植物生态学报 ›› 2018, Vol. 42 ›› Issue (8): 850-862.DOI: 10.17521/cjpe.2018.0068
李伟晶1,2,陈世苹1,*(),张兵伟1,3,谭星儒1,2,王珊珊1,2,游翠海1,2
收稿日期:
2018-03-29
出版日期:
2018-08-20
发布日期:
2018-06-01
通讯作者:
陈世苹
基金资助:
LI Wei-Jing1,2,CHEN Shi-Ping1,*(),ZHANG Bing-Wei1,3,TAN Xing-Ru1,2,WANG Shan-Shan1,2,YOU Cui-Hai1,2
Received:
2018-03-29
Online:
2018-08-20
Published:
2018-06-01
Contact:
Shi-Ping CHEN
Supported by:
摘要:
土壤呼吸组分的区分对于理解地下碳循环过程非常重要。而菌根真菌在地下碳循环过程中扮演着重要的角色, 但是有关菌根呼吸在草原生态系统中的研究相对较少。该研究在内蒙古半干旱草原应用深浅环网孔法, 结合浅环、深环(排除根系)和一个带有40 μm孔径窗口的土壤环(排除根系但是有菌根菌丝体)将根和菌丝物理分离, 来区分不同的呼吸组分。结果表明: 异养呼吸对总呼吸的贡献比例为51%, 根呼吸的贡献比例为26%, 菌根呼吸的贡献比例为23%, 菌根呼吸的比例3年变化范围为21%-26%。与国内外研究相比, 此方法提供了一个相对稳定的菌根呼吸测量精度范围, 在草原生态系统中切实可行。对菌根呼吸的准确定量将有助于预测草原生态系统土壤碳释放过程对未来气候变化的响应。
李伟晶, 陈世苹, 张兵伟, 谭星儒, 王珊珊, 游翠海. 半干旱草原土壤呼吸组分区分与菌根呼吸的贡献. 植物生态学报, 2018, 42(8): 850-862. DOI: 10.17521/cjpe.2018.0068
LI Wei-Jing, CHEN Shi-Ping, ZHANG Bing-Wei, TAN Xing-Ru, WANG Shan-Shan, YOU Cui-Hai. Partitioning of soil respiration components and evaluating the mycorrhizal contribution to soil respiration in a semiarid grassland. Chinese Journal of Plant Ecology, 2018, 42(8): 850-862. DOI: 10.17521/cjpe.2018.0068
图1 改进的深浅环法区分土壤呼吸组分示意图(曲线表示菌丝体, 短线表示碎屑)。浅环用来测定土壤总呼吸, 深环用来测定土壤异养呼吸, 菌丝环用来测定土壤异养呼吸和菌根呼吸的和, 浅环和深环测得的土壤呼吸之差为土壤自养呼吸, 浅环和菌丝环测得的土壤呼吸之差为根呼吸, 菌丝环和深环测得的土壤呼吸之差为菌根呼吸。
Fig. 1 Diagram of the modified mini-trenching method in partitioning soil respiration into its components (The curve denotes mycelium and the short line denotes detritus). The shallow and deep collars are used to determine total soil respiration (SRtot) and its heterotrophic component (SRh). Hyphae collar is used for the determination of soil heterotrophic respiration and hyphae respiration (SRh + SRmy). The difference in soil respiration between the shallow and deep collars is used to represent autotrophic soil respiration (SRa), that between the shallow and hyphae collars is used to represent root respiration (SRr), and that between the hyphae and deep collars is used to represent hyphae respiration (SRmy).
图2 不同土壤呼吸环内的菌丝密度(平均值+标准误差)。不同小写字母表示处理间差异显著(p < 0.05)。
Fig. 2 Hyphae density under different soil respiration collars (mean + SE). Different letters indicate significant differences among treatments (p < 0.05).
图3 2014年不同土壤呼吸环内的土壤温度(Ts)、土壤含水量(SWC)的季节动态(A, C)和年平均值(B, D)(平均值+标准误差)。不同小写字母表示处理间差异显著(p < 0.05)。
Fig. 3 Seasonal variations of soil temperature (Ts), soil water content (SWC) under different soil respiration collars during 2014 (A, C) and average from the year 2014 (B, D)(mean + SE). Different lowercase letters indicate significant differences among treatments (p < 0.05).
