植物生态学报 ›› 2011, Vol. 35 ›› Issue (7): 722-730.DOI: 10.3724/SP.J.1258.2011.00722
罗璐1,2,3, 申国珍1,3, 谢宗强1,3,*(), 周利光4
发布日期:
2011-08-18
通讯作者:
谢宗强
作者简介:
* E-mail: Xie@ibcas.ac.cn
LUO Lu1,2,3, SHEN Guo-Zhen1,3, XIE Zong-Qiang1,3,*(), ZHOU Li-Guang4
Published:
2011-08-18
Contact:
XIE Zong-Qiang
摘要:
量化森林土壤呼吸及其组分对温度的响应对准确评估未来气候变化背景下陆地生态系统的碳平衡极其重要。该文通过对神农架海拔梯度上常绿阔叶林、常绿落叶阔叶混交林、落叶阔叶林以及亚高山针叶林4种典型森林土壤呼吸的研究发现: 4种森林类型的年平均土壤呼吸速率和年平均异养呼吸速率分别为1.63、1.79、1.74、1.35 μmol CO2·m-2·s-1和1.13、1.12、1.12、0.80 μmol CO2·m-2·s-1。该地区的土壤呼吸及其组分呈现出明显的季节动态, 夏季最高, 冬季最低。4种森林类型中, 阔叶林的土壤呼吸显著高于针叶林, 但阔叶林之间的土壤呼吸差异不显著。土壤温度是影响土壤呼吸及其组分的主要因素, 二者呈显著的指数关系; 土壤含水量与土壤呼吸之间没有显著的相关关系。4种典型森林土壤呼吸的Q10值分别为2.38、2.68、2.99和4.24, 随海拔的升高土壤呼吸对温度的敏感性增强, Q10值随海拔的升高而增加。
罗璐, 申国珍, 谢宗强, 周利光. 神农架海拔梯度上4种典型森林的土壤呼吸组分及其对温度的敏感性. 植物生态学报, 2011, 35(7): 722-730. DOI: 10.3724/SP.J.1258.2011.00722
LUO Lu, SHEN Guo-Zhen, XIE Zong-Qiang, ZHOU Li-Guang. Components of soil respiration and its temperature sensitivity in four types of forests along an elevational gradient in Shennongjia, China. Chinese Journal of Plant Ecology, 2011, 35(7): 722-730. DOI: 10.3724/SP.J.1258.2011.00722
森林类型 Forest type | 位置 Location | 海拔 Elevation (m) | 坡度 Slope | 降水量 Precipitation (mm) | 平均胸径 Mean diameter at breast hight (cm) | 建群种 Constructive species | 土壤类型 Soil type |
---|---|---|---|---|---|---|---|
常绿阔叶林 Evergreen broad- leaved forest | 31°21′ N 110°30′ E | 780 | 41.5° | 850 | 7.90 | 川钓樟 Lindera strychnifolia var. hemsleyana 宜昌楠 Phoebe zhennan yichang 青冈 Cyclobalanopsis glauca | 山地黄壤 Mountain yellow earth |
常绿落叶阔叶混交林 Mixed evergreen and deciduous broad- leaved forest | 31°19′ N 110°29′ E | 1 670 | 21.0° | 1 200 | 13.34 | 米心水青冈 Fagus engleriana 青冈 Cyclobalanopsis glauca | 山地黄棕壤 Mountain yellow brown earth |
落叶阔叶林 Deciduous broad- leaved forest | 31°18′ N 110°30′ E | 1 970 | 19.0° | 1 050 | 17.59 | 锐齿槲栎 Quercus aliena var. acutiserrata 四照花 Cronus japonica var. chinensis | 山地黄棕壤 Mountain yellow- brown earth |
亚高山针叶林 Sub-alpine coniferous forest | 31°28′ N 110°18′ E | 2 570 | 22.0° | 1 100 | 24.82 | 巴山冷杉 Abies fargesii 杜鹃 Rhododendron simsii | 山地暗棕壤 Mountain dark yellow earth |
表1 神农架海拔梯度上4种典型森林的立地特征
Table 1 Site characteristics of four typical forests along an elevational gradient in Shennongjia, Hubei
森林类型 Forest type | 位置 Location | 海拔 Elevation (m) | 坡度 Slope | 降水量 Precipitation (mm) | 平均胸径 Mean diameter at breast hight (cm) | 建群种 Constructive species | 土壤类型 Soil type |
