植物生态学报 ›› 2017, Vol. 41 ›› Issue (9): 938-952.DOI: 10.17521/cjpe.2017.0056
朱志成1,2, 黄银1,2, 许丰伟1,2, 邢稳1,2, 郑淑霞1,*(), 白永飞1
收稿日期:
2017-03-09
修回日期:
2017-06-01
出版日期:
2017-09-10
发布日期:
2017-10-23
通讯作者:
郑淑霞
基金资助:
Zhi-Cheng ZHU1,2, Yin HUANG1,2, Feng-Wei XU1,2, Wen XING1,2, Shu-Xia ZHENG1,*(), Yong-Fei BAI1
Received:
2017-03-09
Revised:
2017-06-01
Online:
2017-09-10
Published:
2017-10-23
Contact:
Shu-Xia ZHENG
摘要:
为了深入地理解和认识全球变化背景下草原生态系统土壤氮矿化的变化动态及其对气候变化的响应机制, 以内蒙古典型草原不同围封年限样地(1999年围封和2013年围封)为研究对象, 通过改变降雨量(增加降雨50%和减少降雨50%)和降雨时间频次(连续3年降雨处理; 连续2年降雨处理, 然后自然恢复1年; 降雨1年处理, 然后自然恢复1年), 共设置7个降雨处理, 研究不同降雨强度和时间频次对内蒙古典型草原土壤氮矿化的影响及其调控因子。研究结果表明: 1)随着减雨或增雨时间频次的增加(由1年减雨或增雨至连续3年减雨或增雨处理), 土壤净氮矿化速率和净硝化速率会降低, 且土壤净氮矿化速率和净硝化速率的最大值发生在增雨或减雨1年恢复1年处理中, 表明较高的降雨强度和时间频次对土壤净氮矿化速率和净硝化速率会产生抑制作用, 而适宜的土壤水分和温度条件更有利于土壤氮矿化作用。2)与2013年围封样地相比, 1999年围封样地的土壤净氮矿化速率和净硝化速率、土壤累积氮矿化量和硝化量更高, 表明长期的自然封育有利于养分储存和土壤质量恢复。3)长期的连续性增雨或减雨处理会显著影响土壤含水量和土壤温度(短期的间断性增雨或减雨处理则无显著影响), 但二者对土壤氮矿化的影响在两块样地的表现不同, 如在2013年围封样地, 土壤无机氮和净氮矿化速率主要受土壤水分的影响, 而在1999年围封样地, 土壤无机氮和净氮矿化速率主要受土壤温度的影响, 土壤水分甚至对净氮矿化速率产生了明显的负效应。研究表明, 降雨强度和时间频次对内蒙古典型草原土壤氮矿化具有重要影响, 但影响大小因样地而异, 与土壤质地、群落组成和干扰程度等因素有关。
朱志成, 黄银, 许丰伟, 邢稳, 郑淑霞, 白永飞. 降雨强度和时间频次对内蒙古典型草原土壤氮矿化的影响. 植物生态学报, 2017, 41(9): 938-952. DOI: 10.17521/cjpe.2017.0056
Zhi-Cheng ZHU, Yin HUANG, Feng-Wei XU, Wen XING, Shu-Xia ZHENG, Yong-Fei BAI. Effects of precipitation intensity and temporal pattern on soil nitrogen mineralization in a typical steppe of Nei Mongol grassland. Chinese Journal of Plant Ecology, 2017, 41(9): 938-952. DOI: 10.17521/cjpe.2017.0056
图1 土壤NH4+-N、NO3--N和无机氮含量在不同降雨强度和时间频次下的季节动态(平均值±标准误差, n = 5)。不同小写字母表示同一降雨处理下不同月份之间的差异显著。降雨处理: control, 对照; -PY3, 连续减雨3年; -PY2, 连续减雨2年后恢复1年; -PY1, 减雨1年后恢复1年; +PY1, 增雨1年后恢复1年; +PY2, 连续增雨2年后恢复1年; +PY3, 连续增雨3年。
Fig. 1 Seasonal changes in soil NH4+-N, NO3--N and inorganic nitrogen (N) concentrations at different precipitation intensity and temporal distribution treatments (mean ± SE, n = 5). Different lowercase letters indicate the significant differences among different months for a given precipitation treatment. Precipitation treatments: -PY3, decreased precipitation for three years; -PY2, decreased precipitation for two years and no treatment for one year; -PY1, decreased precipitation for one year and no treatment for one year; +PY1, increased precipitation for one year and no treatment for one year; +PY2, increased precipitation for two years and no treatment for one year; +PY3, increased precipitation for three years.
