植物生态学报 ›› 2020, Vol. 44 ›› Issue (10): 1059-1072.DOI: 10.17521/cjpe.2020.0171
杨泽1,2, 嘎玛达尔基1,2, 谭星儒1,2, 游翠海1,2, 王彦兵1,2, 杨俊杰1, 韩兴国1,2, 陈世苹1,2,*()
收稿日期:
2020-05-26
接受日期:
2020-07-28
出版日期:
2020-10-20
发布日期:
2020-10-11
通讯作者:
陈世苹
作者简介:
*陈世苹:ORCID:0000-0002-1934-2372,spchen@ibcas.ac.cn基金资助:
YANG Ze1,2, null null1,2, TAN Xing-Ru1,2, YOU Cui-Hai1,2, WANG Yan-Bing1,2, YANG Jun-Jie1, HAN Xing-Guo1,2, CHEN Shi-Ping1,2,*()
Received:
2020-05-26
Accepted:
2020-07-28
Online:
2020-10-20
Published:
2020-10-11
Contact:
CHEN Shi-Ping
Supported by:
摘要:
日益加剧的氮沉降已经对陆地生态系统生产力和碳循环过程产生了显著影响。草原生态系统近90%的碳储存在土壤中, 明确土壤呼吸及其组分对氮添加的响应对评估大气氮沉降背景下草原生态系统碳平衡和土壤碳库稳定性是非常重要的。以往关于草原土壤呼吸对氮沉降响应的理解多是基于短期(<5年)和低频(每年1-2次)氮添加实验研究, 而关于长期氮添加和不同施氮频率对土壤呼吸及其组分的影响尚缺乏实验证据。该研究基于2008年建立在内蒙古半干旱草原的长期氮添加实验平台, 包括6个氮添加水平和2个施氮频率处理, 通过连续两年(2018-2019年)土壤呼吸及其组分的测定, 发现: 1)氮添加显著降低了土壤总呼吸速率(Rs), 且Rs下降程度随着氮添加量的增加而增强。土壤异养呼吸速率(Rh)的显著下降是Rs下降的主要原因。2)不同氮添加频率并未显著影响土壤呼吸及其组分对氮添加处理的响应。3)长期氮添加造成的土壤酸化降低了土壤微生物活性并改变了微生物群落结构(真菌/细菌比), 进而导致土壤呼吸及其异养组分呈现显著的负响应。以上结果表明, 长期(>10年)氮添加对土壤地下碳循环过程的抑制作用非常明显, 特别是异养呼吸组分的下降会降低土壤有机碳分解速率, 有助于土壤碳库稳定性的维持。同时, 随着氮添加处理时间的延长, 不同施氮频率影响效应的差异减弱, 表明目前长期的低频氮添加实验监测数据可以为评估自然生态系统对大气氮沉降的响应提供较为可靠的参考。
杨泽, 嘎玛达尔基, 谭星儒, 游翠海, 王彦兵, 杨俊杰, 韩兴国, 陈世苹. 氮添加量和施氮频率对温带半干旱草原土壤呼吸及组分的影响. 植物生态学报, 2020, 44(10): 1059-1072. DOI: 10.17521/cjpe.2020.0171
YANG Ze, null null, TAN Xing-Ru, YOU Cui-Hai, WANG Yan-Bing, YANG Jun-Jie, HAN Xing-Guo, CHEN Shi-Ping. Effects of nitrogen addition amount and frequency on soil respiration and its components in a temperate semiarid grassland. Chinese Journal of Plant Ecology, 2020, 44(10): 1059-1072. DOI: 10.17521/cjpe.2020.0171
处理 Treatment | 土壤温度 ST (℃) | 土壤水分含量 SWC (%) | 土壤总呼吸速率 Rs (mol·m-2·s-1) | 异养呼吸速率 Rh (mol·m-2·s-1) | 自养呼吸速率 Ra (mol·m-2·s-1) | 异养呼吸比值 Rh/Rs | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
df | F | p | F | p | F | p | F | p | F | p | F | p | |
Y | 1 | 49.08 | <0.001 | 6.11 | <0.05 | 21.81 | <0.001 | 67.29 | <0.001 | 0.53 | 0.46 | 71.57 | <0.001 |
N | 5 | 16.65 | <0.001 | 5.56 | <0.001 | 16.15 | <0.001 | 113.73 | <0.001 | 1.68 | 0.16 | 1.60 | 0.19 |
NF | 1 | 0.87 | 0.36 | 1.08 | 0.30 | 2.52 | 0.12 | 0.02 | 0.90 | 3.03 | 0.09 | 1.84 | 0.18 |
N × NF | 4 | 1.75 | 0.15 | 1.33 | 0.27 | 2.53 | 0.05 | 9.23 | <0.001 | 2.30 | 0.07 | 2.14 | 0.09 |
Y × N | 5 | 0.31 | 0.91 | 0.09 | 0.99 | 0.62 | 0.69 | 1.23 | 0.29 | 0.58 | 0.71 | 1.20 | 0.32 |
Y × NF | 1 | 0.00 | 0.96 | 0.11 | 0.74 | 0.04 | 0.84 | 0.19 | 0.67 | 0.01 | 0.91 | 0.30 | 0.59 |
Y × N × NF | 4 | 0.06 | 0.99 | 0.01 | 1.00 | 0.33 | 0.86 | 0.03 | 1.00 | 1.12 | 0.34 | 2.13 | 0.09 |
表1 测量年份(Y)、氮添加量(N)和施氮频率(NF)及其交互作用对土壤温度、土壤水分含量、土壤总呼吸速率及组分(异养和自养呼吸)和异养呼吸比值的影响
Table 1 Results of the effects of year (Y), nitrogen addition amount (N), nitrogen addition frequency (NF) and their interactions on soil temperature (ST), soil water content (SWC), soil total respiration rate (Rs) and its components (Rh and Ra) and Rh/Rs ratio
