植物生态学报 ›› 2017, Vol. 41 ›› Issue (11): 1177-1189.DOI: 10.17521/cjpe.2017.0098
所属专题: 生态系统碳水能量通量; 土壤呼吸
葛晓改1,2, 周本智1,2,*(), 肖文发3, 王小明1,2, 曹永慧1,2, 叶明4
收稿日期:
2017-04-10
接受日期:
2017-08-29
出版日期:
2017-11-10
发布日期:
2017-11-10
通讯作者:
周本智
基金资助:
Xiao-Gai GE1,2, Ben-Zhi ZHOU1,2,*(), Wen-Fa XIAO3, Xiao-Ming WANG1,2, Yong-Hui CAO1,2, Ming YE4
Received:
2017-04-10
Accepted:
2017-08-29
Online:
2017-11-10
Published:
2017-11-10
Contact:
Ben-Zhi ZHOU
摘要:
为探讨生物质炭添加对森林原位土壤呼吸动态及温度敏感性的影响, 于2014年5月至2016年4月对浙江省杭州市富阳区庙山坞林区毛竹(Phyllostachys edulis)林进行了为期两年的生物质炭添加试验, 生物质炭施加量分别为0 (CK)、5 (LB)、10 (MB)和20 t·hm-2 (HB)。利用LI-8100土壤碳通量系统测定土壤呼吸速率时空动态。结果表明: 添加生物质炭会降低毛竹林土壤呼吸速率且呈现明显的季节动态, 土壤呼吸速率在6-7月最高(林分1中LB处理除外), 1月或2月最低, 添加生物质炭对毛竹林土壤呼吸的影响显著; CK、LB、MB和HB处理的年平均土壤呼吸速率分别为3.32、2.66、3.04和3.24 μmol·m-2·s-1; 与对照相比, LB、MB和HB处理下年平均土壤呼吸速率分别降低2.33%-54.72%、1.28%-44.21%和0.09%-39.22%。添加生物质炭使LB、MB、HB处理的土壤水分含量分别增加了0.97%-75.58%、0.87%-48.18%和0.68%-74.73%。土壤呼吸速率与5 cm土壤温度呈现显著的指数相关关系, 与5 cm土壤水分含量没有显著相关性, 但与温度和水分呈显著相关关系。生物质炭添加影响土壤呼吸温度敏感性, LB、MB处理明显增加土壤温度敏感性。LB、MB和HB处理下年平均累积土壤呼吸CO2排放分别降低7.98%-35.09%、1.48%-20.63%和-4.71%-7.68%。添加生物质炭显著降低毛竹林土壤碳排放和土壤温度敏感性, 对缓解气候变化具有一定意义。
葛晓改, 周本智, 肖文发, 王小明, 曹永慧, 叶明. 生物质炭添加对毛竹林土壤呼吸动态和温度敏感性的影响. 植物生态学报, 2017, 41(11): 1177-1189. DOI: 10.17521/cjpe.2017.0098
Xiao-Gai GE, Ben-Zhi ZHOU, Wen-Fa XIAO, Xiao-Ming WANG, Yong-Hui CAO, Ming YE. Effects of biochar addition on dynamics of soil respiration and temperature sensitivity in a Phyllostachys edulis forest. Chinese Journal of Plant Ecology, 2017, 41(11): 1177-1189. DOI: 10.17521/cjpe.2017.0098
林分 Stand | 海拔 Elevation (m) | 树高 Tree height (m) | 胸径 DBH (cm) | 坡度 Slope (°) | 坡向 Aspect | 凋落物层厚度 LLD (cm) | 土壤有机碳 SOC (g·kg-1) | 总氮 TN (g·kg-1) | 总磷 TP (g·kg-1) |
---|---|---|---|---|---|---|---|---|---|
1 | 141 | 12.8 | 10.2 | 10 | S | 2.04 | 33.10 ± 9.06 | 2.86 ± 0.79 | 0.56 ± 0.93 |
2 | 115 | 13.0 | 10.3 | 15 | S | 2.22 | 30.1 ± 8.04 | 2.59 ± 0.48 | 0.37 ± 1.03 |