土壤指标 Soil properties | 2013年围封样地 Fenced site in 2013 | 1999年围封样地 Fenced site in 1999 | ||||
---|---|---|---|---|---|---|
PT | ST | PT × ST | PT | ST | PT × ST | |
硝态氮 NO3--N (g·m-2) | 3.80** | 38.71** | 2.44ns | 1.19ns | 45.91** | 1.09ns |
铵态氮 NH4+-N (g·m-2) | 2.22ns | 112.13** | 1.92* | 3.54** | 63.46** | 2.18** |
无机氮 Inorganic N (g·m-2) | 3.68** | 113.56** | 1.82* | 3.50* | 95.29** | 1.54ns |
净氮矿化速率 Rmin (mg·m-2·d-1) | 0.53ns | 0.25ns | 1.16ns | 0.82ns | 28.48** | 3.15** |
净硝化速率 Rnit (mg·m-2·d-1) | 0.90ns | 6.04** | 1.33ns | 1.05ns | 8.71** | 2.62* |
土壤温度 Soil temperature (℃) | 1.85ns | 1 275.85** | 3.11** | 6.80** | 1 878.65** | 2.45ns |
土壤含水量 Soil water content (v/v, %) | 11.81** | 288.70** | 2.70** | 5.21** | 195.01** | 3.10** |
表1 重复测量方差分析降雨处理(PT)和采样时间(ST)及其交互作用(PT × ST)对土壤无机氮含量、净氮矿化速率和净硝化速率、土壤温度和含水量的影响
Table 1 F values of repeated measures analysis of variance for soil inorganic nitrogen (N) concentrations, net N mineralization rate (Rmin) and net nitrification rate (Rnit), soil temperature and water content, using precipitation treatment (PT), sampling time (ST), and their interactions (PT × ST) as fixed-effects
土壤指标 Soil properties | 2013年围封样地 Fenced site in 2013 | 1999年围封样地 Fenced site in 1999 | ||||
---|---|---|---|---|---|---|
PT | ST | PT × ST | PT | ST | PT × ST | |
硝态氮 NO3--N (g·m-2) | 3.80** | 38.71** | 2.44ns | 1.19ns | 45.91** | 1.09ns |
铵态氮 NH4+-N (g·m-2) | 2.22ns | 112.13** | 1.92* | 3.54** | 63.46** | 2.18** |
无机氮 Inorganic N (g·m-2) | 3.68** | 113.56** | 1.82* | 3.50* | 95.29** | 1.54ns |
净氮矿化速率 Rmin (mg·m-2·d-1) | 0.53ns | 0.25ns | 1.16ns | 0.82ns | 28.48** | 3.15** |
净硝化速率 Rnit (mg·m-2·d-1) | 0.90ns | 6.04** | 1.33ns | 1.05ns | 8.71** | 2.62* |
土壤温度 Soil temperature (℃) | 1.85ns | 1 275.85** | 3.11** | 6.80** | 1 878.65** | 2.45ns |
土壤含水量 Soil water content (v/v, %) | 11.81** | 288.70** | 2.70** | 5.21** | 195.01** | 3.10** |
图2 土壤温度和含水量在不同降雨强度和时间频次下的季节动态(平均值±标准误差, n = 5)。不同小写字母表示同一降雨处理下不同月份之间的差异显著。降雨处理: control, 对照; -PY3, 连续减雨3年; -PY2, 连续减雨2年后恢复1年; -PY1, 减雨1年后恢复1年; +PY1, 增雨1年后恢复1年; +PY2, 连续增雨2年后恢复1年; +PY3, 连续增雨3年。
Fig. 2 Seasonal changes in soil temperature and water content at different precipitation intensity and temporal distribution treatments (mean ± SE, n = 5). Different lowercase letters indicate the significant differences among different months for a given precipitation treatment. Precipitation treatments: -PY3, decreased precipitation for three years; -PY2, decreased precipitation for two years and no treatment for one year; -PY1, decreased precipitation for one year and no treatment for one year; +PY1, increased precipitation for one year and no treatment for one year; +PY2, increased precipitation for two years and no treatment for one year; +PY3, increased precipitation for three years.
