迫下两种植物的叶片相对含水量和水势(p < 0.05); 凝结水显著提高了冰草的净光合速率、气孔导度与蒸腾速率(p < 0.05); 而羊草的气孔导度和蒸腾速率随凝结水的变化不明显。羊草和冰草的地上生物量和根系生物量随凝结水的发生有增加的趋势, 但是各处理间差异不显著。凝结水降低了羊草和冰草黄叶数与总叶数的比值,这表明凝结水对干旱胁迫下植物叶片表面结构遭到的破损有一定的保护和修复作用。该研究证实羊草和冰草的叶片可以吸收凝结水, 并对其光合作用、水分生理以及生长具有正效应。
岑宇, 刘美珍. 凝结水对干旱胁迫下羊草和冰草生理生态特征及叶片形态的影响. 植物生态学报, 2017, 41(11): 1199-1207. DOI: 10.17521/cjpe.2017.0114
Yu CEN, Mei-Zhen LIU. Effects of dew on eco-physiological traits and leaf structures of Leymus chinensis and Agropyron cristatum grown under drought stress. Chinese Journal of Plant Ecology, 2017, 41(11): 1199-1207. DOI: 10.17521/cjpe.2017.0114
图2 凝结水对羊草和冰草叶片相对含水量(RWC)的影响(平均值±标准误差)。W0, 干旱胁迫无凝结水; W3, 干旱胁迫每周3次凝结水; W5, 干旱胁迫每周5次凝结水; W, 正常浇水无凝结水。
Fig. 2 Effects of dew increase on leave relative water content (RWC) of Leymus chinensis and Agropyron cristatum (mean ± SE). W0, no dew under drought; W3, simulated dew increase three times a week under drought; W5, simulated dew increase five times a week under drought; W, well watering no simulated dew.
图3 凝结水对羊草和冰草叶片水势(Ψleaf)的影响(平均值±标准误差)。W0, 干旱胁迫无凝结水; W3, 干旱胁迫每周3次凝结水; W5, 干旱胁迫每周5次凝结水; W, 正常浇水无凝结水。 2.2 凝结水对植物光合生理的影响
Fig. 3 Effects of dew increase on leaf water potential (Ψleaf) of Leymus chinensis and Agropyron cristatum (mean ± SE). W0, no dew under drought; W3, simulated dew increase three times a week under drought; W5, simulated dew increase five times a week under drought; W, well watering no simulated dew
图4 凝结水对羊草(●)和冰草(○)净光合速率(Pn)、气孔导度(Gs)、蒸腾速率(Tr)与水分利用效率(WUE)的影响(平均值±标准误差)。W0, 干旱胁迫无凝结水; W3, 干旱胁迫每周3次凝结水; W5, 干旱胁迫每周5次凝结水; W, 正常浇水无凝结水。
Fig. 4 Effects of dew increase on photosynthetic rate (Pn), stomatal conductance (Gs), transpiration rate (Tr) and water use efficiency (WUE) of Leymus chinensis (●) and Agropyron cristatum (○) (mean ± SE). W0, no dew under drought; W3, simulated dew increase three times a week under drought; W5, simulated dew increase five times a week under drought; W, well watering no simulated dew.
图5 凝结水对羊草(A)和冰草(B)地上和地下生物量的影响(平均值±标准误差)。W0, 干旱胁迫无凝结水; W3, 干旱胁迫每周3次凝结水; W5, 干旱胁迫每周5次凝结水; W, 正常浇水无凝结水。同种植物不同小写字母表示在p < 0.05水平上各处理间差异显著。
Fig. 5 Effects of dew increase on biomass of Leymus chinensis (A) and Agropyron cristatum (B) (mean ± SE). W0, no dew under drought; W3, simulated dew increase three times a week under drought; W5, simulated dew increase five times a week under drought; W, well watering no simulated dew. Different lowercase letters indicate the difference is significant among the treatments at p < 0.05 level.
图6 凝结水对羊草和冰草黄叶数与总叶数比值的影响(平均值±标准误差)。W0, 干旱胁迫无凝结水; W3, 干旱胁迫每周3次凝结水; W5, 干旱胁迫每周5次凝结水; W, 正常浇水无凝结水。同种植物不同小写字母表示在p < 0.05水平上各处理间差异显著。
Fig. 6 Effects of dew increase on the ratio of yellow leaves to total leaves of Leymus chinensis and Agropyron cristatum (mean ± SE). W0, no dew under drought; W3, simulated dew increase three times a week under drought; W5, simulated dew increase five times a week under drought; W, well watering no simulated dew. Diffferent lower case letters indicate the difference is significant among the treatments at p < 0.05 level.