3 | 86 | 13.3 | 10.7 | 20 | S | 2.47 | 28.8 ± 8.21 | 2.38 ± 0.29 | 0.43 ± 1.09 |
4 | 157 | 12.2 | 10.1 | 20 | S | 2.60 | 34.1 ± 8.04 | 2.59 ± 0.29 | 0.72 ± 1.09 |
表1 研究林分特征(平均值±标准偏差)
Table 1 General characteristics of the forest stands studied ((mean ± SD)
林分 Stand | 海拔 Elevation (m) | 树高 Tree height (m) | 胸径 DBH (cm) | 坡度 Slope (°) | 坡向 Aspect | 凋落物层厚度 LLD (cm) | 土壤有机碳 SOC (g·kg-1) | 总氮 TN (g·kg-1) | 总磷 TP (g·kg-1) |
---|---|---|---|---|---|---|---|---|---|
1 | 141 | 12.8 | 10.2 | 10 | S | 2.04 | 33.10 ± 9.06 | 2.86 ± 0.79 | 0.56 ± 0.93 |
2 | 115 | 13.0 | 10.3 | 15 | S | 2.22 | 30.1 ± 8.04 | 2.59 ± 0.48 | 0.37 ± 1.03 |
3 | 86 | 13.3 | 10.7 | 20 | S | 2.47 | 28.8 ± 8.21 | 2.38 ± 0.29 | 0.43 ± 1.09 |
4 | 157 | 12.2 | 10.1 | 20 | S | 2.60 | 34.1 ± 8.04 | 2.59 ± 0.29 | 0.72 ± 1.09 |
图1 生物质炭添加下毛竹林土壤呼吸月动态(平均值±标准偏差)。CK, 对照; LB, 低生物质炭施加(5 t·hm-2); HB, 高生物质炭施加(20 t·hm-2); MB, 中生物质炭施加(10 t·hm-2)。
Fig. 1 Monthly dynamics of soil respiration in Phyllostachys edulis forest stands with different biochar addition treatments (mean ± SD). CK, control; LB, low rate of biochar addition (5 t·hm-2); HB, high rate of biochar addition (20 t·hm-2); MB, medium rate of biochar addition (10 t·hm-2).
图2 生物质炭添加下毛竹林生长季和非生长季土壤呼吸特征(平均值±标准偏差)。不同小写字母表示相同季节不同生物质炭处理间差异显著; 不同大写字母表示同一生物质炭处理不同季节差异显著。CK, 对照; LB, 低生物质炭施加(5 t·hm-2); HB, 高生物质炭施加(20 t·hm-2); MB, 中生物质炭施加(10 t·hm-2)。
Fig. 2 The characteristics of soil respiration in growing and non-growing seasons in Phyllostachys edulis forest stands with different biochar treatments (mean ± SD). Different lowercase letters indicate significant differences among biochar treatments within seasons, and different capital letters indicate significant differences among seasons within biochar treatments. CK, control; LB, low rate of biochar addition (5 t·hm-2); HB, high rate of biochar addition (20 t·hm-2); MB, medium rate of biochar addition (10 t·hm-2).
