植物生态学报 ›› 2015, Vol. 39 ›› Issue (12): 1166-1175.DOI: 10.17521/cjpe.2015.0113
所属专题: 土壤呼吸
王清奎1,2,,A;*, 李艳鹏1,3, 张方月1,3, 贺同鑫1,3
出版日期:
2015-12-01
发布日期:
2015-12-31
通讯作者:
王清奎
作者简介:
# 共同第一作者
基金资助:
WANG Qing-Kui1,2,*, LI Yan-Peng1,3, ZHANG Fang-Yue1,3, HE Tong-Xin1,3
Online:
2015-12-01
Published:
2015-12-31
Contact:
Qing-Kui WANG
About author:
# Co-first authors
摘要:
土壤呼吸是陆地生态系统碳循环的重要过程。在人工林生态系统中, 施肥不仅能提高人工林的生产力和固碳能力, 而且还会对土壤呼吸产生影响。为阐明施氮肥对人工林土壤总呼吸、根系和微生物呼吸的影响, 在中亚热带地区的湖南会同, 以5年生杉木(Cunninghamia lanceolata)幼林为研究对象, 施氮肥1年后, 利用LI-8100对土壤呼吸进行为期12个月的野外原位定点观测。结果发现: 施氮肥使土壤总呼吸、根系呼吸和微生物呼吸分别降低了22.7%、19.6%和23.5%; 土壤呼吸的温度敏感性(Q10)为1.81-2.04, 施肥使土壤微生物呼吸的Q10值从对照的2.04降低为1.84, 但土壤总呼吸的Q10值没有发生显著变化; 施肥没有改变土壤呼吸的季节变化, 在双因素模型中, 土壤温度和含水量可以解释土壤呼吸季节变化的69.9%-79.7%。研究表明施氮肥能降低中亚热带地区杉木人工林土壤有机碳分解对温度升高的响应, 在全球变暖背景下有利于增加土壤有机碳储量。
王清奎, 李艳鹏, 张方月, 贺同鑫. 短期施氮肥降低杉木幼林土壤的根系和微生物呼吸. 植物生态学报, 2015, 39(12): 1166-1175. DOI: 10.17521/cjpe.2015.0113
WANG Qing-Kui,LI Yan-Peng,ZHANG Fang-Yue,HE Tong-Xin. Short-term nitrogen fertilization decreased root and microbial respiration in a young Cunninghamia lanceolata plantation. Chinese Journal of Plant Ecology, 2015, 39(12): 1166-1175. DOI: 10.17521/cjpe.2015.0113
全碳 Total C (g·kg-1) | 全氮 Total N (g·kg-1) | 全磷 Total P (g·kg-1) | pH | 容重 Bulk density (g·cm-3) | 树高 Tree height (m) | 胸径 Diameter at breast height (cm) | |
---|---|---|---|---|---|---|---|
对照 Control | 17.2 | 1.43 | 0.339 | 4.50 | 1.28 | 5.71 | 8.27 |
施氮 N fertilization | 18.6 | 1.55 | 0.334 | 4.33 | 1.22 | 6.01 | 8.64 |
表1 施肥前各处理土壤(0-10 cm)基本性质及杉木幼林生长情况
Table 1 Property of soils (0-10 cm) and growth conditions of young Cunninghamia lanceolata plantation before fertilization
全碳 Total C (g·kg-1) | 全氮 Total N (g·kg-1) | 全磷 Total P (g·kg-1) | pH | 容重 Bulk density (g·cm-3) | 树高 Tree height (m) | 胸径 Diameter at breast height (cm) | |
---|---|---|---|---|---|---|---|
对照 Control | 17.2 | 1.43 | 0.339 | 4.50 | 1.28 | 5.71 | 8.27 |
施氮 N fertilization | 18.6 | 1.55 | 0.334 | 4.33 | 1.22 | 6.01 | 8.64 |
图1 施氮肥和切根对杉木幼林土壤(0-5 cm)温度与含水量的影响(平均值±标准偏差)。
Fig. 1 Influence of N fertilization and root trenching on soil temperature and water content (0-5 cm) in a young Cunninghamia lanceolata plantation (mean ± SD).