---|---|---|---|---|---|---|---|
常绿阔叶林 Evergreen broad- leaved forest | 31°21′ N 110°30′ E | 780 | 41.5° | 850 | 7.90 | 川钓樟 Lindera strychnifolia var. hemsleyana 宜昌楠 Phoebe zhennan yichang 青冈 Cyclobalanopsis glauca | 山地黄壤 Mountain yellow earth |
常绿落叶阔叶混交林 Mixed evergreen and deciduous broad- leaved forest | 31°19′ N 110°29′ E | 1 670 | 21.0° | 1 200 | 13.34 | 米心水青冈 Fagus engleriana 青冈 Cyclobalanopsis glauca | 山地黄棕壤 Mountain yellow brown earth |
落叶阔叶林 Deciduous broad- leaved forest | 31°18′ N 110°30′ E | 1 970 | 19.0° | 1 050 | 17.59 | 锐齿槲栎 Quercus aliena var. acutiserrata 四照花 Cronus japonica var. chinensis | 山地黄棕壤 Mountain yellow- brown earth |
亚高山针叶林 Sub-alpine coniferous forest | 31°28′ N 110°18′ E | 2 570 | 22.0° | 1 100 | 24.82 | 巴山冷杉 Abies fargesii 杜鹃 Rhododendron simsii | 山地暗棕壤 Mountain dark yellow earth |
图1 土壤呼吸和异养呼吸的季节变化(平均值±标准误差, n = 4)。CF, 亚高山针叶林; DBF, 落叶阔叶林; EBF, 常绿阔叶林; MF, 常绿落叶阔叶混交林。
Fig. 1 Seasonal changes of soil respiration (RS) and heterotrophic respiration (RH) (mean ± SE, n = 4). CF, sub-alpine coniferous forest; DBF, deciduous broad-leaved forest; EBF, evergreen broad-leaved forest; MF, mixed evergreen and deciduous broad-leaved forest.
森林类型 Forest type | 原状土壤呼吸RS (μmol CO2·m-2·s-1) | 挖壕沟土壤呼吸Rtren (μmol CO2·m-2·s-1) | 异养呼吸RH (μmol CO2·m-2·s-1) | 自养呼吸RA (μmol CO2·m-2·s-1) |
---|---|---|---|---|
常绿阔叶林 Evergreen broad-leaved forest | 1.627 ± 0.068a | 1.308 ± 0.042a | 1.125a | 0.502 |
常绿落叶阔叶混交林 Mixed evergreen and deciduous broad-leaved forest | 1.789 ± 0.059a | 1.324 ± 0.073a | 1.116a | 0.673 |
落叶阔叶林 Deciduous broad-leaved forest | 1.738 ± 0.134a | 1.429 ± 0.098a | 1.170a | 0.568 |
亚高山针叶林 Sub-alpine coniferous forest | 1.355 ± 0.059b | 0.885 ± 0.017b | 0.798b | 0.557 |
表2 神农架海拔梯度上4种典型森林原状与挖壕沟处理的土壤呼吸及自养呼吸和异养呼吸(平均值±标准误差)
Table 2 Soil respiration of the control (RS) and trenched plots (Rtren), autotrophic respiration (RA) and heterotrophic respiration (RH) of four typical forests along an elevational gradient in Shennongjia, Hubei (mean ± SE)
森林类型 Forest type | 原状土壤呼吸RS (μmol CO2·m-2·s-1) | 挖壕沟土壤呼吸Rtren (μmol CO2·m-2·s-1) | 异养呼吸RH (μmol CO2·m-2·s-1) | 自养呼吸RA (μmol CO2·m-2·s-1) |
---|---|---|---|---|
常绿阔叶林 Evergreen broad-leaved forest | 1.627 ± 0.068a | 1.308 ± 0.042a | 1.125a | 0.502 |
常绿落叶阔叶混交林 Mixed evergreen and deciduous broad-leaved forest | 1.789 ± 0.059a | 1.324 ± 0.073a | 1.116a | 0.673 |
