植物生态学报 ›› 2017, Vol. 41 ›› Issue (1): 81-94.DOI: 10.17521/cjpe.2016.0085
所属专题: 中国灌丛生态系统碳储量的研究
张建华1,2,*(), 唐志尧3, 沈海花2, 方精云2,3
收稿日期:
2016-03-09
接受日期:
2016-09-21
出版日期:
2017-01-10
发布日期:
2017-01-23
通讯作者:
张建华
作者简介:
* 通信作者Author for correspondence (E-mail:基金资助:
Jian-Hua ZHANG1,2,*(), Zhi-Yao TANG3, Hai-Hua SHEN2, Jing-Yun FANG2,3
Received:
2016-03-09
Accepted:
2016-09-21
Online:
2017-01-10
Published:
2017-01-23
Contact:
Jian-Hua ZHANG
About author:
KANG Jing-yao(1991-), E-mail: 摘要:
土壤呼吸是陆地生态系统碳收支的重要组成部分。与森林相比, 自然或半自然的灌丛主要分布在养分贫瘠的地区, 通常认为它们对环境变化较为敏感。外源氮输入可能会显著影响灌丛的土壤呼吸。迄今为止, 人们对大气氮沉降对灌丛土壤呼吸的影响知之甚少。该文通过氮添加试验, 研究了北京东灵山荆条(Vitex negundo var. heterophylla)和绣线菊(Spiraea salicifolia)灌丛土壤呼吸及其对不同氮添加水平(对照(0)、低氮(20 kg N·hm-2·a-1)、中氮(50 kg N·hm-2·a-1)和高氮(100 kg N·hm-2·a-1))的响应。结果表明: 自然条件下, 荆条和绣线菊灌丛的土壤总呼吸年通量为5.91和4.23 t C·hm-2·a-1, 异养呼吸通量为5.76和3.53 t C·hm-2·a-1, 荆条和绣线菊灌丛的总呼吸和异养呼吸均与土壤温度呈显著的指数关系。荆条和绣线菊灌丛土壤总呼吸温度敏感性系数(Q10)的变化范围分别为1.44-1.58和1.43-1.98, 异养呼吸Q10的变化范围分别为1.38-2.11和1.49-1.88。短期氮添加抑制了荆条灌丛的自养呼吸, 而对土壤总呼吸和异养呼吸影响不明显; 氮添加促进了绣线菊灌丛的异养呼吸, 而对土壤总呼吸和自养呼吸均无显著影响; 氮添加对两种灌丛土壤呼吸年通量及土壤总呼吸Q10均无显著影响。
张建华, 唐志尧, 沈海花, 方精云. 氮添加对北京东灵山地区灌丛土壤呼吸的影响. 植物生态学报, 2017, 41(1): 81-94. DOI: 10.17521/cjpe.2016.0085
Jian-Hua ZHANG, Zhi-Yao TANG, Hai-Hua SHEN, Jing-Yun FANG. Effects of nitrogen addition on soil respiration in shrublands in Mt. Dongling, Beijing, China. Chinese Journal of Plant Ecology, 2017, 41(1): 81-94. DOI: 10.17521/cjpe.2016.0085
项目 Item | 荆条灌丛 Vitex negundo var. heterophylla shrubland | 绣线菊灌丛 Spiraea salicifolia shrubland |
---|---|---|
地形和气候 Topography and climate | ||
海拔 Elevation (m) | 791 | 1 170 |
坡向 Aspect | 南 South | 南 South |
坡度 Slope (°) | 28 | 25 |
年平均气温 Mean annual temperature (℃) | 12.3 | 9.2 |
表层土壤特征 Top soil property | ||
土壤pH值 Soil pH value | 8.7 | 8.9 |
总碳 Total carbon (mg·g-1) | 28.88 (±2.10) | 39.50 (±5.03) |
总氮 Total nitrogen (mg·g-1) | 2.72 (±0.32) | 2.29 (±0.36) |
总磷 Total phosphorous (mg·g-1) | 0.47 (±0.04) | 0.48 (±0.03) |
无机氮 Inorganic nitrogen (mg·kg-1) | 6.01 (±2.38) | 2.51 (±2.88) |
速效磷 Available phosphorous (mg·kg-1) | 1.03 (±0.09) | 1.38 (±0.77) |
群落特征 Community characteristics | ||
灌木高度 Shrub height (cm) | 78.1 (±12.37) | 79.8 (±7.43) |
平均基径 Average base diameter (cm) | 0.77 (±1.77) | 0.56 (±0.04) |
灌木密度 Shrub density (stems·hm-2) | 1.6 × 105 | 3.6 × 105 |
灌木层优势种 Dominant species of shrub layer | 荆条 Vitex negundo var. heterophylla, 河蒴荛花 Wikstroemia chamaedaphne | 绣线菊 Spiraea salicifolia |
草本层优势种 Dominant species of herb layer | 细叶薹草 Carex duriuscula subsp. stenophylloides | 细叶薹草 Carex duriuscula subsp. stenophylloides |