处理 Treatment | 土壤温度 ST (℃) | 土壤水分含量 SWC (%) | 土壤总呼吸速率 Rs (mol·m-2·s-1) | 异养呼吸速率 Rh (mol·m-2·s-1) | 自养呼吸速率 Ra (mol·m-2·s-1) | 异养呼吸比值 Rh/Rs | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
df | F | p | F | p | F | p | F | p | F | p | F | p | |
Y | 1 | 49.08 | <0.001 | 6.11 | <0.05 | 21.81 | <0.001 | 67.29 | <0.001 | 0.53 | 0.46 | 71.57 | <0.001 |
N | 5 | 16.65 | <0.001 | 5.56 | <0.001 | 16.15 | <0.001 | 113.73 | <0.001 | 1.68 | 0.16 | 1.60 | 0.19 |
NF | 1 | 0.87 | 0.36 | 1.08 | 0.30 | 2.52 | 0.12 | 0.02 | 0.90 | 3.03 | 0.09 | 1.84 | 0.18 |
N × NF | 4 | 1.75 | 0.15 | 1.33 | 0.27 | 2.53 | 0.05 | 9.23 | <0.001 | 2.30 | 0.07 | 2.14 | 0.09 |
Y × N | 5 | 0.31 | 0.91 | 0.09 | 0.99 | 0.62 | 0.69 | 1.23 | 0.29 | 0.58 | 0.71 | 1.20 | 0.32 |
Y × NF | 1 | 0.00 | 0.96 | 0.11 | 0.74 | 0.04 | 0.84 | 0.19 | 0.67 | 0.01 | 0.91 | 0.30 | 0.59 |
Y × N × NF | 4 | 0.06 | 0.99 | 0.01 | 1.00 | 0.33 | 0.86 | 0.03 | 1.00 | 1.12 | 0.34 | 2.13 | 0.09 |
图1 2018和2019年氮添加量和施氮频率对表层(0-10 cm)土壤温度(ST)(A、C)和土壤水分含量(SWC)(B、D)的影响。图中数据为平均值±标准误差。图中不同颜色的图标分别代表0、2、5、10、20、50 g·m-2·a-1氮添加处理。图中给出了氮添加量(N)、施氮频率(NF)及其交互作用(N × NF)对土壤温度和含水量的差异显著性检验结果(***, p < 0.001; *, p < 0.05; ns, p > 0.05)。图中的小写字母代表不同氮添加量处理间的差异显著性, 相同字母表示无显著差异(p > 0.05), 不同字母表示具有显著差异(p < 0.05)。
Fig. 1 Changes in soil temperature (ST)(A, C) and soil water content (SWC)(B, D) in 0-10 cm surface soil layer under different N addition amount and frequency treatments in 2018 and 2019. Data are mean ± SE. The different color icons in the figure represent N addition treatments with 0, 2, 5, 10, 20, 50 g·m-2·a-1, respectively. The ANOVA results were shown in the figure to address the significance of effects of N addition amount (N), frequency (NF) and their interactions (N × NF) on the parameters (***, p < 0.001; *, p < 0.05; ns, p > 0.05). The lowercase letters in the figure represent the significance among different nitrogen addition treatments. The same letter means no significance (p > 0.05), while different letters mean significant differences (p < 0.05). HF, N addition with high frequency; LF, N addition with low frequency.
图2 2018和2019年不同氮添加量和施氮频率处理下土壤呼吸速率(Rs)及其异养(Rh)和自养(Ra)组分的季节和年际动态(平均值±标准误差)。图中不同颜色的图标分别代表0、2、5、10、20、50 g·m-2·a-1氮添加处理。图中给出了氮添加量(N)、施氮频率(NF)及其交互作用(N × NF)对土壤呼吸及其组分的差异显著性检验结果(***, p < 0.001; ns, p > 0.05)。
Fig. 2 Inter- and intra-annual variations in soil respiration rate (Rs) and its heterotrophic (Rh) and autotrophic (Ra) components under different N addition amount and frequency treatments in 2018 and 2019 (mean ± SE). The different color icons in the figure represent N addition treatments with 0, 2, 5, 10, 20, 50 g·m-2·a-1, respectively. The ANOVA results were shown in the figure to address the significance of effects of N addition amount (N), frequency (NF) and their interactions (N × NF) on the parameters (***, p < 0.001; ns, p > 0.05). HF, N addition with high frequency; LF, N addition with low frequency.