林分 Stands | 季节 Season | 生物质炭添加 Biochar addition | 季节×生物质炭添加 Season × biochar addition | |||
---|---|---|---|---|---|---|
F | p | F | p | F | p | |
林分1 Stand 1 | 673.41 | 0.00 | 16.66 | 0.00 | 7.64 | 0.00 |
林分2 Stand 2 | 731.47 | 0.00 | 13.36 | 0.00 | 2.30 | 0.08 |
林分3 Stand 3 | 695.20 | 0.00 | 1.54 | 0.204 | 0.77 | 0.51 |
林分4 Stand 4 | 655.78 | 0.00 | 1.14 | 0.334 | 0.64 | 0.60 |
表2 生物质炭添加和季节对毛竹林土壤呼吸影响的双因子方差分析
Table 2 Two-way ANOVA for the effects of biochar addition treatments and seasons on soil respiration in Phyllostachys edulis forest stands
林分 Stands | 季节 Season | 生物质炭添加 Biochar addition | 季节×生物质炭添加 Season × biochar addition | |||
---|---|---|---|---|---|---|
F | p | F | p | F | p | |
林分1 Stand 1 | 673.41 | 0.00 | 16.66 | 0.00 | 7.64 | 0.00 |
林分2 Stand 2 | 731.47 | 0.00 | 13.36 | 0.00 | 2.30 | 0.08 |
林分3 Stand 3 | 695.20 | 0.00 | 1.54 | 0.204 | 0.77 | 0.51 |
林分4 Stand 4 | 655.78 | 0.00 | 1.14 | 0.334 | 0.64 | 0.60 |
图3 生物质炭添加对毛竹林土壤水分含量月动态的影响。(CK-LB)/CK、(CK-MB)/CK、(CK-HB)/CK分别表示低、中、高生物质炭添加处理下土壤水分含量较对照降低(负的表示增加)的百分比。缩写同图2。
Fig. 3 The effects of biochar addition on monthly soil moisture in Phyllostachys edulis forest stands. The Y-axis means the percent of soil moisture difference by biochar addition to the control. (CK-LB)/CK, (CK-MB)/CK, (CK-HB)/CK mean the decreased (minus value indicates a increase) percent of soil moisture on LB, MB and HB treatment, compared with control treatment. The abbreviations are the same as in Fig. 2.
图4 生物质炭添加下毛竹林土壤温度月动态特征。CK, 对照; LB, 低生物质炭施加(5 t·hm-2); HB, 高生物质炭施加(20 t·hm-2); MB, 中生物质炭施加(10 t·hm-2)。
Fig. 4 The characteristics of monthly soil temperaturein Phyllostachys edulis forest stands with different biochar addition treatments. CK, control; LB, low rate of biochar addition (5 t·hm-2); HB, high rate of biochar addition (20 t·hm-2); MB, medium rate of biochar addition (10 t·hm-2).
图5 生物质炭添加下毛竹林土壤呼吸速率和土壤温度的关系。CK, 对照; LB, 低生物质炭施加(5 t·hm-2); HB, 高生物质炭施加(20 t·hm-2); MB, 中生物质炭施加(10 t·hm-2)。Q10, 土壤呼吸温度敏感性系数。
Fig. 5 Relationships between soil respiration and soil temperature in Phyllostachys edulis forest stands with different biochar addition treatments. CK, control; LB, low rate of biochar addition (5 t·hm-2); HB, high rate of biochar addition (20 t·hm-2); MB, medium rate of biochar addition (10 t·hm-2). Q10, soil temperature sensitivity.
林分 Stand | CK | LB | ||||
---|---|---|---|---|---|---|
拟合方程 Fitted equation | R2 | p | 拟合方程 Fitted equation | R2 | p | |
1 | y = 0.025e0.095x(2.609W - 0.066W2) | 0.80 | ** | y = 0.067e0.097x(0.523W - 0.012W2) | 0.79 | ** |
2 | y = 0.029e0.088x(2.372W - 0.056W2) | 0.76 | ** | y = 0.112e0.093x(0.437W - 0.010W2) | 0.69 | ** |
3 | y = 0.018e0.085x(3.968W - 0.096W2) | 0.72 | ** | y = 0.098e0.072x(0.819W - 0.020W2) | 0.72 | ** |
4 | y = 0.030e0.077x(2.828W - 0.060W2) | 0.73 | ** | y = 0.021e0.093x(0.387W- 0.068W2) | 0.80 | ** |
林分 Stand | MB | HB | ||||
拟合方程 Fitted equation | R2 | p | 拟合方程 Fitted equation | R2 | p | |
1 | y = 0.080e0.086x(0.653W - 0.012W2) | 0.65 | ** | y = 0.091e0.083x(0.510W - 0.008W2) | 0.65 | ** |
2 | y = 0.024e0.091x(1.776W - 0.035W2) | 0.76 | ** | y = 0.096e0.078x(0.769W - 0.017W2) | 0.71 | ** |