图4 不同土壤环内土壤温度之间的关系(A, C)以及不同土壤环内土壤含水量之间的关系(B, D)。
Fig. 4 The relationship between soil temperature (Ts) in different soil collars (A, C) and the relationship between soil water content (SWC) in different soil collars (B, D).
图5 2014-2016年不同土壤呼吸环测得的土壤呼吸与土壤温度之间的关系。A, B, C, 浅环; D, E, F, 深环; G, H, I, 菌丝环。
Fig. 5 The relationship between soil respiration (SR) and soil temperature (Ts) in different soil respiration collars during 2014-2016. A, B, C, Shallow collar. D, E, F, Deep collar. G, H, I, Hyphae collar.
图6 2014-2016年不同土壤呼吸环测得的土壤呼吸与土壤含水量之间的关系。A, B, C, 浅环; D, E, F, 深环; G, H, I, 菌丝环。
Fig. 6 The relationship between soil respiration (SR) and soil water content (SWC) in different soil respiration collars during 2014-2016. A, B, C, Shallow collar. D, E, F, Deep collar. G, H, I, Hyphae collar.
年份 Year | 土壤环类型 Collar type | 样本数量 N | 方程 Function | R2 | p |
---|---|---|---|---|---|
2014 | 浅环 Shallow collar | 64 | Y = 0.032e0.098Ts(-0.084SWC2 + 2.70SWC) | 0.82 | < 0.000 1 |
深环 Deep collar | 64 | Y = 0.011e0.110Ts(0.032SWC2 + 1.20SWC) | 0.75 | < 0.000 1 | |
菌丝环 Hyphae collar | 64 | Y = 0.011e0.099Ts(0.082SWC2 + 2.00SWC) | 0.72 | < 0.000 1 | |
2015 | 浅环 Shallow collar | 60 | Y = 0.020e0.109Ts(-0.037SWC2 + 2.90SWC) | 0.87 | < 0.000 1 |
深环 Deep collar | 60 | Y = 0.011e0.108Ts(0.043SWC2 + 1.55SWC) | 0.86 | < 0.000 1 | |
菌丝环 Hyphae collar | 60 | Y = 0.009e0.113Ts(0.045SWC2 + 2.65SWC) | 0.89 | < 0.000 1 | |
2016 | 浅环 Shallow collar | 36 | Y = 0.095e0.053Ts(-0.090SWC2 + 2.40SWC) | 0.44 | < 0.000 1 |
深环 Deep collar | 36 | Y = 0.032e0.049Ts(-0.064SWC2 + 2.90SWC) | 0.37 | < 0.000 1 | |
菌丝环 Hyphae collar | 36 | Y = 0.061e0.043Ts(-0.043SWC2 + 2.30SWC) | 0.28 | < 0.000 1 |
表1 浅环(SRsc)、深环(SRdc)和菌丝环呼吸(SRhc)实测值与土壤温度(Ts)和含水量(SWC)拟和方程及相关参数(N, R2和p值)
Table 1 Functions and model fit parameters (N, R2 and p-values) between measured soil respiration of shallow collar (SRsc), deep collar (SRdc), and hyphae collar (SRhc) with soil temperature (Ts) and soil water content (SWC)
年份 Year | 土壤环类型 Collar type | 样本数量 N | 方程 Function | R2 | p |
---|---|---|---|---|---|
2014 | 浅环 Shallow collar | 64 | Y = 0.032e0.098Ts(-0.084SWC2 + 2.70SWC) | 0.82 | < 0.000 1 |
深环 Deep collar | 64 | Y = 0.011e0.110Ts(0.032SWC2 + 1.20SWC) | 0.75 | < 0.000 1 | |
菌丝环 Hyphae collar | 64 | Y = 0.011e0.099Ts(0.082SWC2 + 2.00SWC) | 0.72 | < 0.000 1 | |
2015 | 浅环 Shallow collar | 60 | Y = 0.020e0.109Ts(-0.037SWC2 + 2.90SWC) | 0.87 | < 0.000 1 |
深环 Deep collar | 60 | Y = 0.011e0.108Ts(0.043SWC2 + 1.55SWC) | 0.86 | < 0.000 1 | |
菌丝环 Hyphae collar | 60 | Y = 0.009e0.113Ts(0.045SWC2 + 2.65SWC) | 0.89 | < 0.000 1 | |
2016 | 浅环 Shallow collar | 36 | Y = 0.095e0.053Ts(-0.090SWC2 + 2.40SWC) | 0.44 | < 0.000 1 |
深环 Deep collar | 36 | Y = 0.032e0.049Ts(-0.064SWC2 + 2.90SWC) | 0.37 | < 0.000 1 | |