矿质氮 Mineral N (mg·kg-1) | 有效磷 Available P (mg·kg-1) | pH | 细根生物量 Fine root biomass (g·m-2) | 细根碳氮含量 C and N content in fine root (g·kg-1) | |||
---|---|---|---|---|---|---|---|
碳 C | 氮 N | C:N | |||||
对照 Control | 4.94 | 4.93 | 4.39 | 151.1 | 439.5 | 6.28 | 69.9 |
施氮 N fertilization | 13.16 | 6.49 | 4.11 | 102.6 | 436.2 | 8.80 | 49.6 |
p | <0.001 | >0.05 | <0.01 | <0.05 | >0.05 | <0.01 | <0.01 |
表2 施氮肥对杉木幼林土壤有效养分和细根生物量及细根碳氮含量的影响
Table 2 Effect of N fertilization on soil nutrient availability, biomass, C and N content of fine roots in a young Cunninghamia lanceolata plantation
矿质氮 Mineral N (mg·kg-1) | 有效磷 Available P (mg·kg-1) | pH | 细根生物量 Fine root biomass (g·m-2) | 细根碳氮含量 C and N content in fine root (g·kg-1) | |||
---|---|---|---|---|---|---|---|
碳 C | 氮 N | C:N | |||||
对照 Control | 4.94 | 4.93 | 4.39 | 151.1 | 439.5 | 6.28 | 69.9 |
施氮 N fertilization | 13.16 | 6.49 | 4.11 | 102.6 | 436.2 | 8.80 | 49.6 |
p | <0.001 | >0.05 | <0.01 | <0.05 | >0.05 | <0.01 | <0.01 |
微生物生物量碳 MBC (mg·kg-1) | 细菌 Bacteria (nmol·g-1) | 真菌 Fungi (nmol·g-1) | 细菌:真菌 Bacteria:fungi | 放线菌 Actinomyces (nmol·g-1) | 革兰氏阳性细菌 Gram-positive bacteria (nmol·g-1) | |
---|---|---|---|---|---|---|
对照 Control | 234 | 26.25 | 10.61 | 2.47 | 3.99 | 12.09 |
施氮 N fertilization | 155 | 19.94 | 6.76 | 2.95 | 3.55 | 8.90 |
p | <0.001 | <0.05 | <0.05 | >0.05 | >0.05 | <0.05 |
表3 施氮肥对杉木幼林土壤微生物量碳及微生物群落结构的影响
Table 3 Effect of N fertilization on soil microbial biomass C (MBC) and microbial community composition in a young Cunninghamia lanceolata plantation
微生物生物量碳 MBC (mg·kg-1) | 细菌 Bacteria (nmol·g-1) | 真菌 Fungi (nmol·g-1) | 细菌:真菌 Bacteria:fungi | 放线菌 Actinomyces (nmol·g-1) | 革兰氏阳性细菌 Gram-positive bacteria (nmol·g-1) | |
---|---|---|---|---|---|---|
对照 Control | 234 | 26.25 | 10.61 | 2.47 | 3.99 | 12.09 |
施氮 N fertilization | 155 | 19.94 | 6.76 | 2.95 | 3.55 | 8.90 |
p | <0.001 | <0.05 | <0.05 | >0.05 | >0.05 | <0.05 |
图2 施氮肥对杉木幼林土壤总呼吸、微生物呼吸和根系呼吸的影响(平均值±标准偏差)。
Fig. 2 Influence of N fertilization on total soil, microbial and root respiration in a young Cunninghamia lanceolata plantation (mean ± SD).