3 | y = 0.009e0.086x(6.901W - 0.157W2) | 0.73 | ** | y = 0.032e0.079x(2.237W - 0.049W2) | 0.74 | ** |
4 | y = 0.062e0.090x(1.059W - 0.025W2) | 0.69 | ** | y = 0.015e0.095x(3.825W - 0.087W2) | 0.86 | ** |
表3 生物质炭添加下毛竹林土壤呼吸速率(y)与土壤温度(x)、水分(W)关系的拟合方程
Table 3 Regression models of soil respiration (y) with soil temperature (x) and moisture (W) in Phyllostachys edulis forest stands with different biochar addition treatments
林分 Stand | CK | LB | ||||
---|---|---|---|---|---|---|
拟合方程 Fitted equation | R2 | p | 拟合方程 Fitted equation | R2 | p | |
1 | y = 0.025e0.095x(2.609W - 0.066W2) | 0.80 | ** | y = 0.067e0.097x(0.523W - 0.012W2) | 0.79 | ** |
2 | y = 0.029e0.088x(2.372W - 0.056W2) | 0.76 | ** | y = 0.112e0.093x(0.437W - 0.010W2) | 0.69 | ** |
3 | y = 0.018e0.085x(3.968W - 0.096W2) | 0.72 | ** | y = 0.098e0.072x(0.819W - 0.020W2) | 0.72 | ** |
4 | y = 0.030e0.077x(2.828W - 0.060W2) | 0.73 | ** | y = 0.021e0.093x(0.387W- 0.068W2) | 0.80 | ** |
林分 Stand | MB | HB | ||||
拟合方程 Fitted equation | R2 | p | 拟合方程 Fitted equation | R2 | p | |
1 | y = 0.080e0.086x(0.653W - 0.012W2) | 0.65 | ** | y = 0.091e0.083x(0.510W - 0.008W2) | 0.65 | ** |
2 | y = 0.024e0.091x(1.776W - 0.035W2) | 0.76 | ** | y = 0.096e0.078x(0.769W - 0.017W2) | 0.71 | ** |
3 | y = 0.009e0.086x(6.901W - 0.157W2) | 0.73 | ** | y = 0.032e0.079x(2.237W - 0.049W2) | 0.74 | ** |
4 | y = 0.062e0.090x(1.059W - 0.025W2) | 0.69 | ** | y = 0.015e0.095x(3.825W - 0.087W2) | 0.86 | ** |
图6 生物质炭添加下毛竹林土壤呼吸温度敏感性系数(Q10)与土壤温度、土壤水分的关系。
Fig. 6 Relationships of soil temperature sensitivity (Q10) with soil temperature and moisture in Phyllostachys edulis forest stands with biochar addition.
图7 生物质炭添加对毛竹林土壤碳年累积排放的影响 (平均值±标准偏差)。不同小写字母表示相同林分不同处理间差异显著。CK, 对照; LB, 低生物质炭施加(5 t·hm-2); MB, 中生物质炭施加(10 t·hm-2); HB, 高生物质炭施加(20 t·hm-2); (CK-LB)/CK、(CK-MB)/CK、(CK-HB)/CK分别表示低、中、高生物质炭添加处理中土壤碳年累积排放量较对照降低的比重。
Fig. 7 The effects of biochar addition on annual cumulative soil respiration in Phyllostachys edulis forest stands (mean ± SD). Different lowercase letters indicate significant differences among biochar treatments within forest stands. CK, control; LB, low rate of biochar addition (5 t·hm-2); MB, medium rate of biochar addition (10 t·hm-2); HB, high rate of biochar addition (20 t·hm-2). (CK-LB)/CK, (CK-MB)/CK, (CK-HB)/CK mean the decrease percent of annual cumulative soil respiration on LB, MB and HB treatment, compared with control treatment.
[1] | Almagro M, López J, Querejeta JI, Martínez-Mena M (2009). Temperature dependence of soil CO2 efflux is strongly modulated by seasonal patterns of moisture availability in a Mediterranean ecosystem.Soil Biology & Biochemistry, 41, 594-605. |
[2] |
Ameloot N, Graber ER, Verheijen FGA, de Neve S (2013). Interactions between biochar stability and soil organisms: Review and research needs.European Journal of Soil Science, 64, 379-390.
DOI URL |
[3] |
Bamminger C, Marschner B, Jüschke E (2014). An incubation study on the stability and biological effects of pyrogenic and hydrothermal biochar in two soils.European Journal of Soil Science, 65, 72-82.
