植物生态学报 ›› 2022, Vol. 46 ›› Issue (1): 102-113.DOI: 10.17521/cjpe.2021.0191
所属专题: 全球变化与生态系统
收稿日期:
2021-05-19
接受日期:
2021-07-13
出版日期:
2022-01-20
发布日期:
2022-04-13
通讯作者:
刘世荣
作者简介:
*(liusr@caf.ac.cn)基金资助:
Yang ZHAO1, Jun-Wei LUAN1, Yi WANG1, Huai YANG1, Shi-Rong LIU2,*()
Received:
2021-05-19
Accepted:
2021-07-13
Online:
2022-01-20
Published:
2022-04-13
Contact:
Shi-Rong LIU
Supported by:
摘要:
土壤氮矿化作为氮转化的主要过程决定土壤供氮能力。热带森林生态系统往往受磷限制, 氮矿化过程对干旱的响应是否受磷限制的调控值得探讨。该研究以海南三亚甘什岭自然保护区热带低地雨林为研究对象, 利用2019年建立的林内穿透雨减少(50%)及磷添加双因素交互实验平台, 通过野外树脂芯原位培养法研究模拟干旱及磷添加对土壤无机氮(包括铵态氮和硝态氮)含量和氮矿化过程的影响。结果表明: 1)减雨处理显著降低了5和15 cm深度土壤的水分含量, 而对土壤温度没有显著影响。2)减雨处理和减雨与磷添加共同处理无论在旱季还是湿季对0-10 cm土壤无机氮含量均没有产生显著影响, 但磷添加处理在旱季显著降低了土壤硝态氮含量, 表明磷添加处理对氮有效性的影响主要体现在旱季, 而非湿季。3)干旱处理在旱季和湿季均显著降低了土壤净氨化速率和净氮矿化速率, 而磷添加处理和减雨与磷添加共同处理无论在旱季还是湿季对净氨化速率、净硝化速率和净氮矿化速率均没有产生显著影响, 结果表明了干旱能够显著降低土壤净氮矿化速率。4)土壤水分含量与土壤净氨化速率和净氮矿化速率呈显著正相关关系, 同时减雨处理显著影响了土壤净氨化速率与铵态氮含量的关系, 并且在铵态氮含量相等的情况, 随着干旱的影响净氨化速率下降得更快。这表明土壤水分含量变化是影响该研究样地土壤氮矿化的主要因素。上述研究结果说明, 降水变化对热带低地雨林中土壤氮矿化有重要影响, 短期磷添加没有显著影响, 减雨与磷添加对土壤氮矿化过程并没有交互效应。
赵阳, 栾军伟, 王一, 杨怀, 刘世荣. 模拟干旱和磷添加对热带低地雨林氮矿化过程的影响. 植物生态学报, 2022, 46(1): 102-113. DOI: 10.17521/cjpe.2021.0191
Yang ZHAO, Jun-Wei LUAN, Yi WANG, Huai YANG, Shi-Rong LIU. Effects of simulated drought and phosphorus addition on nitrogen mineralization in tropical lowland rain forests. Chinese Journal of Plant Ecology, 2022, 46(1): 102-113. DOI: 10.17521/cjpe.2021.0191
土壤密度 Soil density (g·cm-3) | 土壤孔隙度 Soil porosity (%) | 土壤颗粒组成 Soil particle composition (%) | 土壤 Soil pH | 土壤有机碳含量 Soil organic carbon content (g·kg-1) | 土壤全氮含量 Soil total nitrogen content (g·kg-1) | 土壤全磷含量 Soil total phosphorus content (g·kg-1) | 土壤速效钾含量 Soil available potassium content (mg·kg-1) | |||
---|---|---|---|---|---|---|---|---|---|---|
毛管 Capillary | 非毛管 Non-capillary | 砂粒 Sand | 粉粒 Silt | 黏粒 Clay | ||||||
1.37 ± 0.02 | 37.55 ± 1.69 | 5.57 ± 0.46 | 54.01 ± 4.05 | 42.84 ± 3.71 | 3.15 ± 0.36 | 4.83 ± 0.08 | 12.52 ± 0.07 | 1.10 ± 0.09 | 0.19 ± 0.02 | 78.01 ± 3.11 |
表1 海南甘什岭自然保护区研究样地土壤基本理化性质(平均值±标准误, n = 3)
Table 1 Soil physical and chemical properties of the study plots in Ganza Ridge Natural Reserve, Hainan (mean ± SE, n = 3)
土壤密度 Soil density (g·cm-3) | 土壤孔隙度 Soil porosity (%) | 土壤颗粒组成 Soil particle composition (%) | 土壤 Soil pH | 土壤有机碳含量 Soil organic carbon content (g·kg-1) | 土壤全氮含量 Soil total nitrogen content (g·kg-1) | 土壤全磷含量 Soil total phosphorus content (g·kg-1) | 土壤速效钾含量 Soil available potassium content (mg·kg-1) | |||