落叶阔叶林 Deciduous broad-leaved forest | 1.738 ± 0.134a | 1.429 ± 0.098a | 1.170a | 0.568 |
亚高山针叶林 Sub-alpine coniferous forest | 1.355 ± 0.059b | 0.885 ± 0.017b | 0.798b | 0.557 |
图2 自养呼吸的季节变化。CF, 亚高山针叶林; DBF, 落叶阔叶林; EBF, 常绿阔叶林; MF, 常绿落叶阔叶混交林。
Fig. 2 Seasonal changes of autotrophic respiration. CF, sub-alpine coniferous forest; DBF, deciduous broad-leaved forest; EBF, evergreen broad-leaved forest; MF, mixed evergreen and deciduous broad-leaved forest.
常绿阔叶林 Evergreen broad- leaved forest | 常绿落叶阔叶混交林 Mixed evergreen and de- ciduous broad-leaved forest | 落叶阔叶林 Deciduous broad-leaved forest | 亚高山针叶林 Sub-alpine coniferous forest | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
ST | SWC | ST | SVC | ST | SVC | ST | SVC | ||||
原状土壤呼吸 Soil respiration of untrenched plot | 0.956* | -0.205 | 0.987* | -0.059 | 0.955* | -0.097 | 0.949* | 0.346 | |||
挖壕沟土壤呼吸 Soil respiration of trenched plot | 0.927* | -0.145 | 0.984* | -0.073 | 0.962* | 0.242 | 0.915* | 0.405 | |||
异养呼吸 Heterotrophic respiration | 0.959* | -0.074 | 0.990* | -0.039 | 0.964* | 0.358 | 0.909* | 0.395 | |||
自养呼吸 Autotrophic respiration | 0.800* | -0.024 | 0.953* | -0.038 | 0.906* | 0.507 | 0.923* | 0.427 |
表3 土壤呼吸及其组分与土壤温度(ST)和含水量(SWC)的相关关系(r)
Table 3 Relationship between soil respiration and its components with soil temperature (ST) and soil water content (SWC) (r)
常绿阔叶林 Evergreen broad- leaved forest | 常绿落叶阔叶混交林 Mixed evergreen and de- ciduous broad-leaved forest | 落叶阔叶林 Deciduous broad-leaved forest | 亚高山针叶林 Sub-alpine coniferous forest | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
ST | SWC | ST | SVC | ST | SVC | ST | SVC | ||||
原状土壤呼吸 Soil respiration of untrenched plot | 0.956* | -0.205 | 0.987* | -0.059 | 0.955* | -0.097 | 0.949* | 0.346 | |||
挖壕沟土壤呼吸 Soil respiration of trenched plot | 0.927* | -0.145 | 0.984* | -0.073 | 0.962* | 0.242 | 0.915* | 0.405 | |||
异养呼吸 Heterotrophic respiration | 0.959* | -0.074 | 0.990* | -0.039 | 0.964* | 0.358 | 0.909* | 0.395 | |||
自养呼吸 Autotrophic respiration | 0.800* | -0.024 | 0.953* | -0.038 | 0.906* | 0.507 | 0.923* | 0.427 |
图3 土壤呼吸与土壤温度的拟合曲线。CF, 亚高山针叶林; DBF, 落叶阔叶林; EBF, 常绿阔叶林; MF, 常绿落叶阔叶混交林。
Fig. 3 Fitting curve of soil respiration with soil temperature. CF, sub-alpine coniferous forest; DBF, deciduous broad-leaved forest; EBF, evergreen broad-leaved forest; MF, mixed evergreen and deciduous broad-leaved forest.