DOI URL |
[4] |
Bruun S, Clauson-Kaas S, Bobu?ská L, Thomsen IK (2014). Carbon dioxide emissions from biochar in soils: Role of clay, microorganisms and carbonates.European Journal of Soil Science, 65, 52-59.
DOI URL |
[5] | Chen JH, Li SH, Liang CF, Xu QF, Li YC, Qin H, Fuhrmann JF (2017). Response of microbial community structure and function to short-term biochar amendment in an intensively managed bamboo (Phyllostachys praecox) plantation soil: Effect of particle size and addition rate. Science of the Total Environment, 574, 24-33. |
[6] |
Cross A, Sohi SP (2011). The priming potential of biochar products in relation to labile carbon contents and soil organic matter status.Soil Biology & Biochemistry, 43, 2127-2134.
DOI URL |
[7] | DeLuca TH, MacKenzie MD, Gundale MJ, Holben WE (2006). Wildfire-produced charcoal directly influences nitrogen cycling in Ponderosa pine forests.Soil Science Society of America Journal, 70, 448-453. |
[8] |
Fierer N, Strickland MS, Liptzin D, Bradford MA, Cleveland CC (2009). Global patterns in belowground communities.Ecology Letters, 12, 1238-1249.
DOI URL PMID |
[9] |
Forbes MS, Raison RJ, Skjemstad JO (2006). Formation, transformation and transport of black carbon (charcoal) in terrestrial and aquatic ecosystems.Science of the Total Environment, 370, 190-206.
DOI URL PMID |
[10] |
Ge XG, Zhou BZ, Xiao WF, Wang XM, Cao YH (2016). Priming effect of biochar addition on soil carbon emission: A review.Ecology and Environmental Sciences, 25, 339-345. (in Chinese with English abstract)[葛晓改, 周本智, 肖文发, 王小明, 曹永慧 (2016). 生物质炭输入对土壤碳排放的激发效应研究进展. 生态环境学报, 25, 339-345.]
DOI URL |
[11] |
Hardie M, Clothier B, Bound S, Oliver G, Close D (2014). Does biochar influence soil physical properties and soil water availability?Plant and Soil, 376, 347-361.
DOI URL |
[12] |
Hashimoto S, Carvalhais N, Ito A, Migliavacca M, Nishina K, Reichstein M (2015). Global spatiotemporal distribution of soil respiration modeled using a global database.Biogeosciences, 12, 4121-4132.
DOI URL |
[13] |
He XH, Du ZL, Wang YD, Lu N, Zhang QZ (2016). Sensitivity of soil respiration to soil temperature decreased under deep biochar amended soils in temperate croplands.Applied Soil Ecology, 108, 204-210.
DOI URL |
[14] |
Herath HMSK, Camps-Arbestain M, Hedley MJ, Kirschbaum MUF, Wang T, van Hale R (2015). Experimental evidence for sequestering C with biochar by avoidance of CO2 emissions from original feedstock and protection of native soil organic matter.Global Change Biology Bioenergy, 7, 512-526.
DOI URL |
[15] | Hughes RF, Kauffman JB, Jaramillo VJ (1999). Biomass, carbon, and nutrient dynamics of secondary forests in a humid tropical region of méxico.Ecology, 80, 1892-1907. |
[16] |
Jassal RS, Black TA, Novak MD, Gaumont-Guay D, Nesic Z (2008). Effect of soil water stress on soil respiration and its temperature sensitivity in an 18-year-old temperate Douglas-fir stand.Global Change Biology, 14, 1305-1318.
DOI URL |
[17] |
Jones DL, Murphy DV, Khalid M, Ahmad W, Edwards-Jones G, DeLuca TH (2011). Short-term biochar-induced increase in soil CO2 release is both biotically and abiotically mediated.Soil Biology & Biochemistry, 43, 1723-1731.
DOI URL |
[18] | Kammann CI, Linsel S, G?βling JW, Koyro HW (2011). Influence of biochar on drought tolerance ofChenopodium quinoa Willd and on soil-plant relations. Plant and Soil, 345, 195-210. |
[19] |
Kuzyakov Y, Friedel JK, Stahr K (2000). Review of mechanisms and quantification of priming effects.Soil Biology & Biochemistry, 32, 1485-1498.