干扰程度 Levels of disturbance | 轻度干扰 Light disturbance | 轻度干扰 Light disturbance |
表1 试验样地地形、土壤和植被特征(平均值±标准误差, n = 3)
Table 1 Topography, soil and vegetation characteristics of the experimental sites (mean ± SE, n = 3)
项目 Item | 荆条灌丛 Vitex negundo var. heterophylla shrubland | 绣线菊灌丛 Spiraea salicifolia shrubland |
---|---|---|
地形和气候 Topography and climate | ||
海拔 Elevation (m) | 791 | 1 170 |
坡向 Aspect | 南 South | 南 South |
坡度 Slope (°) | 28 | 25 |
年平均气温 Mean annual temperature (℃) | 12.3 | 9.2 |
表层土壤特征 Top soil property | ||
土壤pH值 Soil pH value | 8.7 | 8.9 |
总碳 Total carbon (mg·g-1) | 28.88 (±2.10) | 39.50 (±5.03) |
总氮 Total nitrogen (mg·g-1) | 2.72 (±0.32) | 2.29 (±0.36) |
总磷 Total phosphorous (mg·g-1) | 0.47 (±0.04) | 0.48 (±0.03) |
无机氮 Inorganic nitrogen (mg·kg-1) | 6.01 (±2.38) | 2.51 (±2.88) |
速效磷 Available phosphorous (mg·kg-1) | 1.03 (±0.09) | 1.38 (±0.77) |
群落特征 Community characteristics | ||
灌木高度 Shrub height (cm) | 78.1 (±12.37) | 79.8 (±7.43) |
平均基径 Average base diameter (cm) | 0.77 (±1.77) | 0.56 (±0.04) |
灌木密度 Shrub density (stems·hm-2) | 1.6 × 105 | 3.6 × 105 |
灌木层优势种 Dominant species of shrub layer | 荆条 Vitex negundo var. heterophylla, 河蒴荛花 Wikstroemia chamaedaphne | 绣线菊 Spiraea salicifolia |
草本层优势种 Dominant species of herb layer | 细叶薹草 Carex duriuscula subsp. stenophylloides | 细叶薹草 Carex duriuscula subsp. stenophylloides |
干扰程度 Levels of disturbance | 轻度干扰 Light disturbance | 轻度干扰 Light disturbance |
图1 北京东灵山地区灌丛氮添加试验设计。A, 样方示意图。B, Collar环示意图。N0、N1、N2、N3分别表示对照(0 kg N·hm-2·a-1)、低氮(20 kg N·hm-2·a-1)、中氮(50 kg N·hm-2·a-1)和高氮(100 kg N·hm-2·a-1)处理。
Fig. 1 Experimental design in shrublands on Mt. Dongling, Beijing, northern China. A, Schematic diagram of Quadrats. B, Schematic diagram of Collar rings. N0, N1, N2 and N3 denote control (0 kg N·hm-2·a-1), low (20 kg N·hm-2·a-1), medium (50 kg N·hm-2·a-1), and high (100 kg N·hm-2·a-1) nitrogen addition, respectively.
图2 不同氮添加对荆条(左)和绣线菊(右)灌丛土壤总呼吸(Rs)、自养呼吸(Ra)及异养呼吸(Rh)的影响(平均值±标准误差)。N0、N1、N2、N3分别表示对照(0 kg N·hm-2·a-1)、低氮(20 kg N·hm-2·a-1)、中氮(50 kg N·hm-2·a-1)和高氮(100 kg N·hm-2·a-1)处理。
Fig. 2 Influence of different nitrogen addition on the soil total respiration (Rs), autotrophic respiration (Ra) and heterotrophic respiration (Rh) of Vitex negundo var. heterophylla (left) and Spiraea salicifolia (right) shrublands (mean ± SE). N0, N1, N2 and N3 denote control (0 kg N·hm-2·a-1), low (20 kg N·hm-2·a-1), medium (50 kg N·hm-2·a-1), and high (100 kg N·hm-2·a-1) nitrogen addition, respectively.