图3 降雨强度和时间频次对土壤含水量的影响(平均值±标准误差, n = 5)。不同小写字母表示同一月份不同降雨处理之间的差异显著, ns表示同一月份不同降雨处理之间差异不显著。降雨处理: control, 对照; -PY3, 连续减雨3年; -PY2, 连续减雨2年后恢复1年; -PY1, 减雨1年后恢复1年; +PY1, 增雨1年后恢复1年; +PY2, 连续增雨2年后恢复1年; +PY3, 连续增雨3年。
Fig. 3 Effects of precipitation intensity and temporal distribution on soil water content (mean ± SE, n = 5). Different lowercase letters indicate significant differences among precipitation treatments for a given month; ns indicates no significant difference among precipitation treatments for a given month. Precipitation treatments: -PY3, decreased precipitation for three years; -PY2, decreased precipitation for two years and no treatment for one year; -PY1, decreased precipitation for one year and no treatment for one year; +PY1, increased precipitation for one year and no treatment for one year; +PY2, increased precipitation for two years and no treatment for one year; +PY3, increased precipitation for three years.
图4 降雨强度和时间频次对土壤净氮矿化速率(Rmin)和净硝化速率(Rnit)的影响(平均值±标准误差, n = 5)。不同小写字母表示同一月份不同降雨处理之间的差异显著,ns表示同一月份不同降雨处理之间差异不显著。降雨处理: control, 对照; -PY3, 连续减雨3年; -PY2, 连续减雨2年后恢复1年; -PY1, 减雨1年后恢复1年; +PY1, 增雨1年后恢复1年; +PY2, 连续增雨2年后恢复1年; +PY3, 连续增雨3年。
Fig. 4 Effects of precipitation intensity and temporal distribution on soil net N mineralization (Rmin) and net nitrification rates (Rnit) (mean ± SE, n = 5). Different lowercase letters indicate significant differences among precipitation treatments for a given month; ns indicates no significant difference among precipitation treatments for a given month. Precipitation treatments: -PY3, decreased precipitation for three years; -PY2, decreased precipitation for two years and no treatment for one year; -PY1, decreased precipitation for one year and no treatment for one year; +PY1, increased precipitation for one year and no treatment for one year; +PY2, increased precipitation for two years and no treatment for one year; +PY3, increased precipitation for three years.
图5 降雨强度和时间频次对土壤累积氮矿化量和硝化量的影响(平均值±标准误差, n = 5)。各降雨处理间差异不显著。降雨处理: control, 对照; -PY3, 连续减雨3年; -PY2, 连续减雨2年后恢复1年; -PY1, 减雨1年后恢复1年; +PY1, 增雨1年后恢复1年; +PY2, 连续增雨2年后恢复1年; +PY3, 连续增雨3年。
Fig. 5 Effects of precipitation intensity and temporal distribution on total cumulative net nitrogen (N) mineralization and nitrification (mean ± SE, n = 5). No significant difference among precipitation treatments. Precipitation treatments: -PY3, decreased precipitation for three years; -PY2, decreased precipitation for two years and no treatment for one year; -PY1, decreased precipitation for one year and no treatment for one year; +PY1, increased precipitation for one year and no treatment for one year; +PY2, increased precipitation for two years and no treatment for one year; +PY3, increased precipitation for three years.