DOI URL |
[20] | Lal R, Follett RF, Stewart BA, Kimble JM (2007). Soil carbon sequestration to mitigate climate change and advance food security.Soil Science, 172, 943-956. |
[21] |
Lehmann J, Gaunt J, Rondon M (2006). Bio-char sequestration terrestrial ecosystems—A review.Mitigation and Adaptation Strategies for Global Change, 11, 403-427.
DOI URL |
[22] |
Lellei-Kovács E, Botta-Dukát Z, de Dato G, Estiarte M, Guidolotti G, Kopittke GR, Kovács-Láng E, Kr?el-Dulay G, Larsen KS, Pe?uelas J, Smith AR, Sowerby A, Tietema A, Schmidt IK (2016). Temperature dependence of soil respiration modulated by thresholds in soil water availability across European shrubland ecosystems.Ecosystems, 19, 1460-1477.
DOI URL |
[23] |
Liang BQ, Lehmann J, Sohi SP, Thies JE, O’Neill B, Trujillo L, Gaunt J, Solomon D, Grossman J, Neves EG, Luiz?o FJ (2010). Black carbon affects the cycling of non-black carbon in soil.Organic Geochemistry, 41, 206-213.
DOI URL |
[24] | Liu DJ, Zhang JX, Lu Q, Li X, Wu Z (2016). Effects of rain supplementation on the temperature sensitivity of soil respiration inNitraria sphaerocarpa community in a hyperarid area of Dunhuang, China. Chinese Journal of Ecology, 35, 584-590. (in Chinese with English abstract)[刘殿君, 张金鑫, 卢琦, 李旭, 武哲 (2016). 极端干旱区增雨对泡泡刺(Nitraria sphaerocarpa)群落土壤呼吸温度敏感性的影响. 生态学杂志, 35, 584-590.] |
[25] |
Liu XY, Zheng JF, Zhang DX, Cheng K, Zhou HM, Zhang AF, Li LQ, Joseph S, Smith P, Crowley D, Kuzyakov Y, Pan GX (2016). Biochar has no effect on soil respiration across Chinese agricultural soils. Science of the Total Environment, 554-555, 259-265.
DOI URL PMID |
[26] |
Luo Y, Durenkamp M, de Nobili M, Lin Q, Brookes PC (2011). Short term soil priming effects and the mineralization of biochar following its incorporation to soils of different pH.Soil Biology & Biochemistry, 43, 2304-2314.
DOI URL |
[27] | Major J, Rondon M, Molina D, Riha SJ, Lehmann J (2010). Maize yield and nutrition during 4 years after biochar application to a Colombian savanna oxisol.Plant and Soil, 333, 117-128. |
[28] |
Marland E, Marland G (2003). The treatment of long-lived, carbon-containing products in inventories of carbon dioxide emissions to the atmosphere.Environmental Science & Policy, 6, 139-152.
DOI URL |
[29] |
Mitchell PJ, Simpson AJ, Soong R, Simpson MJ (2015). Shifts in microbial community and water-extractable organic matter composition with biochar amendment in a temperate forest soil.Soil Biology & Biochemistry, 81, 244-254.
DOI URL |
[30] |
Novak JM, Busscher WJ, Watts DW, Laird DA, Ahmedna MA, Naiandou MAS (2010). Short-term CO2 mineralization after additions of biochar and switchgrass to a typic kandiudult.Geoderma, 154, 281-288.
DOI URL |
[31] |
Prendergast-Miller MT, Duvall M, Sohi SP (2014). Biochar- root interactions are mediated by biochar nutrient content and impacts on soil nutrient availability.European Journal of Soil Science, 65, 173-185.