---|---|---|---|---|---|---|---|---|---|---|
毛管 Capillary | 非毛管 Non-capillary | 砂粒 Sand | 粉粒 Silt | 黏粒 Clay | ||||||
1.37 ± 0.02 | 37.55 ± 1.69 | 5.57 ± 0.46 | 54.01 ± 4.05 | 42.84 ± 3.71 | 3.15 ± 0.36 | 4.83 ± 0.08 | 12.52 ± 0.07 | 1.10 ± 0.09 | 0.19 ± 0.02 | 78.01 ± 3.11 |
样地 Sites | 密度 Density (trees·hm-2) | 平均胸径 Mean DBH (cm) | 平均树高 Mean height (m) |
---|---|---|---|
对照 CK | 18 864 ± 6 543 | 3.28 ± 0.23 | 4.82 ± 0.33 |
林内减雨 D | 17 663 ± 4 441 | 2.89 ± 0.34 | 4.43 ± 0.59 |
磷添加 P | 18 194 ± 3 993 | 3.23 ± 0.29 | 4.55 ± 0.55 |
林内减雨和磷添加交互 D × P | 16 539 ± 6 912 | 3.42 ± 0.08 | 5.04 ± 0.26 |
表2 海南甘什岭自然保护区研究样地林分特征(平均值±标准误, n = 3)
Table 2 Stand characteristics of the study sample plot in Ganza Ridge Natural Reserve, Hainan (mean ± SE, n = 3)
样地 Sites | 密度 Density (trees·hm-2) | 平均胸径 Mean DBH (cm) | 平均树高 Mean height (m) |
---|---|---|---|
对照 CK | 18 864 ± 6 543 | 3.28 ± 0.23 | 4.82 ± 0.33 |
林内减雨 D | 17 663 ± 4 441 | 2.89 ± 0.34 | 4.43 ± 0.59 |
磷添加 P | 18 194 ± 3 993 | 3.23 ± 0.29 | 4.55 ± 0.55 |
林内减雨和磷添加交互 D × P | 16 539 ± 6 912 | 3.42 ± 0.08 | 5.04 ± 0.26 |
图2 2019年4月13日至2020年9月24日不同处理对甘什岭自然保护区土壤深度为5 cm (A, B)和15 cm (C, D)处的土壤温度和土壤水分含量日平均变化(n = 4)。 CK, 对照; D, 林内减雨; P, 磷添加; D × P, 林内减雨和磷添加交互。
Fig. 2 Daily mean soil temperature and soil water content at depth of 5 cm (A, B) and 15 cm (C, D) from April 13, 2019 to September 24, 2020 in Ganza Ridge Nature Reserve under different treatments (n = 4). CK, control; D, rainfall reduction in the forest; P, phosphorus addition; D × P, interactions between rainfall reduction in forests and phosphorus addition.
图3 模拟干旱和磷添加分别在旱(A、C、E)、湿(B、D、F)季对甘什岭自然保护区0-10 cm土层的土壤铵态氮(NH4+-N)、硝态氮(NO3--N)和无机氮含量的影响(平均值±标准误, n = 9)。 CK, 对照; D, 林内减雨; P, 磷添加; D × P, 林内减雨和磷添加交互。
Fig. 3 Effects of simulated drought and phosphorus addition of Ganza Ridge Nature Reserve on the content of ammonium nitrogen, nitrate nitrogen and inorganic nitrogen in 0-10 cm soil layer in dry (A, C, E) and wet (B, D, F) seasons, respectively (mean ± SE, n = 9). CK, control; D, rainfall reduction in the forest; P, phosphorus addition; D × P, interactions between rainfall reduction in forests and phosphorus addition.