自由度 Degree of freedom | Rs | Rh | Ra | ||||||
---|---|---|---|---|---|---|---|---|---|
F | p | F | p | F | p | ||||
荆条灌丛 Vitex negundo var. heterophylla shrubland | |||||||||
处理 Treatment | 3 | 1.51 | 0.218 | 0.33 | 0.807 | 3.33 | 0.024 | ||
时间 Time1) | 9 | 52.49 | <0.001 | 33.18 | <0.001 | 14.60 | <0.001 | ||
处理×时间 Treatment × Time | 27 | 0.42 | 0.994 | 0.45 | 0.989 | 0.88 | 0.631 | ||
绣线菊灌丛 Spiraea salicifolia shrubland | |||||||||
处理 Treatment | 3 | 1.49 | 0.224 | 4.43 | 0.006 | 0.42 | 0.740 | ||
时间 Time | 9 | 88.65 | <0.001 | 42.90 | <0.001 | 7.25 | <0.001 | ||
处理×时间 Treatment × Time | 27 | 0.39 | 0.996 | 0.49 | 0.980 | 0.32 | 0.999 |
表2 时间和氮添加处理对荆条和绣线菊灌丛土壤总呼吸(Rs)、异养呼吸(Rh)及自养呼吸(Ra)影响的双因子方差分析
Table 2 Two-way ANOVA test results for the effects of time and nitrogen addition treatments on total soil respiration (Rs), heterotrophic respiration (Rh) and autotrophic respiration rate (Ra) in Vitex negundo var. heterophylla and Spiraea salicifolia shrublands
自由度 Degree of freedom | Rs | Rh | Ra | ||||||
---|---|---|---|---|---|---|---|---|---|
F | p | F | p | F | p | ||||
荆条灌丛 Vitex negundo var. heterophylla shrubland | |||||||||
处理 Treatment | 3 | 1.51 | 0.218 | 0.33 | 0.807 | 3.33 | 0.024 | ||
时间 Time1) | 9 | 52.49 | <0.001 | 33.18 | <0.001 | 14.60 | <0.001 | ||
处理×时间 Treatment × Time | 27 | 0.42 | 0.994 | 0.45 | 0.989 | 0.88 | 0.631 | ||
绣线菊灌丛 Spiraea salicifolia shrubland | |||||||||
处理 Treatment | 3 | 1.49 | 0.224 | 4.43 | 0.006 | 0.42 | 0.740 | ||
时间 Time | 9 | 88.65 | <0.001 | 42.90 | <0.001 | 7.25 | <0.001 | ||
处理×时间 Treatment × Time | 27 | 0.39 | 0.996 | 0.49 | 0.980 | 0.32 | 0.999 |
图3 不同氮添加处理的荆条和绣线菊灌丛土壤总呼吸(Rs)与土壤温度的关系。N0、N1、N2、N3分别表示对照(0 kg N·hm-2·a-1)、低氮(20 kg N·hm-2·a-1)、中氮(50 kg N·hm-2·a-1)和高氮(100 kg N·hm-2·a-1)处理。
Fig. 3 Relationship between total soil respiration (Rs) and soil temperature in Vitex negundo var. heterophylla and Spiraea salicifolia shrublands under different nitrogen addition treatments. N0, N1, N2 and N3 denote control (0 kg N·hm-2·a-1), low (20 kg N·hm-2·a-1), medium (50 kg N·hm-2·a-1), and high (100 kg N·hm-2·a-1) nitrogen addition, respectively.
图4 不同处理的荆条和绣线菊灌丛土壤总呼吸(Rs)与土壤含水量的关系。N0、N1、N2、N3分别表示对照(0 kg N·hm-2·a-1)、低氮(20 kg N·hm-2·a-1)、中氮(50 kg N·hm-2·a-1)和高氮(100 kg N·hm-2·a-1)处理。
Fig. 4 Relationship between total soil respiration (Rs) and soil moisture in Vitex negundo var. heterophylla and Spiraea salicifolia shrublands under different nitrogen addition treatments. N0, N1, N2 and N3 denote control (0 kg N·hm-2·a-1), low (20 kg N·hm-2·a-1), medium (50 kg N·hm-2·a-1), and high (100 kg N·hm-2·a-1) nitrogen addition, respectively.