DOI URL |
[32] | Saiz G, Byrne KA, Butterbach-Bahl K, Kiese R, Blujdea V, Farrell EP (2006). Stand age-related effects on soil respiration in a first rotation Sitka spruce chronosequence in central Ireland.Global Change Biology, 12, 1007-1020. |
[33] | Sohi SP, Krull E, Lopez-Capel E, Bol R (2010). A review of biochar and its use and function in soil. In: Donald LS ed. Advances in Agronomy. Academic Press, Burlington, USA. 47-82. |
[34] | Spokas KA, Baker JM, Reicosky DC (2010). Ethylene: Potential key for biochar amendment impacts.Plant and Soil, 333, 443-452. |
[35] |
Suseela V, Conant RT, Wallenstein MD, Dukes JS (2012). Effects of soil moisture on the temperature sensitivity of heterotrophic respiration vary seasonally in an old-field climate change experiment.Global Change Biology, 18, 336-348.
DOI URL |
[36] |
Tammeorg P, Simojoki A, M?kel? P, Stoddard FL, Alakukku L, Helenius J (2014). Short-term effects of biochar on soil properties and wheat yield formation with meat bone meal and inorganic fertiliser on a boreal loamy sand.Agriculture, Ecosystems and Environment, 191, 108-116.
DOI URL |
[37] |
Thomas SC, Gale N (2015). Biochar and forest restoration: A review and meta-analysis of tree growth responses.New Forest, 46, 931-946.
DOI URL |
[38] |
Ulyett J, Sakrabani R, Kibblewhite M, Hann M (2014). Impact of biochar addition on water retention, nitrification and carbon dioxide evolution from two sandy loam soils.European Journal of Soil Science, 65, 96-104.
DOI URL |
[39] |
Verheijen FGA, Graber ER, Ameloot N, Bastos AC, Sohi S, Knicker H (2014). Biochars in soils: New insights and emerging research needs. European Journal of Soil Science, 65, 22-27.
DOI URL |
[40] |
Wardle DA, Nilsson MC, Zackrisson O (2008). Fire-derived charcoal causes loss of forest humus.Science, 320, 629.
DOI URL PMID |
[41] |
Wu JJ, Yang ZJ, Liu XF, Xiong DC, Lin WS, Chen CQ, Wang XH (2014). Analysis of soil respiration and components inCastanopsis carlesii and Cunninghamia lanceolata plantations. Chinese Journal of Plant Ecology, 38, 45-53. (in Chinese with English abstract)[吴君君, 杨智杰, 刘小飞, 熊德成, 林伟盛, 陈朝琪, 王小红 (2014). 米槠和杉木人工林土壤呼吸及其组分分析. 植物生态学报, 38, 45-53.]
DOI URL |
[42] | Xu Y (2012). Research on Community Structure and Carbon Accumulation of Moso Bamboo Forest. PhD dissertation, Zhejiang University, Hangzhou. (in Chinese with English abstract)[徐涌 (2012). 毛竹林群落结构与碳积累规律研究. 博士学位论文, 浙江大学, 杭州.] |
[43] | Yang QP, Xu M, Liu HS, Wang JS, Liu LX, Chi YG, Zheng YP (2011). Impact factors and uncertainties of the temperature sensitivity of soil respiration.Acta Ecologica Sinica, 31, 2301-2311. (in Chinese with English abstract)[杨庆朋, 徐明, 刘洪升, 王劲松, 刘丽香, 迟永刚, 郑云普 (2011). 土壤呼吸温度敏感性的影响因素和不确定性. 生态学报, 31, 2301-2311.] |
[44] |
Yuste JC, Baldocchi DD, Gershenson A, Goldstein A, Misson L, Wong S (2007). Microbial soil respiration and its dependency on carbon inputs, soil temperature and moisture. Global Change Biology, 13, 2018-2035.
DOI URL |
[45] | Zhou BZ (2006). Dynamics of Bamboo’s Below-ground System Based on Minirhizotron Technique. PhD dissertation, Chinese Academy of Forestry, Beijing. (in Chinese with English abstract)[周本智 (2006). 基于小观察窗技术的竹林地下系统动态研究. 博士学位论文, 中国林业科学研究院, 北京.] |
[46] |
Zimmerman AR, Gao B, Ahn MY (2011). Positive and negative carbon mineralization priming effects among a variety of biochar-amended soils.Soil Biology & Biochemistry, 43, 1169-1179.