土壤指标 Soil properties | 2013年围封样地 Fenced site in 2013 | 1999年围封样地 Fenced site in 1999 | ||
---|---|---|---|---|
土壤温度 Soil temperature (℃) | 土壤含水量 Soil water content (%) | 土壤温度 Soil temperature (℃) | 土壤含水量 Soil water content (%) | |
硝态氮 NO3--N (g·m-2) | 0.446*** | 0.130ns | 0.125ns | 0.089ns |
铵态氮 NH4+-N (g·m-2) | 0.383** | 0.344*** | 0.509*** | -0.379*** |
无机氮 Inorganic N (g·m-2) | 0.030ns | 0.347*** | 0.393*** | -0.189ns |
净氮矿化速率 Rmin (mg·m-2·d-1) | 0.005ns | 0.317*** | 0.410*** | -0.214* |
净硝化速率 Rnit (mg·m-2·d-1) | 0.257* | 0.064ns | 0.130ns | 0.027ns |
累积氮矿化含量 Cmin (g·m-2) | 0.414ns | 0.071ns | 0.065ns | 0.455* |
累积硝化量 Cnit (g·m-2) | 0.491ns | 0.018ns | 0.137ns | 0.539** |
表2 土壤无机氮、净氮矿化速率和净硝化速率、累积氮矿化量和硝化量与土壤温度和水分的相关关系
Table 2 Pearson correlation coefficients of soil inorganic nitrogen (N), net N mineralization (Rmin) and nitrification (Rnit) rates, cumulative net N mineralization (Cmin) and nitrification (Cnit) with soil temperature and water content
土壤指标 Soil properties | 2013年围封样地 Fenced site in 2013 | 1999年围封样地 Fenced site in 1999 | ||
---|---|---|---|---|
土壤温度 Soil temperature (℃) | 土壤含水量 Soil water content (%) | 土壤温度 Soil temperature (℃) | 土壤含水量 Soil water content (%) | |
硝态氮 NO3--N (g·m-2) | 0.446*** | 0.130ns | 0.125ns | 0.089ns |
铵态氮 NH4+-N (g·m-2) | 0.383** | 0.344*** | 0.509*** | -0.379*** |
无机氮 Inorganic N (g·m-2) | 0.030ns | 0.347*** | 0.393*** | -0.189ns |
净氮矿化速率 Rmin (mg·m-2·d-1) | 0.005ns | 0.317*** | 0.410*** | -0.214* |
净硝化速率 Rnit (mg·m-2·d-1) | 0.257* | 0.064ns | 0.130ns | 0.027ns |
累积氮矿化含量 Cmin (g·m-2) | 0.414ns | 0.071ns | 0.065ns | 0.455* |
累积硝化量 Cnit (g·m-2) | 0.491ns | 0.018ns | 0.137ns | 0.539** |
[1] | Amundson R, Austin AT, Schuur EA, Yoo K, Matzek V, Kendall C, Uebersax A, Brenner D, Baisden WT (2003). Global patterns of the isotopic composition of soil and plant nitrogen.Global Biogeochemical Cycles, 17, 1031, doi: 10.1029/2002GB001903. |
[2] | Andersson P, Berggren D, Nilsson I (2002). Indices for nitrogen status and nitrate leaching from Norway spruce (Picea abies(L.) Karst.) stands in Sweden. Forest Ecology and Management, 157, 39-53. |
[3] | Aranibar JN, Otter L, Macko SA, Feral CW, Epstein HE, Dowty PR, Eckardt F, Shugart HH, Swap RJ (2004). Nitrogen cycling in the soil-plant system along a precipitation gradient in the Kalahari sands.Global Chang Biology, 10, 359-373. |
[4] | Auyeung DSN, Suseela V, Dukes JS (2013). Warming and drought reduce temperature sensitivity of nitrogen transformations.Global Change Biology, 19, 662-676. |
[5] | Bai YF, Han XG, Wu JG, Chen ZZ, Li LH (2004). Ecosystem stability and compensatory effects in the Inner Mongolia grassland.Nature, 431, 181-184. |
[6] | Borken W, Matzner E (2009). Reappraisal of drying and wetting effects on C and N mineralization and fluxes in soils.Global Change Biology, 15, 808-824. |