处理 Treatment | Rs = aebT | Rs = aW + b | Rs = aebTWc | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
a | b | R2 | a | b | R2 | a | b | c | R2 | ||||
土壤总呼吸 Total soil respiration | 对照 Control | 0.474 | 0.067 | 0.714 | -0.022 | 2.242 | 0.055 | 0.182 | 0.070 | 0.308 | 0.712 | ||
施氮 N fertilization | 0.425 | 0.059 | 0.694 | -0.018 | 1.760 | 0.065 | 0.165 | 0.066 | 0.288 | 0.699 | |||
微生物呼吸 Microbial respiration | 对照 Control | 0.335 | 0.071 | 0.795 | -0.023 | 1.920 | 0.101 | 0.156 | 0.067 | 0.273 | 0.797 | ||
施氮 N fertilization | 0.319 | 0.061 | 0.721 | -0.052 | 1.161 | 0.010 | 0.117 | 0.064 | 0.314 | 0.738 |
表4 杉木幼林土壤呼吸速率与土壤温度和含水量的不同关系模型
Table 4 Parameters of different soil respiration models in a young Cunninghamia lanceolata plantation
处理 Treatment | Rs = aebT | Rs = aW + b | Rs = aebTWc | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
a | b | R2 | a | b | R2 | a | b | c | R2 | ||||
土壤总呼吸 Total soil respiration | 对照 Control | 0.474 | 0.067 | 0.714 | -0.022 | 2.242 | 0.055 | 0.182 | 0.070 | 0.308 | 0.712 | ||
施氮 N fertilization | 0.425 | 0.059 | 0.694 | -0.018 | 1.760 | 0.065 | 0.165 | 0.066 | 0.288 | 0.699 | |||
微生物呼吸 Microbial respiration | 对照 Control | 0.335 | 0.071 | 0.795 | -0.023 | 1.920 | 0.101 | 0.156 | 0.067 | 0.273 | 0.797 | ||
施氮 N fertilization | 0.319 | 0.061 | 0.721 | -0.052 | 1.161 | 0.010 | 0.117 | 0.064 | 0.314 | 0.738 |
图3 杉木幼林土壤总呼吸、微生物呼吸和根系呼吸年通量(平均值±标准偏差)。
Fig. 3 Annual flux of total soil, microbial and root respiration in a young Cunninghamia lanceolata plantation (mean ± SD).
图4 施氮肥和不施氮肥条件下土壤总呼吸和微生物与土壤温度的关系。
Fig. 4 Relationship of total soil and microbial respiration with soil temperature in the fertilized and unfertilized plots.
图5 杉木幼林施氮肥对土壤总呼吸和微生物呼吸的温度敏感性(Q10)的影响(平均值±标准偏差)。
Fig. 5 Effect of N fertilization on the temperature sensitivity (Q10) of total soil and microbial respiration in a young Cunninghamia lanceolata plantation (mean ± SD).
[1] | Aber J, McDowell W, Nadelhoffer K, Magill A, Berntson G, Kamakea M, McNulty S, Currie W, Rustad L, Fernandez I (1998). Nitrogen saturation in temperate forest ecosystems.BioScience, 48, 921-934. |
[2] | Bond-Lamberty B, Thompson A (2010). Temperature- associated increases in the global soil respiration record.Nature, 464, 579-582. |
[3] | Borken W, Savage K, Davidson EA, Trumbore SE (2006). Effects of experimental drought on soil respiration and radiocarbon efflux from a temperate forest soil.Global Change Biology, 12, 177-193. |
[4] | Bowden RD, Davidson E, Savage K, Arabia C, Steudler P (2004). Chronic nitrogen additions reduce total soil respiration and microbial respiration in temperate forest soils at the Harvard Forest.Forest Ecology and Management, 196, 43-56. |