DOI URL |
[1] | 王袼, 胡姝娅, 李阳, 陈晓鹏, 李红玉, 董宽虎, 何念鹏, 王常慧. 不同类型草原土壤净氮矿化速率的温度敏感性[J]. 植物生态学报, 2024, 48(4): 523-533. |
[2] | 沈健, 何宗明, 董强, 郜士垒, 林宇. 轻度火烧对滨海沙地人工林土壤呼吸速率和非生物因子的影响[J]. 植物生态学报, 2023, 47(7): 1032-1042. |
[3] | 李雪, 董杰, 韩广轩, 张奇奇, 谢宝华, 李培广, 赵明亮, 陈克龙, 宋维民. 黄河三角洲典型滨海盐沼湿地土壤CO2和CH4排放对水盐变化的响应[J]. 植物生态学报, 2023, 47(3): 434-446. |
[4] | 夏璟钰, 张扬建, 郑周涛, 赵广, 赵然, 朱艺旋, 高洁, 沈若楠, 李文宇, 郑家禾, 张雨雪, 朱军涛, 孙建新. 青藏高原那曲高山嵩草草甸植物物候对增温的异步响应[J]. 植物生态学报, 2023, 47(2): 183-194. |
[5] | 杨元合, 张典业, 魏斌, 刘洋, 冯雪徽, 毛超, 徐玮婕, 贺美, 王璐, 郑志虎, 王媛媛, 陈蕾伊, 彭云峰. 草地群落多样性和生态系统碳氮循环对氮输入的非线性响应及其机制[J]. 植物生态学报, 2023, 47(1): 1-24. |
[6] | 丛楠, 张扬建, 朱军涛. 北半球中高纬度地区近30年植被春季物候温度敏感性[J]. 植物生态学报, 2022, 46(2): 125-135. |
[7] | 赵河聚, 岳艳鹏, 贾晓红, 成龙, 吴波, 李元寿, 周虹, 赵雪彬. 模拟增温对高寒沙区生物土壤结皮-土壤系统呼吸的影响[J]. 植物生态学报, 2020, 44(9): 916-925. |
[8] | 郑甲佳, 黄松宇, 贾昕, 田赟, 牟钰, 刘鹏, 查天山. 中国森林生态系统土壤呼吸温度敏感性空间变异特征及影响因素[J]. 植物生态学报, 2020, 44(6): 687-698. |
[9] | 杨泽, 嘎玛达尔基, 谭星儒, 游翠海, 王彦兵, 杨俊杰, 韩兴国, 陈世苹. 氮添加量和施氮频率对温带半干旱草原土壤呼吸及组分的影响[J]. 植物生态学报, 2020, 44(10): 1059-1072. |
[10] | 胡姝娅,刁华杰,王惠玲,薄元超,申颜,孙伟,董宽虎,黄建辉,王常慧. 北方农牧交错带温性盐碱化草地土壤呼吸对不同形态氮添加和刈割的响应[J]. 植物生态学报, 2020, 44(1): 70-79. |
[11] | 温超,单玉梅,晔薷罕,张璞进,木兰,常虹,任婷婷,陈世苹,白永飞,黄建辉,孙海莲. 氮和水分添加对内蒙古荒漠草原放牧生态系统土壤呼吸的影响[J]. 植物生态学报, 2020, 44(1): 80-92. |
[12] | 李建军, 刘恋, 陈迪马, 许丰伟, 程军回, 白永飞. 底座入土深度和面积对典型草原土壤呼吸测定结果的影响[J]. 植物生态学报, 2019, 43(2): 152-164. |
[13] | 王祥, 朱亚琼, 郑伟, 关正翾, 盛建东. 昭苏山地草甸4种典型土地利用方式下的土壤呼吸特征[J]. 植物生态学报, 2018, 42(3): 382-396. |
[14] | 柴曦, 李英年, 段呈, 张涛, 宗宁, 石培礼, 何永涛, 张宪洲. 青藏高原高寒灌丛草甸和草原化草甸CO2通量动态及其限制因子[J]. 植物生态学报, 2018, 42(1): 6-19. |
[15] | 朱志成, 黄银, 许丰伟, 邢稳, 郑淑霞, 白永飞. 降雨强度和时间频次对内蒙古典型草原土壤氮矿化的影响[J]. 植物生态学报, 2017, 41(9): 938-952. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19