[7] | Burke IC, Lauenroth WK, Vinton MA, Hook PB, Kelly RH, Epstein HE, Aguiar MR, Robles MD, Aguilera MO, Murphy KL (1998). Plant-soil interactions in temperate grasslands.Biogeochemistry, 42, 121-143. |
[8] | Chapin FS III, Matson PA, Vitousek PM (2011). Principles of Terrestrial Ecosystem Ecology. 2nd edn. Springer, New York |
[9] | Chen QH, Feng Y, Zhang YP, Zhang QC, Shamsi IH, Zhang YS, Lin XY (2012). Short-term responses of nitrogen mineralization and microbial community to water content regimes in greenhouse vegetable soils.Pedosphere, 22, 263-272. |
[10] | Cregger MA, Mcdowell NG, Pangle RE, Pockman WT, Classen AT, Niu SL (2014). The impact of precipitation change on nitrogen cycling in a semi-arid ecosystem.Functional Ecology, 28, 1534-1544. |
[11] | D’odorico P, Laio F, Porporato A, Rodriguez-Iturbe I (2003). Hydrologic controls on soil carbon and nitrogen cycles. II. A case study.Advances in Water Resources, 26, 45-58. |
[12] | Delgado Baquerizo M, Maestre FT, Escolar C, Gallardo A, Ochaoa V, Gozalo B, Prado A, Wardle D (2014). Direct and indirect impacts of climate change on microbial and biocrust communities alter the resistance of the N cycle in a semiarid grassland.Journal of Ecology, 102, 1592-1605. |
[13] | Department of Animal Husbandry and Veterinar,General Station of Animal Husbandry and Veterinary of Ministry of Agriculture of China (1996). Rangeland Resources of China. China Science and Technology Press, Beijing. (in Chinese)[中华人民共和国农业部畜牧兽医司, 全国畜牧兽医总站 (1996).中国草地资源. 中国科学技术出版社, 北京.] |
[14] | Frank DA, Groffman PM, Evans RD, Tracy BF (2000). Ungulate stimulation of nitrogen cycling and retention in Yellowstone Park grasslands.Oecologia, 123, 116-121. |
[15] | Goodale CL, Aber JD (2001). The long-term effects of land-use history on nitrogen cycling in northern hardwood forests.Ecological Applications, 11, 253-267. |
[16] | Hu R, Wang XP, Pan YX, Zhang YF, Zhang H (2014). The response mechanisms of soil N mineralization under biological soil crusts to temperature and water content in temperate desert regions.European Journal of Soil Biology, 62, 66-73. |
[17] | IPCC (Intergovernmental Panel on Climate Change) (2014). Contribution of working group III to the fifth assessment report of the intergovernmental panel on climate change. In: Edenhofer O, Pichsmadruga R, Sokana Y eds. Climate Change 2014: Mitigation of Climate Change. Cambridge University Press, Cambridge, UK. |
[18] | Jackson LE, Burger M, Cavagnaro TR (2008). Roots, nitrogen transformations, and ecosystem services.Annual Review of Plant Biology, 59, 341-363. |