[5] | Burton AJ, Pregitzer KS, Ruess RW, Hendrick RL, Allen MF (2002). Root respiration in North American forests: Effects of nitrogen concentration and temperature across biomes.Oecologia, 131, 559-568. |
[6] | Cleveland CC, Townsend AR (2006). Nutrient additions to a tropical rain forest drive substantial soil carbon dioxide losses to the atmosphere.Proceedings of the National Academy of Sciences of the United States of America, 103, 10316-10321. |
[7] | Deluca TH, Nilsson MC, Zackrisson O (2002). Nitrogen mineralization and phenol accumulation along a fire chronosequence in northern Sweden.Oecologia, 133, 206-214. |
[8] | Department of Forest Resources Management, State Forestry Administration (2010). The 7th national forest inventory and status of forest resources.Forest Resources Management, (1), 1-8. |
(in Chinese with English abstract) [国家林业局森林资源管理司 (2010). 第七次全国森林资源清查及森林资源状况. 林业资源管理, (1), 1-8.] | |
[9] | Fan YX, Yang YS, Guo JF, Yang ZJ, Chen GS, Xie JS, Zhong XJ, Xu LL (2014). Changes in soil respiration and its temperature sensitivity at different successional stages of evergreen broadleaved forests in mid-subtropical China.Chinese Journal of Plant Ecology, 38, 1155-1165. |
(in Chinese with English abstract) [范跃新, 杨玉盛, 郭剑芬, 杨智杰, 陈光水, 谢锦升, 钟小剑, 徐玲琳 (2014). 中亚热带常绿阔叶林不同演替阶段土壤呼吸及其温度敏感性的变化. 植物生态学报, 38, 1155-1165.] | |
[10] | Fang C, Moncrieff JB (2001). The dependence of soil CO2 efflux on temperature.Soil Biology & Biochemistry, 33, 155-165. |
[11] | Fox TR (2000). Sustained productivity in intensively managed forest plantations.Forest Ecology and Management, 138, 187-202. |
[12] | Frey SD, Ollinger S, Nadelhoffer K, Bowden R, Brzostek E, Burton A, Caldwell BA, Crow S, Goodale CL, Grandy AS, Finzi A, Kramer MG, Lajtha K, LeMoine J, Marin M, McDowell WH, Minocha R, Sadowsky JJ, Templer PH, Wickings K (2014). Chronic nitrogen additions suppress decomposition and sequester soil carbon in temperate forests.Biogeochemistry, 121, 305-316. |
[13] | Han TF, Zhou GY, Li YL, Liu JX, Zhang DQ (2011). Partitioning soil respiration in lower subtropical forests at different successional stages in southern China.Chinese Journal of Plant Ecology, 35, 946-954. |
(in Chinese with English abstract) [韩天丰, 周国逸, 李跃林, 刘菊秀, 张德强 (2011). 中国南亚热带森林不同演替阶段土壤呼吸的分离量化. 植物生态学报, 35, 946-954.] | |
[14] | Högberg P, Nordgren A, Buchmann N, Taylor AFS, Ekblad A, Högberg MN, Nyberg G, Ottosson-Löfvenius M, Read DJ (2001). Large-scale forest girdling shows that current photosynthesis drives soil respiration.Nature, 411, 789-792. |
[15] | Janssens IA, Dieleman W, Luyssaert S, Subke J-A, Reichstein M, Ceulemans R, Ciais P, Dolman AJ, Grace J, Matteucci G, Papale D, Piao SL, Schulze E-D, Tang J, Law BE (2010). Reduction of forest soil respiration in response to nitrogen deposition.Nature Geoscience, 3, 315-322. |