图3 2018和2019年氮添加量和施氮频率对土壤呼吸速率(Rs)及其异养(Rh)和自养(Ra)组分季节平均值的影响。图中数据为平均值±标准误差。图中不同颜色的图标分别代表0、2、5、10、20、50 g·m-2·a-1氮添加处理。图中给出了氮添加量(N)、施氮频率(NF)及其交互作用(N × NF)对土壤呼吸及其组分的差异显著性检验结果(***, p < 0.001; **, p < 0.01; *, p < 0.05; ns, p > 0.05)。图中的小写字母代表不同氮添加量处理间的差异显著性, 相同字母表示无显著差异(p > 0.05), 不同字母表示具有显著差异(p < 0.05)。
Fig. 3 Seasonal mean values of soil respiration rate (Rs) and its heterotrophic (Rh) and autotrophic (Ra) components under different N addition amount and frequency treatments in 2018 and 2019. Data are mean ± SE. The different color icons in the figure represent N addition treatments with 0, 2, 5, 10, 20, 50 g·m-2·a-1, respectively. The ANOVA results were shown in the figure to address the significance of effects of N addition amount (N), frequency (NF) and their interactions (N × NF) on the parameters (***, p < 0.001; **, p < 0.01; *, p < 0.05; ns, p > 0.05). The lowercase letters in the figure represent the significance among different nitrogen addition treatments. The same letter means no significance (p > 0.05), while different letters mean significant differences (p < 0.05). HF, N addition with high frequency; LF, N addition with low frequency.
图4 土壤呼吸速率(Rs)及其异养(Rh)和自养(Ra)组分与土壤温度(ST)、土壤水分含量(SWC)和土壤pH之间的相关关系。图中不同颜色的图标分别代表0、2、5、10、20和50 g·m-2·a-1氮添加处理。圆形图标和黑色拟合线代表低频氮添加(LF)处理, 三角形图标和红色拟合线代表高频氮添加(HF)处理。实线代表相关关系显著(p < 0.1), 虚线代表相关关系不显著(p > 0.1)。
Fig. 4 Relationships between soil respiration rate (Rs) and its heterotrophic (Rh) and autotrophic (Ra) component with soil temperature (ST), soil water content (SWC) and soil pH value. Different color icons in the figure represent N addition treatments with 0, 2, 5, 10, 20, 50 g·m-2·a-1, respectively. The circle sign and black line represent the low frequency N addition (LF) treatment, and the triangle sign and red line indicate the high frequency N addition (HF) treatment. The solid line represents marginally significant relation (p < 0.1) and the dash line represents insignificant relation (p > 0.1).
图5 不同氮添加量和施氮频率对土壤呼吸速率(Rs)及其异养呼吸组分(Rh)温度敏感性(Q10)(A、B)和水分敏感性(C、D)的影响。图中数据为平均值±标准误差。图中不同颜色的图标分别代表0、2、5、10、20和50 g·m-2·a-1氮添加处理。图中给出了氮添加量(N)、施氮频率(NF)及其交互作用(N × NF)对温度和水分敏感性影响的显著性检验结果(***, p < 0.001; **, p < 0.01; *, p < 0.05; ns, p > 0.05)。图中的小写字母代表不同氮添加量处理间的差异显著性, 相同字母表示无显著差异(p > 0.05), 不同字母表示具显著差异(p < 0.05)。
Fig. 5 Changes in temperature (Q10, A, B) and water (C, D) sensitivities of soil respiration (Rs) and its heterotrophic component (Rh) under different nitrogen addition amount and frequency treatments. Data are mean ± SE. The different color icons in the figure represent N addition treatments with 0, 2, 5, 10, 20, 50 g·m-2·a-1, respectively. The ANOVA results were shown in the figure to address the significance of effects of N addition amount (N), frequency (NF) and their interactions (N × NF) on the parameters (***, p < 0.001; **, p < 0.01; *, p < 0.05; ns, p > 0.05). The lowercase letters in the figure represent the significance among different nitrogen addition treatments. The same letter means no significance (p > 0.05), while different letters mean significant differences (p < 0.05). HF, N addition with high frequency; LF, N addition with low frequency.
图6 土壤呼吸速率(Rs)及其异养(Rh)和自养(Ra)组分与地上净初级生产力(ANPP), 土壤微生物生物量(MB)和真菌/细菌比(F/B)之间的相关关系。图中不同颜色的图标分别代表0、2、5、10、20、50 g·m-2·a-1氮添加处理。圆形图标和黑色拟合线代表低频氮添加(LF)处理, 三角形图标和红色拟合线代表高频氮添加(HF)处理。实线代表相关关系显著(p < 0.1), 虚线代表相关关系不显著(p > 0.1)。
Fig. 6 Relationships between soil total respiration and its components with aboveground net primary productivity (ANPP), soil microbial biomass (MB) and fungal biomass/bacterial biomass ratio (F/B). The different color icons in the figure represent N addition treatments with 0, 2, 5, 10, 20, 50 g·m-2·a-1, respectively. The circle sign and black line represent the low frequency N addition (LF) treatment, and the triangle sign and red line indicate the high frequency N addition (HF) treatment. The solid line represents marginally significant relation (p < 0.1) and the dash line represents insignificant relation (p > 0.1).