[19] | Jiang S, Li B, Wang YF (1988). Methology of Grassland Ecology. Agricultural Press, Beijing. 32-38. (in Chinese)[姜恕, 李博, 王义凤 (1988). 草地生态研究方法. 农业出版社, 北京. 32-38.] |
[20] | Knapp AK, Briggs JM, Koelliker JK (2001). Frequency and extent of water limitation to primary production in a mesic temperate grassland.Ecosystems, 4, 19-28. |
[21] | Knapp AK, Smith MD (2001). Variation among biomes in temporal dynamics of aboveground primary production.Science, 291, 481-484. |
[22] | Lado Monserrat L, Lull C, Bautista I, Lidón A, Herrera R (2014). Soil water content increment as a controlling variable of the “Birch effect”. Interactions with the pre-wetting soil water content and litter addition.Plant and Soil, 379, 21-34. |
[23] | Li YL, Chen J, Cui D, Wang XY, Zhao XY (2013). Effects of warming on Soil nitrogen mineralization under different soil water content conditions in the Horqin sandy grassland.Journal of Desert Research, 33, 1775-1781. (in Chinese with English abstract)[李玉霖, 陈静, 崔夺, 王新源, 赵学勇 (2013). 不同含水量条件下模拟增温对科尔沁沙质草地土壤氮矿化的影响. 中国沙漠, 33, 1775-1781.] |
[24] | Liao X, Inglett PW, Inglett KS (2016). Seasonal patterns of nitrogen cycling in subtropical short-hydroperiod wetlands: Effects of precipitation and restoration.Science of the Total Environment, 556, 136-145. |
[25] | Liu JP, Yang Q, Lü XG (2005). Studies on the soil temperature gradient in annular wetlands in the Sanjing Plain, China.Wetland Science, 3, 42-47. (in Chinese with English abstract)[刘吉平, 杨青, 吕宪国 (2005). 三江平原环型湿地土壤温度梯度的研究. 湿地科学, 3, 42-47.] |
[26] | Liu RT, Zhu F, Chen L (2015). Effects of simulated summer rainfall increases on soil temperature in sandy grassland.Chinese Journal of Soil Science, 2, 348-354. (in Chinese with English abstract)[刘任涛, 朱凡, 陈林 (2015). 降雨增加对沙质草地土壤温度的影响. 土壤通报, 2, 348-354.] |
[27] | Liu XR, Dong YS, Qi YC, Domroes M (2007). Soil net nitrogen mineralization in the typical temperate grassland.Environmental Science, 28, 633-639. (in Chinese with English abstract)[刘杏认, 董云社, 齐玉春, Domroes M (2007). 温带典型草地土壤净氮矿化作用研究. 环境科学, 28, 633-639.] |
[28] | Luo CY, Wang S, Zhao L, Xu SX, Xu BY, Zhang ZH, Yao BQ, Zhao XQ (2012). Effects of land use and management on ecosystem respiration in alpine meadow on the Tibetan Plateau.Soil & Tillage Research, 124, 161-169. |
[29] | Moreira WH, Tormena CA, Karlen DL, Da Silva P, Keller T, Betioli E (2016). Seasonal changes in soil physical properties under long-term no-tillage.Soil and Tillage Research, 160, 53-64. |
[30] | Prieto LH, Bertiller MB, Carrera AL, Olivera NL (2011). Soil enzyme and microbial activities in a grazing ecosystem of Patagonian Monte, Argentina.Geoderma, 162, 281-287. |
[31] | Schimel JP, Gulledge JM, Clein Curley JS, Lindstrom JE, Braddock JF (1999). Water content effects on microbial activity and community structure in decomposing birch litter in the Alaskan taiga.Soil Biology & Biochemistry, 31, 831-838. |