灌丛类型 Shrubland type | 呼吸组分 Respiration component | 处理 Treatment | n | R2 | 参数 Parameter | ||
---|---|---|---|---|---|---|---|
a | K | Q10 | |||||
荆条 Vitex negundo var. heterophylla | 土壤总呼吸 | N0 | 217 | 0.13 | 1.322 | 0.042 | 1.52 |
Total soil respiration | N1 | 227 | 0.08 | 0.878 | 0.046 | 1.58 | |
N2 | 231 | 0.13 | 1.296 | 0.036 | 1.44 | ||
N3 | 234 | 0.12 | 1.109 | 0.044 | 1.55 | ||
异养呼吸 | N0 | 220 | 0.20 | 1.183 | 0.035 | 1.42 | |
Heterotrophic respiration | N1 | 221 | 0.26 | 0.327 | 0.075 | 2.11 | |
N2 | 224 | 0.14 | 1.137 | 0.032 | 1.38 | ||
N3 | 242 | 0.18 | 0.594 | 0.058 | 1.78 | ||
绣线菊 Spiraea salicifolia | 土壤总呼吸 | N0 | 228 | 0.28 | 1.192 | 0.043 | 1.54 |
Total soil respiration | N1 | 218 | 0.16 | 1.445 | 0.036 | 1.43 | |
N2 | 232 | 0.39 | 0.678 | 0.069 | 1.98 | ||
N3 | 216 | 0.15 | 1.609 | 0.037 | 1.44 | ||
异养呼吸 | N0 | 224 | 0.33 | 0.753 | 0.049 | 1.63 | |
Heterotrophic respiration | N1 | 221 | 0.22 | 1.003 | 0.040 | 1.49 | |
N2 | 234 | 0.39 | 0.666 | 0.063 | 1.88 | ||
N3 | 213 | 0.31 | 0.942 | 0.047 | 1.59 |
表3 土壤呼吸(R, μmol CO2·m-2·s-1)和组分与5 cm土壤温度(T, °C))的指数关系模型(R = aeKt)
Table 3 Models (R = aeKt) for the relationship between total and component of soil respiration (R, μmol CO2·m-2·s-1) and soil temperature 5 cm under the surface
灌丛类型 Shrubland type | 呼吸组分 Respiration component | 处理 Treatment | n | R2 | 参数 Parameter | ||
---|---|---|---|---|---|---|---|
a | K | Q10 | |||||
荆条 Vitex negundo var. heterophylla | 土壤总呼吸 | N0 | 217 | 0.13 | 1.322 | 0.042 | 1.52 |
Total soil respiration | N1 | 227 | 0.08 | 0.878 | 0.046 | 1.58 | |
N2 | 231 | 0.13 | 1.296 | 0.036 | 1.44 | ||
N3 | 234 | 0.12 | 1.109 | 0.044 | 1.55 | ||
异养呼吸 | N0 | 220 | 0.20 | 1.183 | 0.035 | 1.42 | |
Heterotrophic respiration | N1 | 221 | 0.26 | 0.327 | 0.075 | 2.11 | |
N2 | 224 | 0.14 | 1.137 | 0.032 | 1.38 | ||
N3 | 242 | 0.18 | 0.594 | 0.058 | 1.78 | ||
绣线菊 Spiraea salicifolia | 土壤总呼吸 | N0 | 228 | 0.28 | 1.192 | 0.043 | 1.54 |
Total soil respiration | N1 | 218 | 0.16 | 1.445 | 0.036 | 1.43 | |
N2 | 232 | 0.39 | 0.678 | 0.069 | 1.98 | ||
N3 | 216 | 0.15 | 1.609 | 0.037 | 1.44 | ||
异养呼吸 | N0 | 224 | 0.33 | 0.753 | 0.049 | 1.63 | |
Heterotrophic respiration | N1 | 221 | 0.22 | 1.003 | 0.040 | 1.49 | |
N2 | 234 | 0.39 | 0.666 | 0.063 | 1.88 | ||
N3 | 213 | 0.31 | 0.942 | 0.047 | 1.59 |
图5 不同氮添加处理的荆条和绣线菊灌丛土壤异养呼吸(Rh)与土壤温度的关系。N0、N1、N2、N3分别表示对照(0 kg N·hm-2·a-1)、低氮(20 kg N·hm-2·a-1)、中氮(50 kg N·hm-2·a-1)和高氮(100 kg N·hm-2·a-1)处理。
Fig. 5 Relationship between soil heterotrophic respiration (Rh) and soil temperature in Vitex negundo var. heterophylla and Spiraea salicifolia shrublands under different nitrogen addition treatments. N0, N1, N2 and N3 denote control (0 kg N·hm-2·a-1), low (20 kg N·hm-2·a-1), medium (50 kg N·hm-2·a-1), and high (100 kg N·hm-2·a-1) nitrogen addition, respectively.