菌丝环 Hyphae collar | 36 | Y = 0.061e0.043Ts(-0.043SWC2 + 2.30SWC) | 0.28 | < 0.000 1 |
图7 2014-2016年深环和菌丝环土壤呼吸的观测值与校正值的季节动态(平均值±标准误差)。SRdc-observed、SRdc-revised、SRhc-observed、SRhc-revised分别表示深环土壤呼吸的观测值、深环土壤呼吸的校正值、菌丝环土壤呼吸的观测值、菌丝环土壤呼吸的校正值。
Fig. 7 The seasonal dynamics of the observed value of soil respiration and the revised value of deep collar and hyphae collar (mean ± SE). SRdc-observed, SRdc-revised, SRhc-observed and SRhc-revised represent the observed value of soil respiration in the deep collar, the revised value of soil respiration in the deep collar, the observed value of soil respiration in the hyphae collar, and the revised value of soil respiration in the hyphae collar, respectively.
图8 2014-2016年生长季中不同土壤呼吸组分的季节变化(平均值±标准误差)。SRh、SRa、SRmy、SRr分别表示异养呼吸、自养呼吸、菌根呼吸、根呼吸。
Fig. 8 Seasonal variations of different soil respiration components during growing seasons of 2014-2016 (mean ± SE). SRh, SRa, SRmy and SRr represent heterotrophic respiration, autotrophic respiration, mycorrhiza respiration and root respiration, respectively.
图9 土壤呼吸(SR)及其各组分的年际变化(2014-2016)和3年平均值(2014-2016年5-8月份)以及土壤呼吸各组分占总呼吸的比例和菌根呼吸、根呼吸分别占自养呼吸的比例的年际变化和3年平均值(2014-2016年5-8月份)(平均值±标准误差)。SRh、SRa、SRmy、SRr、SRtot分别表示异养呼吸、自养呼吸、菌根呼吸、根呼吸和总呼吸。
Fig. 9 Interannual variations of soil respiration (SR) and its components, the contribution of soil respiration components to total soil respiration and the contribution of SRmy and SRr to SRa during 2014-2016 and averages from May to August of the 3 years (mean ± SE). SRh, SRa, SRmy, SRr and SRtot represent heterotrophic respiration, autotrophic respiration, mycorrhiza respiration, root respiration and total soil respiration, respectively.
生态系统 Ecosystems | 地点 Location | 优势物种 Dominant species | 方法 Methods | 菌根呼吸贡献率 Mycorrhizal contribution (%) | 文献来源 Sources |
---|---|---|---|---|---|
森林 Forest | 德国东南部 Southeastern Germany | 欧洲云杉 Picea abies | 内生长网孔袋法 In growth mesh bags (2 mm and 45 μm) | 18%-44% | Neumann & Matzner, 2014 |
英国约克南部 South of York, UK 53.91° N, 1.00° W | 美国黑松 Pinus contortaDouglas ex Loudon 垂枝桦 Betula pendula | 菌根网孔环设计 Mycorrhizal mesh collar design (41 μm) | 25% | Heinemeyer et al., 2007 | |
美国 宾夕法尼亚州 Pennsylvania, USA | 西黄松 Pinus ponderosa | 根模拟系统和同位素方法 Root-mycocosm and isotopic method | 19.4% | Rygiewicz & Andersen, 1994 | |
巴拿马共和国 The Republic of Panama | Pseudobombax septenatum | 内生长模拟系统 In-growth mesocosms | (14 ± 6)% | Nottingham et al., 2010 | |
德国中部 Central Germany 51.08° N, 10.45° E | Fagus sylvatica 欧洲云杉 Picea abies | 应用不同规格孔径的 尼龙网袋土钻法 Soil cores using nylon mesh bags of 35 and 1 μm pore size | 3%, 8% | Moyano et al., 2008 | |
美国密歇根霍顿 Houghton, Michigan, USA 47.12° N, 88.55° W | 北美乔松 Pinus strobus, Quercus rubra | PVC环和模型 PVC collar and models | 28% | Lilleskov, 2017 | |