[32] | Schwinning S, Sala OE (2004). Hierarchy of responses to resource pulses in arid and semi-arid ecosystems.Oecologia, 141, 211-220. |
[33] | Shan YM, Chen DM, Guan XX, Zheng SX, Chen HJ, Wang MJ, Bai YF (2011). Seasonally dependent impacts of grazing on soil nitrogen mineralization and linkages to ecosystem functioning in Inner Mongolia grassland.Soil Biology & Biochemistry, 43, 1943-1954. |
[34] | Tang SM, Qi ZP (1997). The relationship between soil water contents and nitrogen mineralization.Chinese Journal of Tropical Agriculture, 4, 54-60. (in Chinese with English abstract)[唐树梅, 漆智平 (1997). 土壤水含量与氮矿化的关系. 热带农业科学, 4, 54-60.] |
[35] | Templer PH, Groffman PM, Flecker AS, Power AG (2005). Land use change and soil nutrient transformations in the Los Haitises region of the Dominican Republic.Soil Biology & Biochemistry, 37, 215-225. |
[36] | Tong XJ, Tao B, Cao MK (2005). The responses of soil respiration and nitrogenmineralization to global warming in terrestrial ecosystems.Progress in Geography, 24, 84-96. (in Chinese with English abstract)[同小娟, 陶波, 曹明奎 (2005). 陆地生态系统土壤呼吸、氮矿化对气候变暖的响应. 地理科学进展, 24, 84-96.] |
[37] | Tracy BF, Frank DA (1998). Herbivore influence on soil microbial biomass and nitrogen mineralization in a northern grassland ecosystem: Yellowstone National Park.Oecologia, 114, 556-562. |
[38] | Wang CH, Wan SQ, Xing XR, Zhang L, Han XG (2006). Temperature and soil water content interactively affected soil net N mineralization in temperate grassland in Northern China.Soil Biology & Biochemistry, 38, 1101-1110. |
[39] | Wang R (2014). Coupled response of soil carbon and nitrogen pools and enzyme activities to nitrogen and water addition in a semi-arid grassland of Inner Mongolia.Plant and Soil, 381, 323-336. |
[40] | Weber KT, Gokhale BS (2011). Effect of grazing on soil-water content in semiarid rangelands of southeast Idaho.Journal of Arid Environments, 75, 464-470. |
[41] | Weltzin JF, Loik ME, Schwinning S, Williams DG, Fay PA, Haddad BM, Hsrte John, Huxman TE, Knapp AK, Lin GH, Pockman WT, Shaw MR, Small EE, Smith MD, Smith SD, Tissue DT, Zak JC (2009). Assessing the response of terrestrial ecosystems to potential changes in precipitation.Bioscience, 53, 941-952. |
[42] | Wu DD, Jing X, Lin L, Yang XY, Zhang ZH, He JS (2016). Responses of soil inorganic nitrogen to warming and altered precipitation in an alpine meadow on the Qinghai-Tibetan Plateau.Acta Scientiarum Naturalium Universitatis Pekinensis, 52, 959-966. (in Chinese with English abstract)[武丹丹, 井新, 林笠, 杨新宇, 张振华, 贺金生 (2016). 青藏高原高寒草甸土壤无机氮对增温和降水改变的响应. 北京大学学报(自然科学版), 52, 959-966.] |