[1] | Allison SD, Czimczik CI, Treseder KK (2008). Microbial activity and soil respiration under nitrogen addition in Alaskan boreal forest. Global Change Biology, 14, 1156-1168. |
[2] | ArchMiller A, Samuelson L (2016). Partitioning longleaf pine soil respiration into its heterotrophic and autotrophic components through root exclusion. Forests, 7, 1-13. |
[3] | Bai TS, Wang P, Hall SJ, Wang FW, Ye CL, Li Z, Li SJ, Zhou LY, Qiu YP, Guo JX, Guo H, Wang Y, Hu SJ (2020). Interactive global change factors mitigate soil aggregation and carbon change in a semi-arid grassland. Global Change Biology, 26, 5320-5332. |
[4] | Bai WM, Guo DL, Tian QY, Liu NN, Cheng WX, Li LH, Zhang WH (2015). Differential responses of grasses and forbs led to marked reduction in below-ground productivity in temperate steppe following chronic N deposition. Journal of Ecology, 103, 1570-1579. |
[5] | Bai YF, Wu JG, Clark CM, Naeem S, Pan QM, Huang JH, Zhang LX, Han XG (2010). Tradeoffs and thresholds in the effects of nitrogen addition on biodiversity and ecosystem functioning: evidence from Inner Mongolia grasslands. Global Change Biology, 16, 358-372. |
[6] | Bond-Lamberty B, Bailey VL, Chen M, Gough CM, Vargas R (2018). Globally rising soil heterotrophic respiration over recent decades. Nature, 560, 80-83. |
[7] | Bond-Lamberty B, Thomson A (2010). A global database of soil respiration data. Biogeosciences, 7, 1915-1926. |
[8] | Bond-Lamberty B, Wang C, Gower ST (2004). A global relationship between the heterotrophic and autotrophic components of soil respiration? Global Change Biology, 10, 1756-1766. |
[9] | Bowden RD, Davidson E, Savage K, Arabia C, Steudler P (2004). Chronic nitrogen additions reduce total soil respiration and microbial respiration in temperate forest soils at the Harvard Forest. Forest Ecology and Management, 196, 43-56. |
[10] | Bowden RD, Wurzbacher SJ, Washko SE, Wind L, Rice AM, Coble AE, Baldauf N, Johnson B, Wang JJ, Simpson M, Lajtha K (2019). Long-term nitrogen addition decreases organic matter decomposition and increases forest soil carbon. Soil Science Society of America Journal, 83, 82-95. |
[11] | Cao JR, Pang S, Wang QB, Williams MA, Jia X, Dun SS, Yang JJ, Zhang YH, Wang J, Lü XT, Hu YC, Li LH, Li YC, Han XG (2020). Plant-bacteria-soil response to frequency of simulated nitrogen deposition has implications for global ecosystem change. Functional Ecology, 34, 723-734. |
[12] | Chen DM, Lan ZC, Hu SJ, Bai YF (2015a). Effects of nitrogen enrichment on belowground communities in grassland: relative role of soil nitrogen availability vs. soil acidification. Soil Biology & Biochemistry, 89, 99-108. |
[13] | Chen DM, Li JJ, Lan ZC, Hu SJ, Bai YF (2016). Soil acidification exerts a greater control on soil respiration than soil nitrogen availability in grasslands subjected to long-term nitrogen enrichment. Functional Ecology, 30, 658-669. |
[14] | Chen DM, Xing W, Lan ZC, Saleem M, Wu YQQG, Hu SJ, Bai YF (2019). Direct and indirect effects of nitrogen enrichment on soil organisms and carbon and nitrogen mineralization in a semi-arid grassland. Functional Ecology, 33, 175-187. |
[15] | Chen H, Li DJ, Gurmesa GA, Yu GR, Li LH, Zhang W, Fang HJ, Mo JM (2015b). Effects of nitrogen deposition on carbon cycle in terrestrial ecosystems of China: a meta- analysis. Environmental Pollution, 206, 352-360. |
[16] | Chen J, Groenigen KJ, Hungate BA, Terrer C, Groenigen JW, Maestre FT, Ying S, Luo YQ, Jorgensen U, Sinsabaugh RL, Olesen JE, Elsgaard L (2020). Long-term nitrogen loading alleviates phosphorus limitation in terrestrial ecosystems. Global Change Biology, 9, 5077-5086. |
[17] | Chen ZM, Xu YH, He YJ, Zhou XH, Fan JL, Yu HY, Ding WX (2018). Nitrogen fertilization stimulated soil heterotrophic but not autotrophic respiration in cropland soils: a greater role of organic over inorganic fertilizer. Soil Biology & Biochemistry, 116, 253-264. |
[18] | Chen ZZ, Wang SP (2000). Typical Steppe Ecosystems of China. Science Press, Beijing. |
[ 陈佐忠, 汪诗平 (2000). 中国典型草原生态系统. 科学出版社, 北京.] | |
[19] | Clark CM, Tilman D (2008). Loss of plant species after chronic low-level nitrogen deposition to prairie grasslands. Nature, 451, 712-715. |