草原 Grassland | 匈牙利 Hungary 46.69° N, 19.60° E | Festuca pseudovina, Carex stenophylla, 狗牙根 Cynodon dactylon | 物理分离(40 μm不锈钢网)和 同位素方法 Physical separation: (40 μm inox mesh) and isotopic method | (13 ± 8)% | Balogh et al., 2016 |
英国约克郡北部 North Yorkshire, UK 54.00° N, 1.18° W | 绒毛草 Holcus lanatus | 网孔环嵌插法 Meshcollar insertion (20 μm) | 27% | Heinemeyer et al., 2012 | |
农田 Farmland | 意大利北部 Northern Italy 47.30° N, 11.58° E | Malus domestica | 尼龙膜结合同位素法 Polyester membrane (5 μm and 50 μm) with isotopic method | 11.6% | Tomè et al., 2016 |
德国图林根 Thuringia, Germany 51.10° N, 11.77° E | 大麦 Hordeum vulgare | 尼龙网孔袋法 Nylon mesh bags (1 μm and 35 μm) | 25.3% | Moyano et al., 2007 |
表2 菌根呼吸组分对土壤总呼吸贡献比例的相关研究结果
Table 2 Summary of studies on the contribution of mycorrhizal respiration to total soil respiration
生态系统 Ecosystems | 地点 Location | 优势物种 Dominant species | 方法 Methods | 菌根呼吸贡献率 Mycorrhizal contribution (%) | 文献来源 Sources |
---|---|---|---|---|---|
森林 Forest | 德国东南部 Southeastern Germany | 欧洲云杉 Picea abies | 内生长网孔袋法 In growth mesh bags (2 mm and 45 μm) | 18%-44% | Neumann & Matzner, 2014 |
英国约克南部 South of York, UK 53.91° N, 1.00° W | 美国黑松 Pinus contortaDouglas ex Loudon 垂枝桦 Betula pendula | 菌根网孔环设计 Mycorrhizal mesh collar design (41 μm) | 25% | Heinemeyer et al., 2007 | |
美国 宾夕法尼亚州 Pennsylvania, USA | 西黄松 Pinus ponderosa | 根模拟系统和同位素方法 Root-mycocosm and isotopic method | 19.4% | Rygiewicz & Andersen, 1994 | |
巴拿马共和国 The Republic of Panama | Pseudobombax septenatum | 内生长模拟系统 In-growth mesocosms | (14 ± 6)% | Nottingham et al., 2010 | |
德国中部 Central Germany 51.08° N, 10.45° E | Fagus sylvatica 欧洲云杉 Picea abies | 应用不同规格孔径的 尼龙网袋土钻法 Soil cores using nylon mesh bags of 35 and 1 μm pore size | 3%, 8% | Moyano et al., 2008 | |
美国密歇根霍顿 Houghton, Michigan, USA 47.12° N, 88.55° W | 北美乔松 Pinus strobus, Quercus rubra | PVC环和模型 PVC collar and models | 28% | Lilleskov, 2017 | |
草原 Grassland | 匈牙利 Hungary 46.69° N, 19.60° E | Festuca pseudovina, Carex stenophylla, 狗牙根 Cynodon dactylon | 物理分离(40 μm不锈钢网)和 同位素方法 Physical separation: (40 μm inox mesh) and isotopic method | (13 ± 8)% | Balogh et al., 2016 |
英国约克郡北部 North Yorkshire, UK 54.00° N, 1.18° W | 绒毛草 Holcus lanatus | 网孔环嵌插法 Meshcollar insertion (20 μm) | 27% | Heinemeyer et al., 2012 | |
农田 Farmland | 意大利北部 Northern Italy 47.30° N, 11.58° E | Malus domestica | 尼龙膜结合同位素法 Polyester membrane (5 μm and 50 μm) with isotopic method | 11.6% | Tomè et al., 2016 |
德国图林根 Thuringia, Germany 51.10° N, 11.77° E | 大麦 Hordeum vulgare | 尼龙网孔袋法 Nylon mesh bags (1 μm and 35 μm) | 25.3% | Moyano et al., 2007 |
[1] |
Andrews JA, Harrison KG, Matamala R, Schlesinger WH ( 1999). Separation of root respiration from total soil respiration using carbon-13 labelling during free-air carbon dioxide enrichment (FACE). Soil Science Society of America Journal, 63, 1429-1435.