[16] | Jia SX, Wang ZQ, Mei L, Sun Y, Quan XK, Shi JW, Yu SQ, Sun HL, Gu JC (2007). Effect of nitrogen fertilization on soil respiration in Larix gmelinii and Fraxinus mandshurica plantations in China. Journal of Plant Ecology (Chinese Version), 31, 372-379. |
(in Chinese with English abstract) [贾淑霞, 王政权, 梅莉, 孙玥, 全先奎, 史建伟, 于水强, 孙海龙, 谷加存 (2007). 施肥对落叶松和水曲柳人工林土壤呼吸的影响. 植物生态学报, 31, 372-379.] | |
[17] | Lee KH, Jose S (2003). Soil respiration, fine root production, and microbial biomass in cottonwood and loblolly pine plantations along a nitrogen fertilization gradient.Forest Ecology and Management, 185, 263-273. |
[18] | Lu RK (2000). Methods of Soil Agricultural Chemistry Analysis. Chinese Agricultural Science and Technology Press, Beijing. |
(in Chinese) [鲁如坤 (2000). 土壤农业化学分析方法. 中国农业科技出版社, 北京.] | |
[19] | Mei L, Wang ZQ, Zhang XJ, Yu LZ, Du Y (2008). Effects of nitrogen fertilization on fine root biomass production and turnover of Fraxinus mandshurica plantation.Chinese Journal of Ecology, 27, 1663-1668. |
(in Chinese with English abstract) [梅莉, 王政权, 张秀娟, 于立忠, 杜英 (2008). 施氮肥对水曲柳人工林细根生产和周转的影响. 生态学杂志, 27, 1663-1668.] | |
[20] | Mo JM, Zhang W, Zhu WX, Gundersen P, Fang YT, Li DJ, Wang H (2008). Nitrogen addition reduces soil respiration in a mature tropical forest in southern China.Global Change Biology, 14, 403-412. |
[21] | Olsson P, Linder S, Giesler R, Högberg P (2005). Fertilization of boreal forest reduces both autotrophic and heterotrophic soil respiration.Global Change Biology, 11, 1745-1753. |
[22] | Persson H, Ahlström K, Clemensson-Lindell A (1998). Nitrogen addition and removal at Gårdsjön-effects on fine-root growth and fine-root chemistry.Forest Ecology and Management, 101, 199-205. |
[23] | Phillips RP, Fahey TJ (2007). Fertilization effects on fineroot biomass, rhizosphere microbes and respiratory fluxes in hardwood forest soils.New Phytologist, 176, 655-664. |
[24] | Pregitzer KS, King JS, Burton AJ, Brown SE (2000). Responses of tree fine roots to temperature.New Phytologist, 147, 105-115. |
[25] | Pregitzer KS, Zak DR, Curtis PS, Kubiske M, Teeri JA, Vogel CS (1995). Atmospheric CO2, soil nitrogen and turnover of fine roots.New Phytologist, 129, 579-585. |
[26] | Rustad LE, Huntington TG, Boone RD (2000). Controls on soil respiration: Implications for climate change.Biogeochemistry, 48, 1-6. |
[27] | Samuelson L, Mathew R, Stokes T, Feng YC, Aubrey D, Coleman M (2009). Soil and microbial respiration in a loblolly pine plantation in response to seven years of irrigation and fertilization.Forest Ecology and Management, 258, 2431-2438. |