[20] | Cox PM, Betts RA, Jones CD, Spall SA, Totterdell IJ (2000). Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature, 408, 184-187. |
[21] | Craine JM, Wedin DA, Reich PB (2001). The response of soil CO2 flux to changes in atmospheric CO2, nitrogen supply and plant diversity. Global Change Biology, 7, 945-953. |
[22] | Fang C, Li FM, Pei JY, Rena J, Gong YH, Yuan ZG, Ke WB, Zheng Y, Bai XK, Ye JS (2018). Impacts of warming and nitrogen addition on soil autotrophic and heterotrophic respiration in a semi-arid environment. Agricultural and Forest Meteorology, 248, 449-457. |
[23] | Fang C, Ye JS, Gong YH, Pei JY, Yuan ZQ, Xie C, Zhu YS, Yu YY (2017). Seasonal responses of soil respiration to warming and nitrogen addition in a semi-arid alfalfa- pasture of the Loess Plateau, China. Science of the Total Environment, 590, 729-738. |
[24] | Fornara DA, Tilman D (2012). Soil carbon sequestration in prairie grasslands increased by chronic nitrogen addition. Ecology, 93, 2030-2036. |
[25] | Frostegård Å, Tunlid A, Bååth E (2011). Use the misuse of PLFA measurements in soils. Soil Biology & Biochemistry, 43, 1621-1625. |
[26] | Fu Z, Niu SL, Dukes JS (2015). What have we learned from global change manipulative experiments in China? A meta-analysis. Scientific reports, 5, 12344. DOI: 10.1038/srep12344. |
[27] | Galloway JN, Dentener FJ, Capone DG, Boyer EW, Howarth RW, Seitzinger SP, Asner GP, Cleveland CC, Green PA, Holland EA, Karl DM, Michaels AF, Porter JH, Townsend AR, Vörösmarty CJ (2004). Nitrogen cycles: past, present, and future. Biogeochemistry, 70, 153-226. |
[28] | Galloway JN, Townsend AR, Jan Willem E, Mateete B, Zucong C, Freney JR, Martinelli LA, Seitzinger SP, Sutton MA (2008). Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science, 320, 889-892. |
[29] | Giese M, Brueck H, Gao Y, Lin S, Steffens M, Kögelknabner I, Glindemann T, Susenbeth A, Taube F, Butterbachbahl K (2013). Data from: N balance and cycling of Inner Mongolia typical steppe—A comprehensive case study of grazing effects. Ecological Monographs, 83, 195-219. |
[30] | Hanson PJ, Edwards NT, Garten CT, Andrews JA (2000). Separating root and soil microbial contributions to soil respiration—A review of methods and observations. Biogeochemistry, 48, 115-146. |
[31] | Hasselquist NJ, Metcalfe DB, Högberg P (2012). Contrasting effects of low and high nitrogen additions on soil CO2 flux components and ectomycorrhizal fungal sporocarp production in a boreal forest. Global Change Biology, 18, 3596-3605. |
[32] | Janssens IA, Dieleman W, Luyssaert S, Subke JA, Reichstein M, Ceulemans R, Ciais P, Dolman AJ, Grace J, Matteucci G (2010). Reduction of forest soil respiration in response to nitrogen deposition. Nature Geoscience, 3, 315-322. |
[33] | Jia XX, Shao MA, Wei XR (2012). Responses of soil respiration to N addition, burning and clipping in temperate semiarid grassland in northern China. Agricultural and Forest Meteorology, 166, 32-40. |
[34] | Lee KH, Jose S (2003). Soil respiration, fine root production, and microbial biomass in cottonwood and loblolly pine plantations along a nitrogen fertilization gradient. Forest Ecology and Management, 185, 263-273. |
[35] | Li YL, Hong M, Bai WM, Han GD, Wang HM, Zhou M (2015). The responses of soil respiration to water and nitrogen in Stipa breviflora steppe. Acta Ecologica Sinica, 35, 1727-1733. |
[ 李寅龙, 红梅, 白文明, 韩国栋, 王海明, 周萌 (2015). 水、氮控制对短花针茅草原土壤呼吸的影响. 生态学报, 35, 1727-1733.] | |
[36] | Liang LZ, Chen F, Han HR, Zhang YR, Zhu J, Niu SK (2019). Pathways regulating decreased soil respiration with nitrogen addition in a subtropical forest in China. Water Air and Soil Pollution, 230, 91-100. |
[37] | Liu W, Lu XT, Xu WF, Shi HQ, Hou LY, Li LH, Yuan WP (2018). Effects of water and nitrogen addition on ecosystem respiration across three types of steppe: the role of plant and microbial biomass. Science of the Total Environment, 619, 103-111. |
[38] | Liu XJ, Zhang Y, Han WX, Tang AH, Shen JL, Cui ZL, Vitousek P, Erisman JW, Goulding K, Christie P, Fangmeier A, Zhang FS (2013). Enhanced nitrogen deposition over China. Nature, 494, 459-462. |