图4 模拟干旱和磷添加分别在旱(A、C、E)、湿(B、D、F)季对甘什岭自然保护区0-10 cm土层的土壤净氨化速率(NAR)、净硝化速率(NNR)和净氮矿化速率(NMR)的影响(平均值±标准误, n = 9)。 CK, 对照; D, 林内减雨; P, 磷添加; D × P, 林内减雨和磷添加交互。
Fig. 4 Effects of simulated drought and phosphorus addition of Ganza Ridge Nature Reserve on the net ammonification rate (NAR), net nitrification rate (NNR) and net nitrogen mineralization rate (NMR) of 0-10 cm soil layer in the dry (A, C, E) and wet (B, D, F) seasons, respectively (mean ± SE, n = 9). CK, control; D, rainfall reduction in the forest; P, phosphorus addition; D × P, interactions between rainfall reduction in forests and phosphorus addition.
指标 Index | NAR | NNR | NMR |
---|---|---|---|
5 cm土壤温度 5 cm soil temperature (℃) | 0.081 | 0.146 | 0.115 |
5 cm土壤水分含量 5 cm soil water content (m3·m-3) | 0.343* | 0.106 | 0.348* |
土壤pH Soil pH | 0.274 | -0.020 | 0.248 |
土壤有机碳含量 Soil organic carbon (C) content (g·kg-1) | 0.103 | 0.072 | 0.118 |
土壤全氮含量 Soil total nitrogen (N) content (g·kg-1) | 0.071 | 0.173 | 0.116 |
土壤碳氮比 Soil C:N ratio | 0.060 | -0.181 | 0.009 |
土壤全磷含量 Soil total phosphorus (P) content (g·kg-1) | -0.177 | 0.133 | -0.128 |
土壤铵态氮含量 NH4+-N content (mg·kg-1) | 0.391* | 0.128 | 0.402* |
土壤硝态氮含量 NO3--N content (mg·kg-1) | 0.002 | 0.442** | 0.126 |
表3 海南甘什岭自然保护区研究样地土壤净氨化速率(NAR)、净硝化速率(NNR)和净氮矿化速率(NMR)与土壤理化性质的关系
Table 3 Correlations between soil physical and chemical properties and net ammonification rate (NAR), net nitrification rate (NNR) and net nitrogen mineralization rate (NMR) in Ganza Ridge Nature Reserve, Hainan
指标 Index | NAR | NNR | NMR |
---|---|---|---|
5 cm土壤温度 5 cm soil temperature (℃) | 0.081 | 0.146 | 0.115 |
5 cm土壤水分含量 5 cm soil water content (m3·m-3) | 0.343* | 0.106 | 0.348* |
土壤pH Soil pH | 0.274 | -0.020 | 0.248 |
土壤有机碳含量 Soil organic carbon (C) content (g·kg-1) | 0.103 | 0.072 | 0.118 |
土壤全氮含量 Soil total nitrogen (N) content (g·kg-1) | 0.071 | 0.173 | 0.116 |
土壤碳氮比 Soil C:N ratio | 0.060 | -0.181 | 0.009 |
土壤全磷含量 Soil total phosphorus (P) content (g·kg-1) | -0.177 | 0.133 | -0.128 |
土壤铵态氮含量 NH4+-N content (mg·kg-1) | 0.391* | 0.128 | 0.402* |
土壤硝态氮含量 NO3--N content (mg·kg-1) | 0.002 | 0.442** | 0.126 |
图5 海南甘什岭自然保护区净氨化速率(NAR)与铵态氮(NH4+-N)含量的关系分别在模拟干旱处理(A)和磷添加处理(B)的协方差分析(n = 18)。 CK, 对照; D, 林内减雨; P, 磷添加; D × P, 林内减雨和磷添加交互。
Fig. 5 Covariance analyses on the relationships between the net ammonification rate (NAR) and ammonium nitrogen (NH4+-N) content that affected by simulated drought (A) and phosphorus addition (B) in Ganza Ridge Nature Reserve, Hainan, respectively (n = 18).CK, control; D, rainfall reduction in the forest; P, phosphorus addition; D × P, interactions between rainfall reduction in forests and phosphorus addition.