图7 凝结水对羊草和冰草叶片表面结构的影响。A、B、C分别是羊草W、W0以及W3处理的叶片表面结构电镜扫描图; D、E、F分别是冰草W、W0以及W3处理的叶片表面结构电镜扫描图。W0, 干旱胁迫无凝结水; W3, 干旱胁迫每周3次凝结水; W, 正常浇水无凝结水。
Fig. 7 Effects of dew increase on leaf structures of Leymus chinensis and Agropyron cristatum. A, B and C were TEM micrographs of the leaf structures for Leymus chinensis at treatments of W, W0 and W3, respectively. D, E and F were TEM micrographs of the leaf structures for Agropyron cristatum at treatments of W, W0 and W3, respectively. W0, no dew under drought; W3, simulated dew increase three times a week under drought; W, well watering no simulated dew.
[1] |
Boucher JF, Munson AD, Bernier PY (1995). Foliar absorption of dew influences shoot water potential and root-growth inPinus-strobus seedlings. Tree Physiology, 15, 819-823.
DOI URL |
[2] |
Duvdevani S (1964). Dew in Israel and its effect on plants.Soil Science, 2, 14-21.
DOI URL |
[3] | Eller CB, Lima AL, Oliveira RS (2013). Foliar uptake of fog water and transport belowground alleviates drought effects in the cloud forest tree species,Drimys brasiliensis(Winteraceae). New Phytologist, 199, 151-162. |
[4] | Feng Q, Gao QZ (1995). Preliminary study on condensation water in semi-humid sandyland.Arid Zone Research, 12(3), 72-77. (in Chinese with English abstract)[冯起, 高前兆 (1995). 半湿润沙地凝结水的初步研究. 干旱区研究, 12(3), 72-77.] |
[5] |
Gotsch SG, Sybil G, Heidi Asbjornsen, Friso Holwerda, Goldsmith GR, Weintraub AE, Dawson TD (2014). Foggy days and dry nights determine crown-level water balance in a seasonal tropical montane cloud forest.Plant, Cell & Environment, 37, 261-272.
DOI URL PMID |
[6] | Grammatikopoulus G, Manetas Y (1994). Direct absorption of water by hairy leaves of Phlomis fruticose and its contribution to drought avoidance. Canadian Journal of Botany, 72, 1804-1811. |
[7] |
Hill AJ, Dawson TE, Shelef O, Rachmilevitch S (2015). The role of dew in Negev desert plants.Oecologia, 178, 317-327.
DOI URL PMID |
[8] |
Kidron GJ, Yair A, Danin A (2000). Dew variability within a small arid drainage basin in the Negev Highlands, Israel.Quarterly Journal of the Royal Meteorological Society, 126, 63-80.
DOI URL |
[9] |
Limm EB, Simonin KA, Bothman AG, Dawson TE (2009). Foliar water uptake, a common water acquisition strategy for plants of the redwood forest.Oecologia, 161, 449-459.
DOI URL PMID |
[10] |
Martin CE, von Willert DJ (2000). Leaf epidermal hydathodes and the ecophysiological consequences of foliar water uptake in species of Crassula from the Namib Desert in southern Africa. Plant Biology, 2, 229-242.
DOI URL |
[11] |
Munné-Bosch S (2010). Direct foliar absorption of rainfall water and its biological significance in dryland ecosystems.Journal of Arid Environments, 74, 417-418.
DOI URL |
[12] | Munné-Bosch S, Alegre L (1999). Role of dew on the recovery of water-stressed Melissa officinalis L. plants. Journal of Plant Physiology, 154, 759-766. |
[13] |
Munné-Bosch S, Nogues S, Alegre L (1999). Diurnal variations of photosynthesis and dew absorption by leaves in two evergreen shrubs growing in Mediterranean field conditions.New Phytology, 144, 109-119.
DOI URL |
[14] |
Rahimi J, Ebrahimpour M, Khalili A (2013). Spatial changes of extended De Martonne climatic zones affected by climate change in Iran.Theoretical and Applied Climatology, 112, 409-418.
DOI URL |
[15] |
Tomaszkiewicz M, Abou Najm M, Beysens D, Alameddine I, EI-Fadel M (2015). Dew as a sustainable non-conventional water resource: A critical review.Environmental Reviews, 23, 425-442.
DOI URL |
[16] |
Wang CD, Cen Y, Liu MZ, Bowler P (2017). Formation and influencing factors of dew in sparse elm woods and grassland in a semi-arid area.Acta Ecologica Sinica, 37(3), 125-132.
DOI URL |
[17] |
Zheng YL, Feng YL (2006). Fog water absorption by leaves of epiphytes and non-epiphytes in Xishuangbanna.Chinese Journal of Applied Ecology, 17, 977-981. (in Chinese with English abstract)[郑玉龙, 冯玉龙 (2006).西双版纳地区附生与非附生植物叶片对雾水的吸收. 应用生态学报, 17, 977-981.]