[39] | Lovett GM, Cole JJ, Pace ML (2006). Is net ecosystem production equal to ecosystem carbon accumulation? Ecosystems, 9, 152-155. |
[40] | Luca B, Chris F, Timothy J, HaKan R, Juul L, Nathalie F, Tim E, Renato G, Michal H, Tomás H (2006). Atmospheric nitrogen deposition promotes carbon loss from peat bogs. Proceedings of the National Academy of Sciences of the United States of America, 103, 19386-19389. |
[41] | Luo QP, Gong JR, Zhai ZW, Pan Y, Liu M, Xu S, Wang YH, Yang LL, Baoyin TT (2016). The responses of soil respiration to nitrogen addition in a temperate grassland in northern China. Science of the Total Environment, 569, 1466-1477. |
[42] | Ma SY, Verheyen K, Props R, Wasof S, Vanhellemont M, Boeckx P, Boon N, de Frenne P (2018). Plant and soil microbe responses to light, warming and nitrogen addition in a temperate forest. Functional Ecology, 32, 1293-1303. |
[43] | Masciandaro G, Macci C, Peruzzi E, Doni S (2018). Soil carbon in the world: ecosystem services linked to soil carbon in forest and agricultural soilsGarcia C, Nannipieri P, Hernandez T. Future of Soil Carbon: Its Conservation and Formation. Academic Press, London. 1-38. |
[44] | Mo JM, Zhang W, Zhu WX, Gundersen P, Fang Y, Li D, Wang H (2008). Nitrogen addition reduces soil respiration in a mature tropical forest in southern China. Global Change Biology, 14, 403-412. |
[45] | Niu SL, Wu MY, Han Y, Xia JY, Li LH, Wan SQ (2008). Water-mediated responses of ecosystem carbon fluxes to climatic change in a temperate steppe. New Phytologist, 177, 209-219. |
[46] | Niu SL, Wu MY, Han Y, Xia JY, Zhang Z, Yang HJ, Wan SQ (2010). Nitrogen effects on net ecosystem carbon exchange in a temperate steppe. Global Change Biology, 16, 144-155. |
[47] | Peng YF, Guo DL, Yang YH (2017). Global patterns of root dynamics under nitrogen enrichment. Global Ecology and Biogeography, 26, 102-114. |
[48] | Raich JW, Schlesinger WH (1992). The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus B: Chemical and Physical Meteorology, 44, 81-99. |
[49] | Scharlemann JPW, Tanner EVJ, Hiederer R, Kapos V (2014). Global soil carbon: understanding and managing the largest terrestrial carbon pool. Carbon Management, 5, 81-91. |
[50] | Shan D, Han GD, Zhao ML, Wang Z, Han X, Gao FG (2009). The effects of experimental warming and nitrogen addition on soil respiration in desert steppe. Journal of Arid Land Resources and Environment, 23, 106-112. |
[ 珊丹, 韩国栋, 赵萌莉, 王珍, 韩雄, 高福光 (2009). 控制性增温和施氮对荒漠草原土壤呼吸的影响. 干旱区资源与环境, 23, 106-112.] | |
[51] | Shi BK, Xu WL, Zhu Y, Wang CL, Loik ME, Sun W (2019). Heterogeneity of grassland soil respiration: antagonistic effects of grazing and nitrogen addition. Agricultural and Forest Meteorology, 268, 215-223. |
[52] | Smith MD, Knapp AK, Collins SL (2009). A framework for assessing ecosystem dynamics in response to chronic resource alterations induced by global change. Ecology, 90, 3279-3289. |
[53] | Song J, Wan SQ, Piao SL, Knapp AK, Classen AT, Vicca S, Ciais P, Hovenden MJ, Leuzinger S, Beier C, Kardol P, Xia JY, Liu Q, Ru JY, Zhou ZX, et al. (2019). A meta-analysis of 1,119 manipulative experiments on terrestrial carbon-cycling responses to global change. Nature Ecology & Evolution, 3, 1309-1320. |
[54] | Tian DS, Niu SL (2015). A global analysis of soil acidification caused by nitrogen addition. Environmental Research Letters, 10, 1-10. |
[55] | Tian DS, Wang H, Sun J, Niu SL (2016). Global evidence on nitrogen saturation of terrestrial ecosystem net primary productivity. Environmental Research Letters, 11, 024012. DOI: 10.1088/1748-9326/11/2/024012. |
[56] | Treseder KK (2008). Nitrogen additions and microbial biomass: a meta-analysis of ecosystem studies. Ecology Letters, 11, 1111-1120. |
[57] | Tu LH, Hu TX, Zhang J, Li XW, Hu HL, Liu L, Xiao YL (2013). Nitrogen addition stimulates different components of soil respiration in a subtropical bamboo ecosystem. Soil Biology & Biochemistry, 58, 255-264. |
[58] | Wang J, Gao YZ, Zhang YH, Yang JJ, Smith MD, Knapp AK, Eissenstat DM, Han XG (2019a). Asymmetry in above- and belowground productivity responses to N addition in a semi-arid temperate steppe. Global Change Biology, 25, 2958-2969. |