图6 甘什岭自然保护区净硝化速率(NNR)与硝态氮(NO3--N)含量的关系分别在模拟干旱处理(A)和磷添加处理(B)的协方差分析(n = 18)。 CK, 对照; D, 林内减雨; P, 磷添加。
Fig. 6 Covariance analyses on the relationships between net nitrification rate (NNR) and nitrate nitrogen (NO3--N) content that affected by simulated drought (A) and phosphorus addition (B) in Ganza Ridge Nature Reserve, respectively (n = 18). CK, control; D, rainfall reduction in the forest; P, phosphorus addition.
[1] |
Aggangan RT, O’Connell AM, McGrath JF, Dell B (1998). Fertilizer and previous land use effects on C and N mineralization in soils from Eucalyptus globulus plantations. Soil Biology & Biochemistry, 30, 1791-1798.
DOI URL |
[2] |
Bhogal A, Hatch DJ, Shepherd MA, Jarvis SC (1999). Comparison of methodologies for field measurement of net nitrogen mineralisation in arable soils. Plant and Soil, 207, 15-28.
DOI URL |
[3] | Binkley D, Hart SC (1989). The components of nitrogen availability assessments in forest soils. Advances in Soil Science, 10, 57-112. |
[4] |
Borken W, Matzner E (2009). Reappraisal of drying and wetting effects on C and N mineralization and fluxes in soils. Global Change Biology, 15, 808-824.
DOI URL |
[5] | Chang D, Li X, Liu JK, Chen X (2014). Study progress and comparison of soil moisture content measurement methods. Geotechnical Investigation & Surveying, 42(9), 17-22. |
[ 常丹, 李旭, 刘建坤, 陈曦 (2014). 土体含水率测量方法研究进展及比较. 工程勘察, 42(9), 17-22.] | |
[6] |
Chatterjee A, Lal R, Wielopolski L, Martin MZ, Ebinger MH (2009). Evaluation of different soil carbon determination methods. Critical Reviews in Plant Sciences, 28, 164-178.
DOI URL |
[7] |
Chen HP, Sun JQ (2017). Anthropogenic warming has caused hot droughts more frequently in China. Journal of Hydrology, 544, 306-318.
DOI URL |
[8] |
Chen J, Xiao GL, Kuzyakov Y, Jenerette GD, Ma Y, Liu W, Wang ZF, Shen WJ (2017). Soil nitrogen transformation responses to seasonal precipitation changes are regulated by changes in functional microbial abundance in a subtropical forest. Biogeosciences, 14, 2513-2525.
DOI URL |
[9] | Chen L (2019). Response of Soil Nitrogen Cycle to Simulated’ Precipitation Reduction in a Southern Subtropical Castanopsis hystrix Plantation. PhD dissertation, Guangxi University, Nanning. |
[ 陈琳 (2019). 南亚热带红椎人工林土壤氮循环对模拟减雨的响应. 博士学位论文, 广西大学, 南宁.] | |
[10] |
Chen L, Liu SR, Wen YG, Zeng J, Li H, Yang YJ (2018). Growth responses of Castanopsis hystrix and Pinus massoniana plantations to throughfall reduction in subtropical China. Chinese Journal of Applied Ecology, 29, 2330-2338.
DOI PMID |
[ 陈琳, 刘世荣, 温远光, 曾冀, 李华, 杨予静 (2018). 南亚热带红锥和马尾松人工林生长对穿透雨减少的响应. 应用生态学报, 29, 2330-2338.]
PMID |
|
[11] | Chuan LM, Zhao TK, An ZZ, Du LF, Li SJ, Ma L (2010). Research advancement in nitrate leaching and nitrogen use in soils. Chinese Agricultural Science Bulletin, 26(11), 200- 205. |
[ 串丽敏, 赵同科, 安志装, 杜连凤, 李顺江, 马礼 (2010). 土壤硝态氮淋溶及氮素利用研究进展. 中国农学通报, 26(11), 200-205.] | |
[12] |
Cregger MA, McDowell NG, Pangle RE, Pockman WT, Classen AT (2014). The impact of precipitation change on nitrogen cycling in a semi-arid ecosystem. Functional Ecology, 28, 1534-1544.