森林类型 Forest type | 土壤温度 ST (℃) | 土壤含水量 SWC (%) | |||
---|---|---|---|---|---|
原状 Control | 挖壕沟Trenched | 原状 Control | 挖壕沟Trenched | ||
常绿阔叶林 Evergreen broad-leaved forest | 13.23a | 13.74a* | 22.74ab | 23.25bc | |
常绿落叶阔叶混交林 Mixed evergreen and deciduous broad-leaved forest | 9.56b | 9.67b | 24.49a | 25.53a | |
落叶阔叶林 Deciduous broad-leaved forest | 9.01b | 9.01b | 24.62a | 24.85ab | |
亚高山针叶林 Sub-alpine coniferous forest | 5.37c | 5.23c | 21.45b | 22.36c |
表4 神农架海拔梯度上4种典型森林原状与挖壕沟处理的土壤温度与土壤含水量
Table 4 Mean soil temperature (ST) and soil water content (SWC) at control and trenched plots of four typical forests along an elevational gradient in Shennongjia, Hubei
森林类型 Forest type | 土壤温度 ST (℃) | 土壤含水量 SWC (%) | |||
---|---|---|---|---|---|
原状 Control | 挖壕沟Trenched | 原状 Control | 挖壕沟Trenched | ||
常绿阔叶林 Evergreen broad-leaved forest | 13.23a | 13.74a* | 22.74ab | 23.25bc | |
常绿落叶阔叶混交林 Mixed evergreen and deciduous broad-leaved forest | 9.56b | 9.67b | 24.49a | 25.53a | |
落叶阔叶林 Deciduous broad-leaved forest | 9.01b | 9.01b | 24.62a | 24.85ab | |
亚高山针叶林 Sub-alpine coniferous forest | 5.37c | 5.23c | 21.45b | 22.36c |
森林类型 Forest type | 根系生物量 Root biomass (g·m-2) | 分解速率 Root decay rate (k) (year-1) | R2 | |||||
---|---|---|---|---|---|---|---|---|
d < 2 mm | d ≥ 2 mm | d < 2 mm | d ≥ 2 mm | d < 2 mm | d ≥ 2 mm | |||
常绿阔叶林 Evergreen broad-leaved forest | 334.8 | 1 670.8 | 0.859 | 0.367 | 0.93 | 0.89 | ||
常绿落叶阔叶混交林 Mixed evergreen and deciduous broad-leaved forest | 516.9 | 2 205.0 | 0.808 | 0.288 | 0.98 | 0.83 | ||
落叶阔叶林 Deciduous broad-leaved forest | 711.0 | 2 151.0 | 0.858 | 0.371 | 0.85 | 0.91 | ||
亚高山针叶林 Sub-alpine coniferous forest | 151.8 | 1 501.4 | 0.704 | 0.204 | 0.96 | 0.88 |
表5 神农架海拔梯度上4种典型森林不同径级的根系生物量和根系分解速率
Table 5 Root biomass and root decay rate (k) in different root diameter classes in four typical forests along an elevational gradient in Shennongjia, Hubei
森林类型 Forest type | 根系生物量 Root biomass (g·m-2) | 分解速率 Root decay rate (k) (year-1) | R2 | |||||
---|---|---|---|---|---|---|---|---|
d < 2 mm | d ≥ 2 mm | d < 2 mm | d ≥ 2 mm | d < 2 mm | d ≥ 2 mm | |||
常绿阔叶林 Evergreen broad-leaved forest | 334.8 | 1 670.8 | 0.859 | 0.367 | 0.93 | 0.89 | ||
常绿落叶阔叶混交林 Mixed evergreen and deciduous broad-leaved forest | 516.9 | 2 205.0 | 0.808 | 0.288 | 0.98 | 0.83 | ||
落叶阔叶林 Deciduous broad-leaved forest | 711.0 | 2 151.0 | 0.858 | 0.371 | 0.85 | 0.91 | ||
亚高山针叶林 Sub-alpine coniferous forest | 151.8 | 1 501.4 | 0.704 | 0.204 | 0.96 | 0.88 |
[1] |
Bahn M, Rodeghiero M, Anderson-Dunn M, Dore S, Gimeno G, Drösler M, Williams M, Ammann C, Berninger F, Flechard C, Jones S, Balzarolo M, Kumar S, Newesely C, Priwitzer T, Raschi A, Siegwolf R, Susiluoto S, Tenhunen J, Wohlfahrt G, Cernusca A (2008). Soil respiration in European grasslands in relation to climate and assimilate supply. Ecosystems, 11, 1352-1367.