[59] | Wang JB, Fu XL, Zhang Z, Li MH, Cao HJ, Zhou XL, Ni HW (2019b). Responses of soil respiration to nitrogen addition in the Sanjiang Plain wetland, northeastern China. PLOS ONE, 14, e0211456. DOI: 10.1371/journal.pone.0211456. |
[60] | Wang JS, Song B, Ma FF, Tian DS, Li Y, Yan T, Quan Q, Zhang FY, Li ZL, Wang BX, Gao Q, Chen WN, Niu SL (2019c). Nitrogen addition reduces soil respiration but increases the relative contribution of heterotrophic component in an alpine meadow. Functional Ecology, 33, 2239-2253. |
[61] | Wei L, Liu J, Su JH, Jing GH, Zhao J, Cheng JM, Jin JW (2016). Effect of clipping on soil respiration components in temperate grassland of Loess Plateau. European Journal of Soil Biology, 75, 157-167. |
[62] | Wei L, Su JS, Jing GH, Zhao J, Liu J, Cheng JM, Jin JW (2018). Nitrogen addition decreased soil respiration and its components in a longterm fenced grassland on the Loess Plateau. Journal of Arid Environments, 152, 37-44. |
[63] | Xiao H, Wang B, Lu SB, Chen DM, Wu Y, Zhu YH, Hu SJ, Bai YF (2020). Soil acidification reduces the effects of short-term nutrient enrichment on plant and soil biota and their interactions in grasslands. Global Change Biology, 26, 4626-4637. |
[64] | Yan LM, Chen SP, Huang JH, Lin GH (2010). Differential responses of auto- and heterotrophic soil respiration to water and nitrogen addition in a semiarid temperate steppe. Global Change Biology, 16, 2345-2357. |
[65] | Yan WD, Chen XY, Peng YY, Zhu F, Zhen W, Zhang XY (2020). Response of soil respiration to nitrogen addition in two subtropical forest types. Pedosphere, 30, 478-486. |
[66] | Yang Q, Wang W, Zeng H (2018). Effects of nitrogen addition on the plant diversity and biomass of degraded grasslands of Nei Mongol, China. Chinese Journal of Plant Ecology, 42, 430-441. |
[ 杨倩, 王娓, 曾辉 (2018). 氮添加对内蒙古退化草地植物群落多样性和生物量的影响. 植物生态学报, 42, 430-441.] | |
[67] | Zeng WJ, Chen JB, Liu HY, Wang W (2018). Soil respiration and its autotrophic and heterotrophic components in response to nitrogen addition among different degraded temperate grasslands. Soil Biology & Biochemistry, 124, 255-265. |
[68] | Zhang BW, Li S, Chen SP, Ren TT, Yang ZQ, Zhao HL, Liang Y, Han XG (2016a). Arbuscular mycorrhizal fungi regulate soil respiration and its response to precipitation change in a semiarid steppe. Scientific Reports, 6, 19990. DOI: 10.1038/srep19990. |
[69] | Zhang BY, Li WJ, Chen SP, Tan XR, Wang SS, Chen ML, Ren TT, Xia JY, Huang JH, Han XG (2019). Changing precipitation exerts greater influence on soil heterotrophic than autotrophic respiration in a semiarid steppe. Agricultural and Forest Meteorology, 271, 413-421. |
[70] | Zhang YH, Lü XT, Isbell F, Stevens C, Han X, He NP, Zhang GM, Yu Q, Huang JH, Han XG (2014). Rapid plant species loss at high rates and at low frequency of N addition in temperate steppe. Global Change Biology, 20, 3520-3529. |
[71] | Zhang YH, Stevens CJ, Lu XT, He NP, Huang JH, Han XG (2016b). Fewer new species colonize at low frequency N addition in a temperate grassland. Functional Ecology, 30, 1247-1256. |
[72] | Zhou JD, Shi RJ, Zhao F, Han SQ, Zhang Y (2016). Effects of the frequency and intensity of nitrogen addition on soil pH, the contents of carbon, nitrogen and phosphorus in temperate steppe in Inner Mongolia, China. Chinese Journal of Applied Ecology, 27, 2467-2476. |
[ 周纪东, 史荣久, 赵峰, 韩斯琴, 张颖 (2016). 施氮频率和强度对内蒙古温带草原土壤pH及碳、氮、磷含量的影响. 应用生态学报, 27, 2467-2476.] | |
[73] | Zhou LY, Zhou XH, Shao JJ, Nie YY, He YH, Jiang LL, Wu ZT, Bai SH (2016). Interactive effects of global change factors on soil respiration and its components: a meta-analysis. Global Change Biology, 22, 3157-3169. |
[74] | Zhou LY, Zhou XH, Zhang BC, Lu M, Luo YQ, Liu LL, Bo L (2014). Different responses of soil respiration and its components to nitrogen addition among biomes: a meta-analysis. Global Change Biology, 20, 2332-2343. |
[75] | Zhou XH, Wan SQ, Luo YQ (2007). Source components and interannual variability of soil CO2 efflux under experimental warming and clipping in a grassland ecosystem. Global Change Biology, 13, 761-775. |
[76] |
Zhou ZH, Wang CK, Luo YQ (2020). Meta-analysis of the impacts of global change factors on soil microbial diversity and functionality. Nature Communications, 11, 3072-3081.