图6 不同氮处理的荆条和绣线菊灌丛土壤异养呼吸(Rh)与土壤含水量的关系。N0、N1、N2、N3分别表示对照(0 kg N·hm-2·a-1)、低氮(20 kg N·hm-2·a-1)、中氮(50 kg N·hm-2·a-1)和高氮(100 kg N·hm-2·a-1)处理。
Fig. 6 Relationship between soil heterotrophic respiration (Rh) and soil moisture in Vitex negundo var. heterophylla and Spiraea salicifolia shrublands under different nitrogen addition treatments. N0, N1, N2 and N3 denote control (0 kg N·hm-2·a-1), low (20 kg N·hm-2·a-1), medium (50 kg N·hm-2·a-1), and high (100 kg N·hm-2·a-1) nitrogen addition, respectively.
图7 氮添加对荆条和绣线菊灌丛异养呼吸(Rh)和土壤总呼吸(Rs)年通量的影响(平均值±标准误差)。相同字母a和b上标表示各处理间无显著差异(p > 0.05)。N0、N1、N2、N3分别表示对照(0 kg N·hm-2·a-1)、低氮(20 kg N·hm-2·a-1)、中氮(50 kg N·hm-2·a-1)和高氮(100 kg N·hm-2·a-1)处理。
Fig. 7 Influence of nitrogen addition on soil heterotrophic (Rh) and total (Rs) respiration in Vitex negundo var. heterophylla and Spiraea salicifolia shrublands (mean ± SE). The same letter a and b indicate no significant (p > 0.05) among treatments. N0, N1, N2 and N3 denote control (0 kg N·hm-2·a-1), low (20 kg N·hm-2·a-1), medium (50 kg N·hm-2·a-1), and high (100 kg N·hm-2·a-1) nitrogen addition, respectively.
图8 氮添加对荆条和绣线菊灌丛异养呼吸组分贡献率(Rh/Rs)的影响(平均值±标准误差)。图中相同字母表示各处理间差异不显著(p > 0.05)。N0、N1、N2、N3分别表示对照(0 kg N·hm-2·a-1)、低氮(20 kg N·hm-2·a-1)、中氮(50 kg N·hm-2·a-1)和高氮(100 kg N·hm-2·a-1)处理。
Fig. 8 Influence of nitrogen addition on contributions of heterotrophic respiration to total soil respiration (Rh/Rs) in Vitex negundo var. heterophylla and Spiraea salicifolia shrublands (mean ± SE). The same letter a and b indicate no significant (p > 0.05) among treatments. N0, N1, N2 and N3 denote control (0 kg N·hm-2·a-1), low (20 kg N·hm-2·a-1), medium (50 kg N·hm-2·a-1), and high (100 kg N·hm-2·a-1) nitrogen addition, respectively.
![]() |
表4 2013年不同处理下土壤总呼吸和异养呼吸的年通量(平均值±标准误差, n = 3)
Table 4 Annual flux of soil total (Rs) and heterotrophic (Rh) respiration (t C·hm-2·a-1) in 2013 under different nitrogen addition treatments (mean ± SE, n = 3)
![]() |
[1] | Allison SD, Czimczik CI, Treseser KK (2008). Microbial activity and soil respiration under nitrogen addition in Alaskan boreal forest.Global Change Biology, 14, 1156-1168. |
[2] | Ammann C, Flechard CR, Leifeld J, Neftel A, Fuhrer J (2007). The carbon budget of newly established temperate grassland depends on management intensity.Agriculture Ecosystems and Environment, 121, 5-20. |
[3] | Bowden RD, Davidon E, Savage K, Arabia C, Steudler P (2004). Chronic nitrogen additions reduce total soil respiration and microbial respiration in temperate forest soils at the Harvard Forest. Forest Ecology and Management, 196, 43-56. |
[4] | Bowden RD, Nadelhoffer KJ, Boone RD, Melillo JM, Garrison JB (1993). Contributions of aboveground litter, below- ground litter, and root respiration to total soil respiration in a temperate mixed hardwood forest.Canadian Journal of Forest Research, 23, 1402-1407. |
[5] | Bronson DR, Gower ST, Tanner M, Linder S, van Herk I (2008). Response of soil surface CO2 flux in a boreal forest to ecosystem warming.Global Change Biology, 14, 856-867. |
[6] | Burton AJ, Pregitzer KS, Zogg GP, Zak DR (1998). Drought reduces root respiration in sugar maple forests.Ecological Applications, 8, 771-778. |
[7] | Chapin III MC (2002). Principles of Terrestrial Ecosystem Ecology. Springer-Verlag, New York. |