DOI URL |
[13] |
Falkiner RA, Khanna PK, Raison RJ (1993). Effect of superphosphate addition on N mineralization in some Australian forest soils. Soil Research, 31, 285-296.
DOI URL |
[14] |
Fan ZP, Tu ZH, Li FY, Qin YB, Deng DZ, Zeng DH, Sun XK, Zhao Q, Hu YL (2017). Experimental manipulation of precipitation affects soil nitrogen availability in semiarid Mongolian pine (Pinus sylvestris var. mongolica) plantation. Water, 9, 208. DOI: 10.3390/w9030208.
DOI URL |
[15] | Fang YT (2005). Effects of Nitrogen Deposition on Soil Nitrogen Process in Dinghushan Forest. PhD dissertation, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou. |
[ 方运霆 (2005). 氮沉降对鼎湖山森林土壤氮素过程的影响. 博士学位论文, 中国科学院华南植物园, 广州.] | |
[16] |
Galloway JN, Townsend AR, Erisman JW, Bekunda M, Cai Z, Freney JR, Martinelli LA, Seitzinger SP, Sutton MA (2008). Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science, 320, 889-892.
DOI PMID |
[17] |
Homyak PM, Allison SD, Huxman TE, Goulden ML, Treseder KK (2017). Effects of drought manipulation on soil nitrogen cycling: a meta-analysis. Journal of Geophysical Research: Biogeosciences, 122, 3260-3272.
DOI URL |
[18] | IPCC (2013). The physical science basis//Stocker TF. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge Press, UK. |
[19] |
Jongen M, Lecomte X, Unger S, Fangueiro D, Pereira JS (2013). Precipitation variability does not affect soil respiration and nitrogen dynamics in the understorey of a Mediterranean oak woodland. Plant and Soil, 372, 235-251.
DOI URL |
[20] |
Li H, Yang S, Xu Z, Yan Q, Li X, Van Nostrand JD, He Z, Yao F, Han XG, Zhou J, Deng Y, Jiang Y (2017). Responses of soil microbial functional genes to global changes are indirectly influenced by aboveground plant biomass variation. Soil Biology & Biochemistry, 104, 18-29.
DOI URL |
[21] | Li MJ (2012). Effects of Litter on Soil Carbon and Nitrogen and Nitrogen Net Mineralization in Two Forests. Master degree dissertation, Central South University of Forestry & Technology, Changsha. |
[ 李茂金 (2012). 凋落物输入对两种森林土壤碳氮及氮矿化的影响. 硕士学位论文, 中南林业科技大学, 长沙.] | |
[22] |
Limousin JM, Rambal S, Ourcival JM, Rocheteau A, Joffre R, Rodriguez-Cortina R (2009). Long-term transpiration change with rainfall decline in a Mediterranean Quercus ilex forest. Global Change Biology, 15, 2163-2175.
DOI URL |
[23] |
Liu L, Gundersen P, Zhang T, Mo J (2012). Effects of phosphorus addition on soil microbial biomass and community composition in three forest types in tropical China. Soil Biology & Biochemistry, 44, 31-38.
DOI URL |
[24] |
Liu XR, Dong YS, Ren JQ, Li SG (2010). Drivers of soil net nitrogen mineralization in the temperate grasslands in Inner Mongolia, China. Nutrient Cycling in Agroecosystems, 87, 59-69.
DOI URL |
[25] | Liu YH, Li Y, Niu L, Wang YL (2014). Effects of temperature and moisture on nitrogen mineralization in Inner Mongolia grassland, China. Pratacultural Science, 31, 349-354. |
[ 刘颖慧, 李悦, 牛磊, 王亚林 (2014). 温度和湿度对内蒙古草原土壤氮矿化的影响. 草业科学, 31, 349-354.] | |
[26] | Losos EC, Leigh Jr EG (2004). Tropical Forest Diversity and Dynamism: Findings from a Large-scale Plot Network. University of Chicago Press, Chicago. |
[27] |
Miller KS, Geisseler D (2018). Temperature sensitivity of nitrogen mineralization in agricultural soils. Biology and Fertility of Soils, 54, 853-860.