URL PMID |
[2] | Bhupinderpal S, Nordgren A, Löfvenius MO, Högberg MN, Mellander PE, Högberg P (2003). Tree root and soil heterotrophic respiration as revealed by girdling of boreal Scots pine forest: extending observations beyond the first year. Plant, Cell & Environment, 26, 1287-1296. |
[3] |
Bond-Lamberty B, Wang CK, Gower ST (2004). A global relationship between the heterotrophic and autotrophic components of soil respiration. Global Change Biology, 10, 1756-1766.
DOI URL |
[4] |
Boone RD, Nadelhoffer KJ, Canary JD, Kaye JP (1998). Roots exert a strong influence on the temperature sensitivity of soil respiration. Nature, 396, 570-572.
DOI URL |
[5] |
Campbell JL, Law BE (2005). Forest soil respiration across three climatically distinct chronosequences in Oregon. Biogeochemistry, 73, 109-125.
DOI URL |
[6] |
Cox PM, Betts RA, Jones CD, Spall SA, Totterdell IJ (2000). Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature, 408, 184-187.
DOI URL PMID |
[7] |
Davidson EA, Belk E, Boone RD (1998). Soil water content and temperature as independent or confounded factors controlling soil respiration in a temperate mixed hardwood forest. Global Change Biology, 4, 217-227.
DOI URL |
[8] |
Davidson EA, Verchot LV, Cattânio JH, Ackerman IL, Carvalho JEM (2000). Effects of soil water content on soil respiration in forests and cattle pastures of eastern Amazonia. Biogeochemistry, 48, 53-69.
DOI URL |
[9] |
Davidson EA, Janssens IA (2006). Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature, 440, 165-173.
DOI URL PMID |
[10] |
Davidson EA, Janssens IA, Luo Y (2006). On the variability of respiration in terrestrial ecosystems: moving beyond Q10. Global Chang Biology, 12, 154-164.
DOI URL |
[11] |
Dixon RK, Solomon AM, Brown S, Houghton RA, Trexier MC, Wisniewski J (1994). Carbon pools and flux of global forest ecosystems. Science, 263, 185-190.
DOI URL PMID |
[12] |
Epron D, Le Dantec V, Dufrence E, Granier A (2001). Seasonal dynamics of soil carbon dioxide efflux and simulated rhizosphere respiration in a beech forest. Tree Physiology, 21, 145-152.
URL PMID |
[13] |
Gaumont-Guay D, Black TA, McCaughey H, Barr AG, Krishnan P, Jassal RS, Nesic Z (2009). Soil CO2 efflux in contrasting boreal deciduous and coniferous stands and its contribution to the ecosystem carbon balance. Global Change Biology, 15, 1302-1319.
DOI URL |
[14] |
Hanson PJ, Edwards NT, Garten CT, Andrews JA (2000). Separating root and soil microbial contributions to soil respiration: a review of methods and observations. Biogeochemistry, 48, 115-146.
DOI URL |
[15] |
Hartley IP, Heinemeyer A, Evans SP, Ineson P (2007). The effect of soil warming on bulk soil vs. rhizosphere respiration. Global Change Biology, 13, 2654-2667.