DOI URL |
[18] | Zhuang YL, Sophia A (2012). Relationship between dew presence and Bassia dasyphylla plant growth. Journal of Arid Land, 4, 11-18. |
[19] |
Zhuang YL, Zhao WZ (2008). Advance in the condensation water of arid regions.Advances in Earth Science, 23(1), 31-38. (in Chinese with English abstract)[庄艳丽, 赵文智 (2008). 干旱区凝结水研究进展. 地球科学进展, 23(1), 31-38.]
DOI URL |
[20] | Zhuang YL, Zhao WZ (2009). Study on the ecological effects of condensed water on an annual plant in a temperate desert.Arid Zone Research, 26, 526-532. (in Chinese with English abstract)[庄艳丽, 赵文智 (2009). 凝结水对温带荒漠一年生植物生态作用研究. 干旱区研究, 26, 526-532.] |
[21] | Zhuang YL, Zhao WZ (2010). Experimental study of effects of artificial dew on Bassia dasyphylla and Agriophyllum squarrosum. Journal of Desert Research, 30, 1068-1074. (in Chinese with English abstract)[庄艳丽, 赵文智 (2010).荒漠植物雾冰藜和沙米叶片对凝结水响应的模拟实验. 中国沙漠, 30, 1068-1074.] |
[1] | 白皓然 侯盟 刘艳杰. 少花蒺藜草入侵与干旱对羊草草原生产力的影响机制[J]. 植物生态学报, 2024, 48(5): 577-589. |
[2] | 代景忠, 白玉婷, 卫智军, 张楚, 辛晓平, 闫玉春, 闫瑞瑞. 羊草功能性状对施肥的动态响应[J]. 植物生态学报, 2023, 47(7): 943-953. |
[3] | 陈图强, 徐贵青, 刘深思, 李彦. 干旱胁迫下梭梭水力性状调整与非结构性碳水化合物动态[J]. 植物生态学报, 2023, 47(10): 1407-1421. |
[4] | 周洁, 杨晓东, 王雅芸, 隆彦昕, 王妍, 李浡睿, 孙启兴, 孙楠. 梭梭和骆驼刺对干旱的适应策略差异[J]. 植物生态学报, 2022, 46(9): 1064-1076. |
[5] | 桂子洋, 秦树高, 胡朝, 白凤, 石慧书, 张宇清. 毛乌素沙地两种典型灌木叶片凝结水吸收能力及吸水途径[J]. 植物生态学报, 2021, 45(6): 583-593. |
[6] | 代景忠, 白玉婷, 卫智军, 张楚, 闫瑞瑞. 切根对羊草营养生长期内植物功能性状的影响[J]. 植物生态学报, 2021, 45(12): 1292-1302. |
[7] | 刘丽燕, 冯锦霞, 刘文鑫, 万贤崇. 干旱胁迫对转PtPIP2;8基因84K杨苗木光合、生长和根系结构的影响[J]. 植物生态学报, 2020, 44(6): 677-686. |
[8] | 李颖, 龚吉蕊, 刘敏, 侯向阳, 丁勇, 杨波, 张子荷, 王彪, 朱趁趁. 不同放牧强度下内蒙古温带典型草原优势种植物防御策略[J]. 植物生态学报, 2020, 44(6): 642-653. |
[9] | 徐丽娇, 郝志鹏, 谢伟, 李芳, 陈保冬. 丛枝菌根真菌根外菌丝跨膜H +和Ca 2+流对干旱胁迫的响应[J]. 植物生态学报, 2018, 42(7): 764-773. |
[10] | 张璐, 郝匕台, 齐丽雪, 李艳龙, 徐慧敏, 杨丽娜, 宝音陶格涛. 草原群落生物量和土壤有机质含量对改良措施的动态响应[J]. 植物生态学报, 2018, 42(3): 317-326. |
[11] | 王曦,胡红玲,胡庭兴,张城浩,王鑫,刘丹. 干旱胁迫对桢楠幼树渗透调节与活性氧代谢的影响及施氮的缓解效应[J]. 植物生态学报, 2018, 42(2): 240-251. |
[12] | 罗丹丹, 王传宽, 金鹰. 植物水分调节对策: 等水与非等水行为[J]. 植物生态学报, 2017, 41(9): 1020-1032. |
[13] | 朱志成, 黄银, 许丰伟, 邢稳, 郑淑霞, 白永飞. 降雨强度和时间频次对内蒙古典型草原土壤氮矿化的影响[J]. 植物生态学报, 2017, 41(9): 938-952. |
[14] | 杨雪, 申俊芳, 赵念席, 高玉葆. 不同基因型羊草数量性状的可塑性及遗传分化[J]. 植物生态学报, 2017, 41(3): 359-368. |
[15] | 翟占伟, 龚吉蕊, 罗亲普, 潘琰, 宝音陶格涛, 徐沙, 刘敏, 杨丽丽. 氮添加对内蒙古温带草原羊草光合特性的影响[J]. 植物生态学报, 2017, 41(2): 196-208. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19