DOI URL |
[2] |
Balogh J, Papp M, Pinter K, Foti S, Posta K, Eugster W, Nagy Z ( 2016). Autotrophic component of soil respiration is repressed by drought more than the heterotrophic one in dry grasslands. Biogeosciences, 13, 5171-5182.
DOI URL |
[3] |
Bhupinderipal-Singh, Nordgren A, Ottosson-Löfvenius M, Högberg MN, Mellander PE, Högberg P ( 2003). Tree root and soil heterotrophic respiration as revealed by girdling of boreal Scots pine forest: Extending observations beyond the first year. Plant, Cell & Environment, 26, 1287-1296.
DOI URL |
[4] |
Cavagnaro TR, Smith FA, Smith SE, Jakobsen I ( 2005). Functional diversity in arbuscular mycorrhizas: Exploitation of soil patches with different phosphate enrichment differs among fungal species. Plant, Cell & Environment, 28, 642-650.
DOI URL |
[5] |
Drigo B, Pijl AS, Duyts H, Kielak AM, Gamper HA, Houtekamer MJ, Boschker HTS, Bodelier PLE, Whiteley AS, Veen JAV ( 2010). Shifting carbon flow from roots into associated microbial communities in response to elevated atmospheric CO2. Proceedings of the National Academy of Sciences of the United States of America, 107, 10938-10942.
DOI URL PMID |
[6] |
Fisher FM, Gosz JR ( 1986). Effects of trenching on soil processes and properties in a New Mexico mixed-conifer forest. Biology and Fertility of Soils, 2, 35-42.
DOI URL |
[7] |
Friese CF, Allen MF ( 1991). The spread of VA mycorrhizal fungal hyphae in the soil: Inoculum types and external hyphal architecture. Mycologia, 83, 409-418.
DOI URL |
[8] |
Grimoldi AA, Kavanova M, Lattanzi FA, Schaufele R, Schnyder H ( 2006). Arbuscular mycorrhizal colonization on carbon economy in perennial ryegrass: Quantification by 13CO2/ 12CO2 steady-state labelling and gas exchange . New Phytologist, 172, 544-553.
DOI URL |
[9] |
Hanson PJ, Edwards NT, Garten CT, Andrews JA ( 2000). Separating root and soil microbial contributions to soil respiration: A review of methods and observations . Biogeochemistry, 48, 115-146.
DOI URL |
[10] |
Heinemeyer A, Hartley IP, Evans SP, de La Fuente JAC, Ineson P ( 2007). Forest soil CO2 flux: Uncovering the contribution and environmental responses of ectomycorrhizas. Global Change Biology, 13, 1786-1797.
DOI URL |
[11] |
Heinemeyer A, Tortorella D, Petrovicová B, Gelsomino A ( 2012). Partitioning of soil CO2 flux components in a temperate grassland ecosystem. European Journal of Soil Science, 63, 249-260.
DOI URL |
[12] |
Heinemeyer A, Ineson P, Ostle N, Fitter AH ( 2006). Respiration of the external myceliumin the arbuscular mycorrhizal symbiosis shows strong dependence on recent photosynthates and acclimation to temperature. New Phytologist, 171, 159-170.
DOI URL PMID |
[13] |
Högberg P, Nordgren A, Buchmann N, Taylor AFS, Ekblad A, Högberg MN, Nyberg G, Ottosson-Löfvenius M, Read DJ ( 2001). Large-scale forest girdling shows that current photosynthesis drives soil respiration. Nature, 411, 789-792.