[28] | Schindlbacher A, Wunderlich S, Borken W, Kitzler B, Zechmeister-Boltenstern S, Jandl R (2012). Soil respiration under climate change: Prolonged summer drought offsets soil warming effects.Global Change Biology, 18, 2270-2279. |
[29] | Sheng H, Yang YS, Yang ZJ, Chen GS, Xie JS, Guo JF, Zou SQ (2010). The dynamic response of soil respiration to land-use changes in subtropical China.Global Change Biology, 16, 1107-1121. |
[30] | Sun ZZ, Liu LL, Ma YC, Yin GD, Zhao C, Zhang Y, Piao SL (2014). The effect of nitrogen addition on soil respiration from a nitrogen-limited forest soil.Agricultural and Forest Meteorology, 197, 103-110. |
[31] | Treseder KK (2008). Nitrogen additions and microbial biomass: A meta-analysis of ecosystem studies.Ecology Letters, 11, 1111-1120. |
[32] | Tu LH, Hu TX, Zhang J, Li XW, Hu HL, Liu L, Xiao YL (2013). Nitrogen addition stimulates different components of soil respiration in a subtropical bamboo ecosystem.Soil Biology & Biochemistry, 58, 255-264. |
[33] | Tyree MC, Seiler JR, Aust WM, Sampson DA, Fox TR (2006). Long-term effects of site preparation and fertilization on total soil CO2 efflux and heterotrophic respiration in a 33-year-old Pinus taeda L. plantation on the wet flats of the Virginia Lower Coastal Plain.Forest Ecology and Management, 234, 363-369. |
[34] | Wang CH, Chen FQ, Wang Y, Li JQ (2011). Soil heterotrophic respiration and its sensitivity to soil temperature and moisture in Liquidambar formosana and Pinus massoniana forests in hilly areas of southeast Hubei Province, China.Chinese Journal of Applied Ecology, 22, 600-606. |
(in Chinese with English abstract) [王传华, 陈芳清, 王愿, 李俊清 (2011). 鄂东南低丘马尾松林和枫香林土壤异养呼吸及温湿度敏感性. 应用生态学报, 22, 600-606.] | |
[35] | Wang M, Li QR, Xiao DM, Dong BL (2004). Effects of soil temperature and soil water content on soil respiration in three forest types in Changbai Mountain.Journal of Forestry Research, 15, 113-118. |
[36] | Wang QK, He TX, Wang SL, Liu L (2013). Carbon input manipulation affects soil respiration and microbial community composition in a subtropical coniferous forest. Agricultural and Forest Meteorology, 178-179, 152-160. |
[37] | Welp LR, Randerson JT, Liu HP (2007). The sensitivity of carbon fluxes to spring warming and summer drought depends on plant functional type in boreal forest ecosystems.Agricultural and Forest Meteorology, 147, 172-185. |
[38] | Wu JJ, Yang ZJ, Liu XF, Xiong DC, Lin WS, Chen CQ, Wang XH (2014). Analysis of soil respiration and components in Castanopsis carlesii and Cunninghamia lanceolata plantations.Chinese Journal of Plant Ecology, 38, 45-53. |
(in Chinese with English abstract) [吴君君, 杨智杰, 刘小飞, 熊德成, 林伟盛, 陈朝琪, 王小红 (2014). 米槠和杉木人工林土壤呼吸及其组分分析. 植物生态学报, 38, 45-53.] | |
[39] | Xu JD (2014). The 8th forest resources inventory results and analysis in China.Forestry Economics, (3), 6-8. |