DOI URL |
[16] |
Hibbard KA, Law BE, Reichstein M, Sulzman J (2005). An analysis of soil respiration across northern hemisphere temperate ecosystems. Biogeochemistry, 73, 29-70.
DOI URL |
[17] | Högberg P, Nordgren A, Buchmann N, Taylor AFS, Ekblad A, Högberg MN, Nyberg G, Ottosson-Löfvenius M, Read DJ (2001). Large-scale forest girdling shows that current photosynthesis drives soil respiration. Nature, 411, 789-792. |
[18] |
Högberg P, Read DJ (2006). Towards a more plant physiological perspective on soil ecology. Trends in Ecology & Evolution, 21, 548-554.
DOI URL PMID |
[19] | Janssens IA, Pilegaard K (2003). Large seasonal changes in Q(10) of soil respiration in a beech forest. Global Change Biology, 9, 911-918. |
[20] | Kang SY, Doh S, Lee D, Jin V, Kimball JS (2003). Topographic and climatic controls on soil respiration in six temperate mixed-hardwood forest slopes, Korea. Global Change Biology, 9, 1427-1437. |
[21] | Kirschbaum MUF (2000). Will changes in soil organic carbon act a positive or negative feedback on global warming? Biogeochemistry, 48, 21-51. |
[22] | Kuzyakov Y, Cheng W (2001). Photosynthesis controls of rhizosphere respiration and organic matter decomposition. Soil Biology & Biochemistry, 33, 1915-1925. |
[23] | Landsberg JJ, Gower ST (1997). Applications of Physiological Ecology to Forest Management. Academic Press, San Diego, USA. |
[24] | Lavigne MB, Boutin R, Foster RJ, Goodine G, Bernier PY, Robitaille G (2003). Soil respiration responses to temperature are controlled more by roots than by decomposition in balsam fir ecosystems. Canadian Journal of Forest Research, 33, 1744-1753. |
[25] | Lee MS, Nakane K, Nakatsubo T, Koizumi H (2003). Seasonal changes in the contribution of root respiration to total soil respiration in a cool-temperature deciduous forest. Plant and Soil, 255, 311-318. |
[26] | Lee NY, Koo JW, Noh JN, Kim J, Son Y (2010). Autotrophic and heterotrophic respiration in needle fir and Quercus- dominated stands in a cool-temperate forest, central Korea. Journal of Plant Research, 123, 485-495. |
[27] | Lee X, Wu HJ, Sigler J, Oishi C, Siccama T (2004). Rapid and transient response of soil respiration to rain. Global Change Biology, 10, 1017-1026. |
[28] | Liu WX, Zhang Z, Wan SQ (2009). Predominant role of water in regulating soil and microbial respiration and their responses to climate change in a semiarid grassland. Global Change Biology, 15, 184-195. |
[29] | Lloyd J, Taylor JA (1994). On the temperature dependence of soil respiration. Functional Ecology, 8, 315-323. |
[30] | Luo YQ, Zhou XH (2006). Soil Respiration and the Environment. Academic/Elsevier, San Diego, USA. |
[31] | O’Connell KEB, Gower ST, Norman JM (2003). Net ecosystem production of two contrasting boreal black spruce forest communities. Ecosystems, 6, 248-260. |
[32] | Raich JW, Potter CS (1995). Global pattern of carbon dioxide emission from soil. Global Biochemical Cycles, 9, 23-36. |
[33] | Raich JW, Potter CS, Bhagawati D (2002). Interannual variability in global soil respiration, 1980-1984. Global Change Biology, 8, 800-812. |
[34] |
Raich JW, Schlesinger WH (1992). The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus B, 44, 81-99.