[8] | Chen BY, Liu SR, Ge JP, Wang H, Chang JG, Sun TT, Ma JM, Shi G (2007). The relationship between soil respiration and the temperature at different soil depths in subalpine coniferous forest of western Sichuan Province.Chinese Journal of Applied Ecology, 18, 1219-1224. (in Chinese with English abstract)[陈宝玉, 刘世荣, 葛剑平, 王辉, 常建国, 孙甜甜, 马姜明, 施恭 (2007). 川西亚高山针叶林土壤呼吸速率与不同土层温度的关系. 应用生态学报, 18, 1219-1224.] |
[9] | Chen ST, Huang Y, Zou JW, Shen QR, Hu ZH, Qin YM, Chen HS, Pan GX (2010). Modeling interannual variability of global soil respiration from climate and soil properties.Agricultural and Forest Meteorology, 150, 590-605. |
[10] | Cleveland CC, Townsend AR (2006). Nutrient additions to a tropical rain forest drive substantial soil carbon dioxide losses to the atmosphere.Proceedings of the National Academy of Sciences of the United States of America, 103, 10316-10321. |
[11] | Curiel YJ, Janssens IA, Carrara A, Ceulemans R (2004). Annual Ql0 of soil respiration reflects plant phenological patterns as well as temperature sensitivity. Global Change Biology, 10, 161-169. |
[12] | Davidson EA, Janssens IA (2006). Temperature sensitivity of soil carbon decomposition and feedbacks to climate change.Nature, 440, 165-173. |
[13] | Demoling F, Nilsson LO, Baath E (2008). Bacterial and fungal response to nitrogen fertilization in three coniferous forest soils.Soil Biology & Biochemistry, 40, 370-379. |
[14] | Deng Q, Zhou GY, Liu JX, Liu SZ, Duan HL, Chen XM, Zhang DQ (2009). Effects of CO2 enrichment, high nitrogen deposition and high precipitation on a model forest ecosystem in southern China. Chinese of Journal of Plant Ecology, 33, 1023-1033. (in Chinese with English abstract)[邓琦, 周国逸, 刘菊秀, 刘世忠, 段洪浪, 陈小梅, 张德强 (2009). CO2浓度倍增、高氮沉降和高降雨对南亚热带人工模拟森林生态系统土壤呼吸的影响. 植物生态学报, 33, 1023-1033.] |
[15] | Diemer M (1997). Effects of elevated CO2 on gas exchange characteristics of alpine grassland.Acta Oecologica, 18, 177-182. |
[16] | Du EZ (2013). Impacts of Nitrogen Enrichment on Carbon Cycling in an Old-growth Larch (Larix gmelinii Rupr.) Forest. PhD dissertation, Peking University, Beijing. (in Chinese with English abstract)[杜恩在 (2013). 氮添加对兴安落叶松原始林碳收支主要过程的影响. 博士学位论文, 北京大学, 北京.] |
[17] | Du EZ, Zhou Z, Li P, Hu XY, Ma YC, Wang W, Zheng CY, Zhu JX, He JS, Fang JY (2013). NEECF: A project of nutrient enrichment experiments in China’s forests.Journal of Plant Ecology, 6, 428-435. |
[18] | Elberling B, Brandt KK (2003). Uncoupling of microbial CO2 production and release in frozen soil and its implications for field studies of arctic C cycling.Soil Biology & Biochemistry, 35, 263-272. |
[19] | Feng Y, Ma KM, Zhang YX, Qi J, Zhang JY (2007). Species abundance distribution of Quercus liaotungensis forest along altitudinal gradient in Dongling Mountain, Beijing. Acta Ecologica Sinica, 27, 4743-4750. (in Chinese with English abstract)[冯云, 马克明, 张育新, 祁建, 张洁瑜 (2007). 北京东灵山辽东栎(Quercus liaotungensis)林沿海拔梯度的物种多度分布. 生态学报, 27, 4743-4750.] |
[20] | Fisk MC, Fahey TJ (2001). Microbial biomass and nitrogen cycling responses to fertilization and litter removal in young northern hardwood forests.Biogeochemistry, 53, 201-223. |
[21] | Galloway JN, Dentener FJ, Capone DG, Boyer EW, Howarth RW, Seitzinger SP, Asner GP, Clerveland CC, Green PA, Holland EA, Karl DM, Michaels AF, Porter JH, Townsend AR, Vörösmarty CJ (2004). Nitrogen cycles: Past, present, and future.Biogeochemistry, 70, 153-226. |