(in Chinese with English abstract) [徐济德 (2014). 我国第八次森林资源清查结果及分析. 林业经济, (3), 6-8.] | |
[40] | Yang J, Li LH (2003). Soil respiration and its measuring method.Chinese Journal of Plant, (5), 36-37. |
(in Chinese) [杨晶, 李凌浩 (2003). 土壤呼吸及其测定法. 植物杂志, (5), 36-37.] | |
[41] | Yu MJ, Xu XH, Li MH, Fu HL (2005). Biocycle of nitrogen in a Cyclobalanopsis glauca dominated evergreen broad leaved forest in East China.Acta Ecologica Sinica, 25, 740-748. |
(in Chinese with English abstract) [于明坚, 徐学红, 李铭红, 付海龙 (2005). 青冈常绿阔叶林氮的生物循环. 生态学报, 25, 740-748.] | |
[42] | Yu YC, Ding AF (2001). Effects of simulated acid rain on dissolution and transformation of aluminum in acid soils of south China.Soil and Environmental Sciences, 10(2), 87-90. |
(in Chinese with English abstract) [俞元春, 丁爱芳 (2001). 模拟酸雨对酸性土壤铝溶出及其形态转化的影响. 土壤与环境, 10(2), 87-90.] | |
[43] | Zhou CP, Ouyang H, Pei ZY, Xu XL (2003). Net soil nitrogen mineralization in Chinese forest ecosystems.Acta Phytoecologica Sinica, 27, 170-176. |
[44] | Zhu B, Cheng WX (2011). Rhizosphere priming effect increases the temperature sensitivity of soil organic matter decomposition.Global Change Biology, 17, 2172-2183. |
[1] | 王袼, 胡姝娅, 李阳, 陈晓鹏, 李红玉, 董宽虎, 何念鹏, 王常慧. 不同类型草原土壤净氮矿化速率的温度敏感性[J]. 植物生态学报, 2024, 48(4): 523-533. |
[2] | 沈健, 何宗明, 董强, 郜士垒, 林宇. 轻度火烧对滨海沙地人工林土壤呼吸速率和非生物因子的影响[J]. 植物生态学报, 2023, 47(7): 1032-1042. |
[3] | 夏璟钰, 张扬建, 郑周涛, 赵广, 赵然, 朱艺旋, 高洁, 沈若楠, 李文宇, 郑家禾, 张雨雪, 朱军涛, 孙建新. 青藏高原那曲高山嵩草草甸植物物候对增温的异步响应[J]. 植物生态学报, 2023, 47(2): 183-194. |
[4] | 丛楠, 张扬建, 朱军涛. 北半球中高纬度地区近30年植被春季物候温度敏感性[J]. 植物生态学报, 2022, 46(2): 125-135. |
[5] | 赵河聚, 岳艳鹏, 贾晓红, 成龙, 吴波, 李元寿, 周虹, 赵雪彬. 模拟增温对高寒沙区生物土壤结皮-土壤系统呼吸的影响[J]. 植物生态学报, 2020, 44(9): 916-925. |
[6] | 郑甲佳, 黄松宇, 贾昕, 田赟, 牟钰, 刘鹏, 查天山. 中国森林生态系统土壤呼吸温度敏感性空间变异特征及影响因素[J]. 植物生态学报, 2020, 44(6): 687-698. |
[7] | 杨泽, 嘎玛达尔基, 谭星儒, 游翠海, 王彦兵, 杨俊杰, 韩兴国, 陈世苹. 氮添加量和施氮频率对温带半干旱草原土壤呼吸及组分的影响[J]. 植物生态学报, 2020, 44(10): 1059-1072. |
[8] | 李伟晶, 陈世苹, 张兵伟, 谭星儒, 王珊珊, 游翠海. 半干旱草原土壤呼吸组分区分与菌根呼吸的贡献[J]. 植物生态学报, 2018, 42(8): 850-862. |
[9] | 杨开军, 杨万勤, 谭羽, 贺若阳, 庄丽燕, 李志杰, 谭波, 徐振锋. 川西亚高山云杉林冬季土壤呼吸对雪被去除的短期响应[J]. 植物生态学报, 2017, 41(9): 964-971. |
[10] | 葛晓改, 周本智, 肖文发, 王小明, 曹永慧, 叶明. 生物质炭添加对毛竹林土壤呼吸动态和温度敏感性的影响[J]. 植物生态学报, 2017, 41(11): 1177-1189. |
[11] | 张建华, 唐志尧, 沈海花, 方精云. 氮添加对北京东灵山地区灌丛土壤呼吸的影响[J]. 植物生态学报, 2017, 41(1): 81-94. |
[12] | 张蔷, 李家湘, 谢宗强. 氮添加对亚热带山地杜鹃灌丛土壤呼吸的影响[J]. 植物生态学报, 2017, 41(1): 95-104. |
[13] | 李晓杰, 刘小飞, 熊德成, 林伟盛, 林廷武, 施友文, 谢锦升, 杨玉盛. 中亚热带杉木人工林和米槠次生林凋落物添加与去除对土壤呼吸的影响[J]. 植物生态学报, 2016, 40(5): 447-457. |
[14] | 邱曦, 吕茂奎, 黄锦学, 李伟, 赵本嘉, 张浩, 王恩熙, 谢锦升. 不同培养温度下严重侵蚀红壤的有机碳矿化特征[J]. 植物生态学报, 2016, 40(3): 236-245. |
[15] | 姚辉, 胡雪洋, 朱江玲, 朱剑霄, 吉成均, 方精云. 北京东灵山3种温带森林土壤呼吸及其20年的变化[J]. 植物生态学报, 2015, 39(9): 849-856. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19