DOI URL |
[35] | Raich JW, Tufekcioglu A (2000). Vegetation and soil respiration: correlations and controls. Biogeochemistry, 48, 71-90. |
[36] | Reichstein M, Rey A, Freibauer A, Tenhunen J, Valentini J, Banza J, Casals P, Cheng YF, Grunzweig JM, Irvine J, Joffre R, Law BE, Loustau D, Miglietta F, Oechel W, Ourcival JM, Pereira JS, Peressotti A, Ponti F, Qi Y, Rambal S, Rayment M, Romanya J, Rossi F, Tedeschi V, Tirone G, Xu M, Yakir D (2003). Modeling temporal and large-scale spatial variability of soil respiration from soil water availability, temperature and vegetation productivity indices. Global Biogeochemical Cycles, 17, 1104, doi: 10.1029/2003GB002035. |
[37] | Rey A, Pegoraro E, Tedeschi V, Parri LD, Jarvis PG, Valentini R (2002). Annual variation in soil respiration and its components in a coppice oak forest in Central Italy. Global Change Biology, 8, 851-866. |
[38] | Rodeghiero M, Cescatti A (2005). Main determinants of forest soil respiration along an elevation/temperature gradient in the Italian Alps. Global Change Biology, 11, 1024-1041. |
[39] | Ryan MG, Law BE (2005). Interpreting, measuring, and modeling soil respiration. Biogeochemistry, 73, 3-27. |
[40] | Saiz G, Byrne KA, Butterbach-Bahl K, Kiese R, Blujdea V, Farrell EP (2006). Stand age-related effects on soil respiration in a first rotation Sitka spruce chronosequence in central Ireland. Global Change Biology, 12, 1007-1020. |
[41] | Schlesinger WH (1990). Evidence from chronosequence studies for a low carbon-storage potential of soil. Nature, 348, 232-234. |
[42] | Scott-Denton LE, Rosenstiel N, Monson PK (2006). Differential controls by climate and substrate over the heterotrophic and rhizospheric components of soil respiration. Global Change Biology, 12, 205-216. |
[43] |
Tans PP, Fung IY, Takahashi T (1990). Observational constraints on the global atmospheric CO2 budget. Science, 247, 1431-1438.
DOI URL PMID |
[44] | Wan SQ, Norby RJ, Ledford J, Weltzin JF (2007). Responses of soil respiration to elevated CO2, air warming, and changing soil water availability in a model old-field grassland. Global Change Biology, 13, 2411-2424. |
[45] | Wang C, Yang J (2007). Rhizospheric and heterotrophic components of soil respiration in six Chinese temperate forests. Global Change Biology, 13, 123-131. |
[46] | Wang CK, Gower ST, Wang YH, Zhao HX, Yan P, Bond-Lamberty BP (2001). The influence of fire on carbon distribution and net primary production of boreal Larix gmelinii forests in north-eastern China. Global Change Biology, 7, 719-730. |