DOI URL PMID |
[14] | Jakobsen I, Abbott LK, Robson AD ( 1992). External hyphae of vesicular arbuscular mycorrhizal fungi associated with Trifolium subterraneum L. 2. Hyphal transport of 32P over defined distances. New Phytologist, 120, 509-516. |
[15] |
Jakobsen I, Rosendahl L ( 1990). Carbon flow into soil and external hyphae from roots of mycorrhizal cucumber plants. New Phytologist, 115, 77-83.
DOI URL |
[16] |
Johnson D, Leake JR, Read DJ ( 2001). Novel in-growth core system enables functional studies of grassland mycelial networks. New Phytologist, 152, 555-562.
DOI URL |
[17] |
Kernaghan G ( 2013). Functional diversity and resource partitioning in fungi associated with the fine feeder roots of forest trees. Symbiosis, 61, 113-123.
DOI URL |
[18] |
Koorem K, Gazol A, Öpik M, Moora M, Saks Ü, Uibopuu A, Sõber V, Zobel M ( 2014). Soil nutrient content influences the abundance of soil microbes but not plant biomass at the small-scale. PLOS ONE, 9, e91998. DOI: 10.1371/journal.pone.0091998.
DOI URL PMID |
[19] |
Kuzyakov Y, Larionova AA ( 2005). Root and rhizomicrobial respiration: A review of approaches to estimate respiration by autotrophic and heterotrophic organisms in soil. Journal of Plant Nutrition and Soil Science, 168, 503-520.
DOI URL |
[20] |
Lauber CL, Strickland MS, Bradford MA, Fierer N ( 2008). The influence of soil properties on the structure of bacterial and fungal communities across land-use types. Soil Biology & Biochemistry, 40, 2407-2415.
DOI URL |
[21] |
Leake J, Johnson D, Donnelly D, Muckle G, Boddy L, Read D ( 2004). Networks of power and influence: The role of mycorrhizal mycelium in controlling plant communities and agroecosystem functioning. Canadian Journal of Botany, 82, 1016-45.
DOI URL |
[22] |
Lee MS, Nakane K, Nakatsubo T, Koizumi H ( 2003). Seasonal changes in the contribution of root respiration to total soil respiration in a cool-temperate deciduous forest. Plant and Soil, 255, 311-318.
DOI URL |
[23] | Li YF, Gao R, Li Y, Qiu J, Cheng GS, Yin YF ( 2008). In vitro root respirations of different diameter classes for Chinese firs in relation to root parameters. Journal of Subtropical Resources & Environment, 3(2), 19-24. |
[24] |
Lilleskov EA ( 2017). How does temperature affect forest “fungus breath”? Diurnal non-exponential temperature- respiration relationship, and possible longer-term acclimation in fungal sporocarps. Fungal Ecology, 27, 24-35.
DOI URL |
[25] | Luo YQ, Zhou XH ( 2006). Soil Respiration and the Environment. Higher Education Press, Beijing. 159-160. |
[ 骆亦其, 周旭辉 ( 2006). 土壤呼吸与环境. 高等教育出版社, 北京. 159-160.] | |
[26] |
Ma WH, Yang YH, He JS, Zeng H, Fang JY ( 2008). The relationship between the biomass and environmental factors in Inner Mongolia. Chinese Science C Series: Life Science, 38, 84-92.
DOI URL |
[ 马文红, 杨元合, 贺金生, 曾辉, 方精云 ( 2008). 内蒙古温带草地生物量及其与环境因子的关系. 中国科学C辑: 生命科学, 38, 84-92.]
DOI URL |
|
[27] |
Miller RM, Jastrow JD, Reinhardt DR ( 1995). External hyphal production of vesicular-arbuscular mycorrhizal fungi in pasture and tallgrass prairie communities. Oecologia, 103, 17-23.
DOI URL PMID |
[28] |
Moyano FE, Kutsch WL, Rebmann C ( 2008). Soil respiration fluxes in relation to photosynthetic activity in broad-leaf and needle-leaf forest stands. Agricultural and Forest Meteorology, 148, 135-143.
DOI URL |
[29] |
Moyano FE, Kutsch WL, Schultze ED ( 2007). Response of mycorrhizal, rhizosphere and soil basal respiration to temperature and photosynthesis in a barley field. Soil Biology & Biochemistry, 39, 843-853.