DOI URL |
[28] | Misson L, Rocheteau A, Rambal S, Ourcival JM, Limousin JM, Rodriguez R (2010). Functional changes in the control of carbon fluxes after 3 years of increased drought in a Mediterranean evergreen forest? Global Change Biology, 16, 2461-2475. |
[29] |
Mori T, Ohta S, Ishizuka S, Konda R, Wicaksono A, Heriyanto J, Hamotani Y, Gobara Y, Kawabata C, Kuwashima K, Nakayama Y, Hardjono A (2013). Soil greenhouse gas fluxes and C stocks as affected by phosphorus addition in a newly established Acacia mangium plantation in Indonesia. Forest Ecology and Management, 310, 643-651.
DOI URL |
[30] |
Moser G, Schuldt B, Hertel D, Horna V, Coners H, Barus H, Leuschner C (2014). Replicated throughfall exclusion experiment in an Indonesian perhumid rainforest: wood production, litter fall and fine root growth under simulated drought. Global Change Biology, 20, 1481-1497.
DOI URL |
[31] |
Potter CS, Matson PA, Vitousek PM, Davidson EA (1996). Process modeling of controls on nitrogen trace gas emissions from soils worldwide. Journal of Geophysical Research: Atmospheres, 101, 1361-1377.
DOI URL |
[32] | Qi LH, Liang CQ, Mao C, Qin XS, Fan SH, Du WW, Kong XH (2014). Species composition and geographic elements of the tropical lowland secondary rain forest of Ganshiling, Hainan Island, China. Chinese Journal of Ecology, 33, 922-929. |
[ 漆良华, 梁昌强, 毛超, 秦新生, 范少辉, 杜文闻, 孔祥河 (2014). 海南岛甘什岭热带低地次生雨林物种组成与地理成分. 生态学杂志, 33, 922-929.] | |
[33] |
Raison RJ, Connell MJ, Khanna PK (1987). Methodology for studying fluxes of soil mineral-N in situ. Soil Biology & Biochemistry, 19, 521-530.
DOI URL |
[34] | Ren YL (2012). Effects of precipitation change on inorganic nitrogen and net nitrogen mineralization rate at a plantation of Mongolian pine. Acta Scientiarum Naturalium Universitatis Pekinensis, 48, 925-932. |
[ 任艳林 (2012). 降水变化对樟子松人工林土壤无机氮和净氮矿化速率的影响. 北京大学学报(自然科学版), 48, 925-932.] | |
[35] |
Schimel JP, Gulledge JM, Clein-Curley JS, Lindstrom JE, Braddock JF (1999). Moisture effects on microbial activity and community structure in decomposing birch litter in the Alaskan taiga. Soil Biology & Biochemistry, 31, 831-838.
DOI URL |
[36] |
Schwendenmann L, Veldkamp E, Moser G, Hölscher D, Köhler M, Clough Y, Anas I, Djajakirana G, Erasmi S, Hertel D, Leitner D, Leuschner C, Michalzik B, Propastin P, Tjoa A, Tscharntke T,van Straaten O (2010). Effects of an experimental drought on the functioning of a cacao agroforestry system, Sulawesi, Indonesia. Global Change Biology, 16, 1515-1530.
DOI URL |
[37] | Su YQ (2016). Effects of N, P Additions and Roots on Soil N Mineralization Rates in a Subtropical Evergreen Broad- leaf Forest. Master degree dissertation, East China Normal University, Shanghai. |
[ 苏渝钦 (2016). 氮磷添加和植物根系对中亚热带常绿阔叶林土壤氮矿化的影响. 硕士学位论文, 华东师范大学, 上海.] | |
[38] |
Tanner EVJ, Vitousek PM, Cuevas E (1998). Experimental investigation of nutrient limitation of forest growth on wet tropical mountains. Ecology, 79, 10-22.
DOI URL |
[39] |
Townsend AR, Cleveland CC, Houlton BZ, Alden CB, White JW (2011). Multi-element regulation of the tropical forest carbon cycle. Frontiers in Ecology and the Environment, 9, 9-17.
DOI URL |
[40] |
Vance CP, Uhde-Stone C, Allan DL (2003). Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource. New Phytologist, 157, 423-447.
DOI URL |
[41] |
Vitousek PM, Farrington H (1997). Nutrient limitation and soil development: experimental test of a biogeochemical theory. Biogeochemistry, 37, 63-75.