[47] | Wang CK, Bond-Lamberty B, Gower ST (2002). Soil surface CO2 flux in a boreal black spruce fire chronosequence. Journal of Geophysical Research-Atmospheres, 107, 8224, doi: 10.1029/2001JD000861. |
[48] | Wang CK, Yang JY, Zhang QZ (2006). Soil respiration in six temperate forests in China. Global Change Biology, 12, 2013-2114. |
[49] | Zheng ZM, Yu GR, Fu YL, Wang YS, Sun XM, Wang YH (2009). Temperature sensitivity of soil respiration is affected by prevailing climatic conditions and soil organic carbon content: a trans-China based study. Soil Biology & Biochemistry, 41, 1531-1540. |
[50] | Zhou XH, Wan SQ, Luo YQ (2007). Source components and inter-annual variability of soil CO2 efflux under experimental warming and clipping in a grassland ecosystem. Global Change Biology, 13, 761-775. |
[51] | Zimmermann M, Meir P, Bird MI, Malhi Y, Ccahuana AJQ (2010). Temporal variation and climate dependence of soil respiration and its components along a 3000 m altitudinal tropical forest gradient. Global Biogeochemical Cycles, 24, GB4012, doi: 10.1029/2010GB003787 |
[1] | 沈健, 何宗明, 董强, 郜士垒, 林宇. 轻度火烧对滨海沙地人工林土壤呼吸速率和非生物因子的影响[J]. 植物生态学报, 2023, 47(7): 1032-1042. |
[2] | 李雪, 董杰, 韩广轩, 张奇奇, 谢宝华, 李培广, 赵明亮, 陈克龙, 宋维民. 黄河三角洲典型滨海盐沼湿地土壤CO2和CH4排放对水盐变化的响应[J]. 植物生态学报, 2023, 47(3): 434-446. |
[3] | 杨泽, 嘎玛达尔基, 谭星儒, 游翠海, 王彦兵, 杨俊杰, 韩兴国, 陈世苹. 氮添加量和施氮频率对温带半干旱草原土壤呼吸及组分的影响[J]. 植物生态学报, 2020, 44(10): 1059-1072. |
[4] | 李建军, 刘恋, 陈迪马, 许丰伟, 程军回, 白永飞. 底座入土深度和面积对典型草原土壤呼吸测定结果的影响[J]. 植物生态学报, 2019, 43(2): 152-164. |
[5] | 李伟晶, 陈世苹, 张兵伟, 谭星儒, 王珊珊, 游翠海. 半干旱草原土壤呼吸组分区分与菌根呼吸的贡献[J]. 植物生态学报, 2018, 42(8): 850-862. |
[6] | 王祥, 朱亚琼, 郑伟, 关正翾, 盛建东. 昭苏山地草甸4种典型土地利用方式下的土壤呼吸特征[J]. 植物生态学报, 2018, 42(3): 382-396. |
[7] | 柴曦, 李英年, 段呈, 张涛, 宗宁, 石培礼, 何永涛, 张宪洲. 青藏高原高寒灌丛草甸和草原化草甸CO2通量动态及其限制因子[J]. 植物生态学报, 2018, 42(1): 6-19. |
[8] | 朱志成, 黄银, 许丰伟, 邢稳, 郑淑霞, 白永飞. 降雨强度和时间频次对内蒙古典型草原土壤氮矿化的影响[J]. 植物生态学报, 2017, 41(9): 938-952. |
[9] | 葛晓改, 周本智, 肖文发, 王小明, 曹永慧, 叶明. 生物质炭添加对毛竹林土壤呼吸动态和温度敏感性的影响[J]. 植物生态学报, 2017, 41(11): 1177-1189. |
[10] | 张蔷, 李家湘, 谢宗强. 氮添加对亚热带山地杜鹃灌丛土壤呼吸的影响[J]. 植物生态学报, 2017, 41(1): 95-104. |
[11] | 姚辉, 胡雪洋, 朱江玲, 朱剑霄, 吉成均, 方精云. 北京东灵山3种温带森林土壤呼吸及其20年的变化[J]. 植物生态学报, 2015, 39(9): 849-856. |
[12] | 许洺山, 黄海侠, 史青茹, 杨晓东, 周刘丽, 赵延涛, 张晴晴, 阎恩荣. 浙东常绿阔叶林植物功能性状对土壤含水量变化的响应[J]. 植物生态学报, 2015, 39(9): 857-866. |
[13] | 王清奎, 李艳鹏, 张方月, 贺同鑫. 短期施氮肥降低杉木幼林土壤的根系和微生物呼吸[J]. 植物生态学报, 2015, 39(12): 1166-1175. |
[14] | 王铭, 刘兴土, 张继涛, 李秀军, 王国栋, 鲁新蕊, 李晓宇. 松嫩平原西部草甸草原5种典型植物群落土壤呼吸的时空动态[J]. 植物生态学报, 2014, 38(4): 396-404. |
[15] | 李悦, 刘颖慧, 申卫军, 徐霞, 田玉强. 内蒙古克氏针茅草原土壤异养呼吸对土壤温度和水分变化的响应[J]. 植物生态学报, 2014, 38(3): 238-248. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19