DOI URL |
[77] |
Zhou ZH, Wang CK, Zheng MH, Jiang LF, Luo YQ (2017). Patterns and mechanisms of responses by soil microbial communities to nitrogen addition. Soil Biology & Biochemistry, 115, 433-441.
DOI URL |
[78] |
Zhu C, Ma YP, Wu HH, Sun T, La Pierre KJ, Sun ZW, Yu Q (2016). Divergent effects of nitrogen addition on soil respiration in a semiarid grassland. Scientific Reports, 6, 33541. DOI: 10.1038/srep33541.
DOI URL |
[1] | 沈健, 何宗明, 董强, 郜士垒, 林宇. 轻度火烧对滨海沙地人工林土壤呼吸速率和非生物因子的影响[J]. 植物生态学报, 2023, 47(7): 1032-1042. |
[2] | 杨元合, 张典业, 魏斌, 刘洋, 冯雪徽, 毛超, 徐玮婕, 贺美, 王璐, 郑志虎, 王媛媛, 陈蕾伊, 彭云峰. 草地群落多样性和生态系统碳氮循环对氮输入的非线性响应及其机制[J]. 植物生态学报, 2023, 47(1): 1-24. |
[3] | 郑甲佳, 黄松宇, 贾昕, 田赟, 牟钰, 刘鹏, 查天山. 中国森林生态系统土壤呼吸温度敏感性空间变异特征及影响因素[J]. 植物生态学报, 2020, 44(6): 687-698. |
[4] | 胡姝娅,刁华杰,王惠玲,薄元超,申颜,孙伟,董宽虎,黄建辉,王常慧. 北方农牧交错带温性盐碱化草地土壤呼吸对不同形态氮添加和刈割的响应[J]. 植物生态学报, 2020, 44(1): 70-79. |
[5] | 温超,单玉梅,晔薷罕,张璞进,木兰,常虹,任婷婷,陈世苹,白永飞,黄建辉,孙海莲. 氮和水分添加对内蒙古荒漠草原放牧生态系统土壤呼吸的影响[J]. 植物生态学报, 2020, 44(1): 80-92. |
[6] | 李伟晶, 陈世苹, 张兵伟, 谭星儒, 王珊珊, 游翠海. 半干旱草原土壤呼吸组分区分与菌根呼吸的贡献[J]. 植物生态学报, 2018, 42(8): 850-862. |
[7] | 王祥, 朱亚琼, 郑伟, 关正翾, 盛建东. 昭苏山地草甸4种典型土地利用方式下的土壤呼吸特征[J]. 植物生态学报, 2018, 42(3): 382-396. |
[8] | 杨开军, 杨万勤, 谭羽, 贺若阳, 庄丽燕, 李志杰, 谭波, 徐振锋. 川西亚高山云杉林冬季土壤呼吸对雪被去除的短期响应[J]. 植物生态学报, 2017, 41(9): 964-971. |
[9] | 杨青霄, 田大栓, 曾辉, 牛书丽. 降水格局改变背景下土壤呼吸变化的主要影响因素及其调控过程[J]. 植物生态学报, 2017, 41(12): 1239-1250. |
[10] | 葛晓改, 周本智, 肖文发, 王小明, 曹永慧, 叶明. 生物质炭添加对毛竹林土壤呼吸动态和温度敏感性的影响[J]. 植物生态学报, 2017, 41(11): 1177-1189. |
[11] | 张建华, 唐志尧, 沈海花, 方精云. 氮添加对北京东灵山地区灌丛土壤呼吸的影响[J]. 植物生态学报, 2017, 41(1): 81-94. |
[12] | 张蔷, 李家湘, 谢宗强. 氮添加对亚热带山地杜鹃灌丛土壤呼吸的影响[J]. 植物生态学报, 2017, 41(1): 95-104. |
[13] | 李晓杰, 刘小飞, 熊德成, 林伟盛, 林廷武, 施友文, 谢锦升, 杨玉盛. 中亚热带杉木人工林和米槠次生林凋落物添加与去除对土壤呼吸的影响[J]. 植物生态学报, 2016, 40(5): 447-457. |
[14] | 孙宝玉, 韩广轩, 陈亮, 初小静, 邢庆会, 吴立新, 朱书玉. 模拟增温对黄河三角洲滨海湿地非生长季土壤呼吸的影响[J]. 植物生态学报, 2016, 40(11): 1111-1123. |
[15] | 姚辉, 胡雪洋, 朱江玲, 朱剑霄, 吉成均, 方精云. 北京东灵山3种温带森林土壤呼吸及其20年的变化[J]. 植物生态学报, 2015, 39(9): 849-856. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19