DOI URL |
[42] |
Wang FM, Li J, Wang XL, Zhang W, Zou B, Neher DA, Li ZA (2014). Nitrogen and phosphorus addition impact soil N2O emission in a secondary tropical forest of South China. Scientific Reports, 4, 5615. DOI: 10.1038/srep05615.
DOI URL |
[43] |
Wang WT, Wang JX, Liu XZ, Zhou GY, Yan JH (2016). Decadal drought deaccelerated the increasing trend of annual net primary production in tropical or subtropical forests in southern China. Scientific Reports, 6, 28640. DOI: 10.1038/srep28640.
DOI URL |
[44] |
Wang YP, Houlton BZ (2009). Nitrogen constraints on terrestrial carbon uptake: implications for the global carbon- climate feedback. Geophysical Research Letters, 36, L24403. DOI: 10.1029/2009gl041009.
DOI URL |
[45] |
White JR, Reddy KR (1999). Influence of nitrate and phosphorus loading on denitrifying enzyme activity in Everglades wetland soils. Soil Science Society of America Journal, 63, 1945-1954.
DOI URL |
[46] |
Wright SJ, Turner BL, Yavitt JB, Harms KE, Kaspari M, Tanner EVJ, Bujan J, Griffin EA, Mayor JR, Pasquini SC, Sheldrake M, Garcia MN (2018). Plant responses to fertilization experiments in lowland, species-rich, tropical forests. Ecology, 99, 1129-1138.
DOI URL |
[47] | Wu DD, Jing X, Lin L, Yang XY, Zhang ZH, He JS (2016). Responses of soil inorganic nitrogen to warming and altered precipitation in an alpine meadow on the Qinghai- Tibetan Plateau. Acta Scientiarum Naturalium Universitatis Pekinensis, 52, 959-966. |
[ 武丹丹, 井新, 林笠, 杨新宇, 张振华, 贺金生 (2016). 青藏高原高寒草甸土壤无机氮对增温和降水改变的响应. 北京大学学报(自然科学版), 52, 959-966.] | |
[48] |
Wu XC, Liu HY, Li XY, Ciais P, Babst F, Guo WC, Zhang CC, Magliulo V, Pavelka M, Liu SM, Huang YM, Wang P, Shi CM, Ma YJ (2018). Differentiating drought legacy effects on vegetation growth over the temperate Northern Hemisphere. Global Change Biology, 24, 504-516.
DOI URL |
[49] | Xiao SH, Gao CJ, Cai J, Pan W, Zhu BZ, Wei L (2018). Soil fertility of pure and mixed forest of Cunninghamia lanceolata and Castanopsis hystrix in south subtropical area. Journal of Forest and Environment, 38, 142-148. |
[ 肖石红, 高常军, 蔡坚, 潘文, 朱报著, 魏龙 (2018). 南亚热带杉木和红椎林及其混交林的土壤肥力. 森林与环境学报, 38, 142-148.] | |
[50] | Xing J (2013). The effects of clay content on soil moisture constant. Inner Mongolia Agricultural Science and Technology, (6), 31-32. |
[ 邢杰 (2013). 粘粒含量对砂壤土水分常数的影响. 内蒙古农业科技, (6), 31-32.] | |
[51] | Zheng BZ (2013). A Technical Guide to Soil Analysis. China Agriculture Press, Beijing. |
[ 郑必昭 (2013). 土壤分析技术指南. 中国农业出版社, 北京.] | |
[52] |
Zhou GY, Wei XH, Wu YP, Liu SG, Huang YH, Yan JH, Zhang DQ, Zhang QM, Liu JX, Meng Z, Wang CL, Chu GW, Liu SZ, Tang XL, Liu XD (2011). Quantifying the hydrological responses to climate change in an intact forested small watershed in Southern China. Global Change Biology, 17, 3736-3746.
DOI URL |
[53] |
Zhou LG, Liu YT, Zhang YP, Sha LQ, Song QH, Zhou WJ, Balasubramanian D, Palingamoorthy G, Gao JB, Lin YX, Li J, Zhou RW, Zar Myo ST, Tang XH, Zhang J, Zhang P, Wang SS, Grace J (2019). Soil respiration after six years of continuous drought stress in the tropical rainforest in Southwest China. Soil Biology & Biochemistry, 138, 107564. DOI: 10.1016/j.soilbio.2019.107564.