[22] | Galloway JN, Townsend AR, Erisman JW, Bekunda M, Cai Z, Freney JR, Martinelli LA, Seitzinger SP, Sutton MA (2008). Transformation of the nitrogen cycle: Recent trends, questions, and potential solutions.Science, 20, 889-892. |
[23] | Gorissen A, Tietema A, Joosten NN, Estiarte M, Penuelas J, Sowerby A, Bridget A, Emmett BA, Beier C (2004). Climate change affects carbon allocation to the soil in shrublands.Ecosystems, 7, 650-661. |
[24] | Han Y, Zhang Z, Wang CH, Jiang FH, Xia JY (2012). Effects of mowing and nitrogen addition on soil respiration in three patches in an old field grassland in Inner Mongolia.Journal of Plant Ecology, 5, 219-228. |
[25] | Hibbard KA, Law BE, Reichstein M, Sulzman J (2005). An analysis of soil respiration across northern hemisphere temperate ecosystems.Biogeochemistry, 73, 29-70. |
[26] | Hu HF, Wang ZH, Liu GH, Fu BJ (2006). Vegetation carbon storage of major shrublands in China.Chinese of Journal of Plant Ecology (Chinese Version), 30, 539-544. (in Chinese with English abstract)[胡会峰, 王志恒, 刘国华, 傅伯杰 (2006). 中国主要灌丛植被碳储量. 植物生态学报, 30, 539-544.] |
[27] | Hu SP, Yu XX, Guo YS (2010). Quantification analysis on site conditions of natural Vitex negundo community in Beijing mountainous area. Forest Resources Management, 3, 60-63. (in Chinese with English abstract)[胡淑萍, 余新晓, 郭永盛 (2010). 北京山区天然荆条灌丛立地条件的数量化分析. 林业资源管理, 3, 60-63.] |
[28] | Hu ZH, Li HM, Yang YP, Chen ST, Li CZ, Shen SH (2010). Effects of simulated nitrogen deposition on soil respiration in northern subtropical deciduous broad-leaved forest.Environmental Science, 31, 1726-1732. (in Chinese with English abstract)[胡正华, 李涵茂, 杨燕萍, 陈书涛, 李岑子, 申双和 (2010). 模拟氮沉降对北亚热带落叶阔叶林土壤呼吸的影响. 环境科学, 31, 1726-1732.] |
[29] | Jassal RS, Black TA, Cai T, Kai M, Li Z, Gaumont-Guay D, Nesic Z (2007). Components of ecosystem respiration and an estimate of net primary productivity of an Intermediate-aged Douglas-fir stand.Agricultural and Forest Meteorology, 144, 44-57. |
[30] | Jia SX, Wang ZQ, Mei L, Sun Y, Quan XK, Shi JW, Yu SQ, Sun HL, Gu JC (2007). Effect of nitrogen fertilization on soil respiration in Larix gmelinii and Fraxinus mandshurica plantations in China. Journal of Plant Ecology (Chinese Version), 31, 372-379. (in Chinese with English abstract)[贾淑霞, 王政权, 梅莉, 孙玥, 全先奎, 史建伟, 于水强, 孙海龙, 谷加存 (2007). 施肥对落叶松和水曲柳人工林土壤呼吸的影响. 植物生态学报, 31, 372-379.] |
[31] | Li DJ, Mo JM, Fang YT, Peng SL, Gundersen P (2003). Impact of nitrogen deposition on forest plants.Acta Ecologica Sinica, 3, 1891-1900. (in Chinese with English abstract)[李德军, 莫江明, 方运霆, 彭少麟, Gundersen P (2003). 氮沉降对森林植物的影响. 生态学报, 3, 1891-1900.] |
[32] | Li QL, Xiao HL, Zeng XD, Feng YJ, Mo JM (2013). Effects of simulated nitrogen deposition on soil chemical properties of forests.Ecology and Environment Sciences, 22, 1872-1878. (in Chinese with English abstract)[李秋玲, 肖辉林, 曾晓舵, 冯乙晴, 莫江明 (2013). 模拟氮沉降对森林土壤化学性质的影响. 生态环境学报, 22, 1872-1878.] |
[33] | Li WB, Jin CJ, Jing YL, Wu JB, Yuan FH, Guan DX, Wang AZ (2014). Response of soil respiration to enhanced nitrogen deposition in broadleaved Korean pine forest in Changbai Mountains.Journal of Northeast Forestry University, 12, 89-93. (in Chinese with English abstract)[李伟斌, 金昌杰, 井艳丽, 吴家兵, 袁凤辉, 关德新, 王安志 (2014). 长白山阔叶红松林土壤呼吸对氮沉降增加的响应. 东北林业大学学报, 12, 89-93.] |