DOI URL |
[30] |
Neumann J, Matzner E ( 2014). Contribution of newly grown extramatrical ectomycorrhizal mycelium and fine roots to soil respiration in a young Norway spruce site. Plant and Soil, 378, 73-82.
DOI URL |
[31] |
Nottingham AT, Turner BL, Winter K, van der Heijden MG, Tanner EV ( 2010). Arbuscular mycorrhizal mycelial respiration in a moist tropical forest. New Phytologist, 186, 957-967.
DOI URL PMID |
[32] |
Rakonczay Z, Seiler JR, Kelting DL ( 1997). Carbon efflux rates of fine roots of three tree species decline shortly after excision. Environmental and Experimental Botany, 38, 243-249.
DOI URL |
[33] |
Rillig MC, Field CB, Allen MF ( 1999). Soil biota responses to long-term atmospheric CO2 enrichment in two California annual grasslands. Oecologia, 119, 572-577.
DOI URL PMID |
[34] |
Rodeghiero M, Cescatti A ( 2006). Indirect partitioning of soil respiration in a series of evergreen forest ecosystems. Plant and Soil, 284, 7-22.
DOI URL |
[35] |
Rygiewicz PT, Andersen CP ( 1994). Mycorrhizae alter quality and quantity of carbon allocated below ground. Nature, 369, 58-60.
DOI URL |
[36] |
Saiz G, Black K, Reidy B, Lopez S, Farrell EP ( 2007). Assessment of soil CO2 efflux and its components using a process-based model in a young temperate forest site. Geoderma, 139, 79-89.
DOI URL |
[37] |
Shi JJ, Geng YB ( 2014). Study on the distinguishing of root respiration from soil microbial respiration in a Leymus chinensis steppe in Inner Mongolia, China. Environmental Science, 35, 341-347.
DOI URL |
[38] |
Slavíková R, Püschel D, Janoušková M, Hujslová M, Konvalinková T, Gryndlerová H, Gryndler M, Weiser M, Jansa J ( 2017). Monitoring CO2 emissions to gain a dynamic view of carbon allocation to arbuscular mycorrhizal fungi. Mycorrhiza, 27, 35-51.
DOI URL PMID |
[39] | Smith SE, Read DJ ( 2008). Mycorrhizal Symbiosis. Academic Press, London. |
[40] |
Talbot JM, Allison SD, Treseder KK ( 2008). Decomposers in disguise: Mycorrhizal fungi as regulators of soil C dynamics in ecosystems under global change. Functional Ecology, 22, 955-963.
DOI URL |
[41] | Tedersoo L, Bahram M, Põlme S, Kõljalg U, Yorou NS, Wijesundera R, Ruiz LV, Vasco-Palacios AM, Thu PQ, Suija A, Smith ME, Sharp C, Saluveer E, Saitta A, Rosas M, Riit T, Ratkowsky D, Pritsch K, Põldmaa K, Piepenbring M, Phosri C, Peterson M, Parts K, Pärtel K, Otsing E, Nouhra E, Njouonkou AL, Nilsson RH, Morgado LN, Mayor J, May TW, Majuakim L, Lodge DJ, Lee SS, Larsson KH, Kohout P, Hosaka K, Hiiesalu I, Henkel TW, Harend H, Guo L, Greslebin A, Grelet G, Geml J, Gates G, Dunstan W, Dunk C, Drenkhan R, Dearnaley J, Kesel AD, Dang T, Chen X, Buegger F, Brearley FQ, Bonito G, Anslan S, Abell S, Abarenkov K ( 2014). Global diversity and geography of soil fungi. Science, 346, 1-11. |
[42] |
Tomè E, Ventura M, Folegot S, Zanotelli D, Montagnani L, Mimmo T, Tonon G, Tagliavini M, Scandellari F ( 2016). Mycorrhizal contribution to soil respiration in an apple orchard. Applied Soil Ecology, 101, 165-173.
DOI URL |
[43] |
Wang C, Yang J ( 2007). Rhizospheric and heterotrophic components of soil respiration in six Chinese temperate forests. Global Change Biology, 13, 123-131.