DOI URL |
[54] |
Zhou ZF, Shi XJ, Zheng Y, Qin ZX, Xie DT, Li ZL, Guo T (2014). Abundance and community structure of ammonia- oxidizing bacteria and Archaea in purple soil under long- term fertilization. European Journal of Soil Biology, 60, 24-33.
DOI URL |
[1] | 白皓然 侯盟 刘艳杰. 少花蒺藜草入侵与干旱对羊草草原生产力的影响机制[J]. 植物生态学报, 2024, 48(5): 577-589. |
[2] | 吴君梅, 曾泉鑫, 梅孔灿, 林惠瑛, 谢欢, 刘苑苑, 徐建国, 陈岳民. 土壤磷有效性调控亚热带森林土壤酶活性和酶化学计量对凋落叶输入的响应[J]. 植物生态学报, 2024, 48(2): 242-253. |
[3] | 韩路, 冯宇, 李沅楷, 王雨晴, 王海珍. 地下水埋深对灰胡杨叶片与土壤养分生态化学计量特征及其内稳态的影响[J]. 植物生态学报, 2024, 48(1): 92-102. |
[4] | 吴瀚, 白洁, 李均力, 古丽•加帕尔, 包安明. 新疆地区植被覆盖度时空变化及其影响因素分析[J]. 植物生态学报, 2024, 48(1): 41-55. |
[5] | 马常钦, 黄海龙, 彭政淋, 吴纯泽, 韦庆钰, 贾红涛, 卫星. 水曲柳雌雄株复叶类型及光合功能对不同生境的响应[J]. 植物生态学报, 2023, 47(9): 1287-1297. |
[6] | 韩聪, 母艳梅, 查天山, 秦树高, 刘鹏, 田赟, 贾昕. 2012-2016年宁夏盐池毛乌素沙地黑沙蒿灌丛生态系统通量观测数据集[J]. 植物生态学报, 2023, 47(9): 1322-1332. |
[7] | 赵艳超, 陈立同. 土壤养分对青藏高原高寒草地生物量响应增温的调节作用[J]. 植物生态学报, 2023, 47(8): 1071-1081. |
[8] | 施梦娇, 李斌, 伊力塔, 刘美华. 美洲黑杨幼苗生长和生理生态指标对干旱-复水响应的性别差异[J]. 植物生态学报, 2023, 47(8): 1159-1170. |
[9] | 王晓悦, 许艺馨, 李春环, 余海龙, 黄菊莹. 长期降水量变化下荒漠草原植物生物量、多样性的变化及其影响因素[J]. 植物生态学报, 2023, 47(4): 479-490. |
[10] | 余俊瑞, 万春燕, 朱师丹. 热带亚热带喀斯特森林木本植物的水力脆弱性分割[J]. 植物生态学报, 2023, 47(11): 1576-1584. |
[11] | 张志山, 韩高玲, 霍建强, 黄日辉, 薛书文. 固沙灌木柠条锦鸡儿和中间锦鸡儿木质部导水与叶片光合能力对土壤水分的响应[J]. 植物生态学报, 2023, 47(10): 1422-1431. |
[12] | 陈图强, 徐贵青, 刘深思, 李彦. 干旱胁迫下梭梭水力性状调整与非结构性碳水化合物动态[J]. 植物生态学报, 2023, 47(10): 1407-1421. |
[13] | 李一丁, 桑清田, 张灏, 刘龙昌, 潘庆民, 王宇, 刘伟, 袁文平. 内蒙古半干旱地区空气和土壤加湿对幼龄樟子松生长的影响[J]. 植物生态学报, 2022, 46(9): 1077-1085. |
[14] | 周洁, 杨晓东, 王雅芸, 隆彦昕, 王妍, 李浡睿, 孙启兴, 孙楠. 梭梭和骆驼刺对干旱的适应策略差异[J]. 植物生态学报, 2022, 46(9): 1064-1076. |
[15] | 王子龙, 胡斌, 包维楷, 李芳兰, 胡慧, 韦丹丹, 杨婷惠, 黎小娟. 西南干旱河谷植物群落组分生物量的纬度格局及其影响因素[J]. 植物生态学报, 2022, 46(5): 539-551. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19