[43] | Wu JG, Han M, Chang W, Ai L, Chang XX (2007). The mineralization of soil nitrogen and its influenced factors under alpine meadows in Qilian Mountains.Acta Prataculturae Sinica, 16, 39-46. (in Chinese with English abstract)[吴建国, 韩梅, 苌伟, 艾丽, 常学向 (2007). 祁连山中部高寒草甸土壤氮矿化及其影响因素研究. 草业学报, 16, 39-46.] |
[44] | Yahdjian L, Sala OE (2002). A rainout shelter design for intercepting different amounts of rainfall.Oecologia, 133, 95-101. |
[45] | Yin YT, Hou XY, Yun XJ (2011). Advances in the climate change influencing grassland ecosystems in Inner Mongolia.Pratacultural Science, 28, 1132-1139. (in Chinese with English abstract)[尹燕亭, 侯向阳, 运向军 (2011). 气候变化对内蒙古草原生态系统影响的研究进展. 草业科学, 28, 1132-1139.] |
[46] | Zhang YF, Wang XP, Hu R, Pan YX (2013). Effects of shrubs and precipitation on spatial-temporal variation of soil temperature at the microhabitats induced by desert shrubs.Journal of Desert Research, 33, 536-542. (in Chinese with English abstract)[张亚峰, 王新平, 虎瑞, 潘颜霞 (2013). 荒漠灌丛微生境土壤温度的时空变异特征——灌丛与降水的影响. 中国沙漠, 33, 536-542.] |
[47] | Zhou XQ, Chen CR, Wang YF, Xu ZH, Han HY, Li LH, Wan SQ (2012). Effects of warming and increased precipitation on soil carbon mineralization in an Inner Mongolian grassland after 6 years of treatments.Biology and Fertility of Soils, 48, 859-866. |
[1] | 沈健, 何宗明, 董强, 郜士垒, 林宇. 轻度火烧对滨海沙地人工林土壤呼吸速率和非生物因子的影响[J]. 植物生态学报, 2023, 47(7): 1032-1042. |
[2] | 李雪, 董杰, 韩广轩, 张奇奇, 谢宝华, 李培广, 赵明亮, 陈克龙, 宋维民. 黄河三角洲典型滨海盐沼湿地土壤CO2和CH4排放对水盐变化的响应[J]. 植物生态学报, 2023, 47(3): 434-446. |
[3] | 赵阳, 栾军伟, 王一, 杨怀, 刘世荣. 模拟干旱和磷添加对热带低地雨林氮矿化过程的影响[J]. 植物生态学报, 2022, 46(1): 102-113. |
[4] | 扈明媛, 袁野, 戴晓琴, 付晓莉, 寇亮, 王辉民. 亚热带人工林乔灌草根际土壤氮矿化特征[J]. 植物生态学报, 2020, 44(12): 1285-1295. |
[5] | 李建军, 刘恋, 陈迪马, 许丰伟, 程军回, 白永飞. 底座入土深度和面积对典型草原土壤呼吸测定结果的影响[J]. 植物生态学报, 2019, 43(2): 152-164. |
[6] | 牟静, 宾振钧, 李秋霞, 卜海燕, 张仁懿, 徐当会. 氮硅添加对青藏高原高寒草甸土壤氮矿化的影响[J]. 植物生态学报, 2019, 43(1): 77-84. |
[7] | 张璐, 郝匕台, 齐丽雪, 李艳龙, 徐慧敏, 杨丽娜, 宝音陶格涛. 草原群落生物量和土壤有机质含量对改良措施的动态响应[J]. 植物生态学报, 2018, 42(3): 317-326. |
[8] | 王祥, 朱亚琼, 郑伟, 关正翾, 盛建东. 昭苏山地草甸4种典型土地利用方式下的土壤呼吸特征[J]. 植物生态学报, 2018, 42(3): 382-396. |
[9] | 柴曦, 李英年, 段呈, 张涛, 宗宁, 石培礼, 何永涛, 张宪洲. 青藏高原高寒灌丛草甸和草原化草甸CO2通量动态及其限制因子[J]. 植物生态学报, 2018, 42(1): 6-19. |
[10] | 葛晓改, 周本智, 肖文发, 王小明, 曹永慧, 叶明. 生物质炭添加对毛竹林土壤呼吸动态和温度敏感性的影响[J]. 植物生态学报, 2017, 41(11): 1177-1189. |
[11] | 张蔷, 李家湘, 谢宗强. 氮添加对亚热带山地杜鹃灌丛土壤呼吸的影响[J]. 植物生态学报, 2017, 41(1): 95-104. |
[12] | 李丹, 康萨如拉, 赵梦颖, 张庆, 任海娟, 任婧, 周俊梅, 王珍, 吴仁吉, 牛建明. 内蒙古羊草草原不同退化阶段土壤养分与植物功能性状的关系[J]. 植物生态学报, 2016, 40(10): 991-1002. |
[13] | 姚辉, 胡雪洋, 朱江玲, 朱剑霄, 吉成均, 方精云. 北京东灵山3种温带森林土壤呼吸及其20年的变化[J]. 植物生态学报, 2015, 39(9): 849-856. |
[14] | 许洺山, 黄海侠, 史青茹, 杨晓东, 周刘丽, 赵延涛, 张晴晴, 阎恩荣. 浙东常绿阔叶林植物功能性状对土壤含水量变化的响应[J]. 植物生态学报, 2015, 39(9): 857-866. |
[15] | 王铭, 刘兴土, 张继涛, 李秀军, 王国栋, 鲁新蕊, 李晓宇. 松嫩平原西部草甸草原5种典型植物群落土壤呼吸的时空动态[J]. 植物生态学报, 2014, 38(4): 396-404. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19