DOI URL |
[44] |
Wilson GWT, Rice CW, Rillig MC, Springer A, Hartnett DC ( 2009). Soil aggregation and carbon sequestration are tightly correlated with the abundance of arbuscular mycorrhizal fungi: Results from long-term field experiments. Ecology Letters, 12, 452-461.
DOI URL PMID |
[45] |
Xu M, DeBiase TA, Qi Y, Goldstein A, Liu Z ( 2001). Ecosystem respiration in a young ponderosa pine plantation in the Sierra Nevada Mountains, California. Tree Physiology, 21, 309-318.
DOI URL PMID |
[46] |
Yan L, Chen S, Huang J, Lin G ( 2010). Differential responses of auto- and heterotrophic soil respiration to water and nitrogen addition in a semiarid temperate steppe. Global Change Biology, 16, 2345-2357.
DOI URL |
[47] |
Zhang Q, Lei HM, Yang DW ( 2013). Seasonal variations in soil respiration, heterotrophic respiration and autotrophic respiration of a wheat and maize rotation cropland in the North China Plain. Agricultural & Forest Meteorology, 180, 34-43.
DOI URL |
[48] | Zhu JJ, Xu H, Xu ML, Kang HZ ( 2003). Review on the ecological relationships between forest trees and ectomycorrhizal fungi. Chinese Journal of Ecology, 22(6), 70-76. |
[ 朱教君, 徐慧, 许美玲, 康宏樟 ( 2003). 外生菌根菌与森林树木的相互关系. 生态学杂志, 22(6), 70-76.] |
[1] | 沈健, 何宗明, 董强, 郜士垒, 林宇. 轻度火烧对滨海沙地人工林土壤呼吸速率和非生物因子的影响[J]. 植物生态学报, 2023, 47(7): 1032-1042. |
[2] | 嘎玛达尔基, 杨泽, 谭星儒, 王珊珊, 李伟晶, 游翠海, 王彦兵, 张兵伟, 任婷婷, 陈世苹. 凋落物输入变化和氮添加对半干旱草原群落生产力及功能群组成的影响[J]. 植物生态学报, 2020, 44(8): 791-806. |
[3] | 杨泽, 嘎玛达尔基, 谭星儒, 游翠海, 王彦兵, 杨俊杰, 韩兴国, 陈世苹. 氮添加量和施氮频率对温带半干旱草原土壤呼吸及组分的影响[J]. 植物生态学报, 2020, 44(10): 1059-1072. |
[4] | 陈敏玲, 张兵伟, 任婷婷, 王姗姗, 陈世苹. 内蒙古半干旱草原土壤水分对降水格局变化的响应[J]. 植物生态学报, 2016, 40(7): 658-668. |
[5] | 王清奎, 李艳鹏, 张方月, 贺同鑫. 短期施氮肥降低杉木幼林土壤的根系和微生物呼吸[J]. 植物生态学报, 2015, 39(12): 1166-1175. |
[6] | 李悦, 刘颖慧, 申卫军, 徐霞, 田玉强. 内蒙古克氏针茅草原土壤异养呼吸对土壤温度和水分变化的响应[J]. 植物生态学报, 2014, 38(3): 238-248. |
[7] | 吴君君, 杨智杰, 刘小飞, 熊德成, 林伟盛, 陈朝琪, 王小红. 米槠和杉木人工林土壤呼吸及其组分分析[J]. 植物生态学报, 2014, 38(1): 45-53. |
[8] | 韩天丰, 周国逸, 李跃林, 刘菊秀, 张德强. 中国南亚热带森林不同演替阶段土壤呼吸的分离量化[J]. 植物生态学报, 2011, 35(9): 946-954. |
[9] | 罗璐, 申国珍, 谢宗强, 周利光. 神农架海拔梯度上4种典型森林的土壤呼吸组分及其对温度的敏感性[J]. 植物生态学报, 2011, 35(7): 722-730. |
[10] | 刘瑞刚, 李娜, 苏宏新, 桑卫国. 北京山区3种暖温带森林生态系统未来碳平衡的模拟与分析[J]. 植物生态学报, 2009, 33(3): 516-534. |
[11] | 崔骁勇, 杜占池, 王艳芬. 内蒙古半干旱草原区沙地植物群落光合特征的动态研究[J]. 植物生态学报, 2000, 24(5): 541-546. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19