[34] | Litton CM, Raich JW, Ryan MG (2007). Carbon allocation in forest ecosystems.Global Change Biology, 13, 2089-2109. |
[35] | Liu CQ (1994). The study on techniques in determining shrub phytomass.Acta Pratacultural Science, 3, 61-65. (in Chinese with English abstract)[刘存琦 (1994). 灌木植物量测定技术的研究. 草业学报, 3, 61-65.] |
[36] | Liu SH, Fang JY (1997). Effect factors of soil respiration and the temperature’s effects on soil respiration in the global scale.Acta Ecologica Sinica, 17, 469-476. (in Chinese with English abstract)[刘绍辉, 方精云 (1997). 土壤呼吸的影响因素及全球尺度下温度的影响. 生态学报, 17, 469-476.] |
[37] | Liu SM, Jiang QC, Li Y (2010). Response of soil respiration to simulated nitrogen deposition under the middle-aged Eucalyptus grandis plantation in Ya’an City. Journal of Sichuan Forestry Science and Technology, 21, 60-64. (in Chinese with English abstract)[刘盛梅, 姜清成, 李芸 (2010). 华西雨屏区巨桉中龄林土壤呼吸对模拟氮沉降的响应. 四川林业科技, 21, 60-64.] |
[38] | Liu XR, Ren JQ, Li SG, Zhang QW (2015). Effects of simul- ated nitrogen deposition on soil net nitrogen mineralization in the meadow steppe of Inner Mongolia, China.PLOS ONE, 10, e0134039. doi: 10.1371/journal.pone. 0134039 |
[39] | Matson PA, Mcdowell WH, Townsend AR, Vitousek PM (1999). The globalization of N deposition: Ecosystem consequences in tropical environments.Biogeochemistry, 46, 67-83. |
[40] | Micks P, Aber JD, Boone RD, Davidson EA (2004). Short term soil respiration and nitrogen immobilization response to nitrogen applications in control and nitrogen enriched temperate forests. Forest Ecology and Management, 196, 57-70. |
[41] | Mo JM, Fang YT, Xu GL, Li DJ, Xue JH (2005). The short- term responses of soil CO2 emission and CH4 uptake to simulated N deposition in nursery and forests of Dinghushan in subtropical China. Acta Ecologica Sinica, 25, 682-690. (in Chinese with English abstract)[莫江明, 方运霆, 徐国良, 李德军, 薛璟花 (2005). 鼎湖山苗圃和主要森林土壤CO2排放和CH4吸收对模拟氮沉降的短期响应. 生态学报, 25, 682-690.] |
[42] | Peng Y, Chen G, Chen GT, Liang Z, Tu LH (2015). Effects of simulated nitrogen deposition on soil respiration in a secondary evergreen broad-leaved forest on Wawushan Mountain.Chinese Journal of Applied and Environmental Biology, 21, 733-739. (in Chinese with English abstract)[彭勇, 陈刚, 陈冠陶, 梁政, 涂利华 (2015). 模拟氮沉降对瓦屋山常绿阔叶次生林土壤呼吸的影响. 应用与环境生物学报, 21, 733-739.] |
[43] | Qi YC, Liu XC, Dong YS, Peng Q, He YT, Sun LG, Jia JQ, Cao CC (2014). Differential responses of short-term soil respiration dynamics to the experimental addition of nitrogen and water in the temperate semi-arid steppe of Inner Mongolia, China. Journal of Environmental Sciences, 26, 834-845. |
[44] | Quan Q, Zhang Z, He NP, Su HX, Wen XF, Sun XM (2015). Short-term effect of nitrogen addition on soil respiration of three temperate forests in Dongling Mountain.Chinese Journal of Ecology, 3, 797-804. (in Chinese with English abstract)[全权, 张震, 何念鹏, 苏宏新, 温学发, 孙晓敏 (2015). 短期氮添加对东灵山三种森林土壤呼吸的影响. 生态学杂志, 3, 797-804.] |
[45] | Rabalais N (2002). Nitrogen in aquatic ecosystems.Ambio, 31, 102-112. |
[46] | Raich JW, Polter CS (1995). Global patterns of carbon dioxide emissions from soils.Global Biogeochemistry Cycles, 9, 23-36. |
[47] | Savage KE, Davidson EA (2001). Interannual variation of soil respiration in two New England forests.Global Biogeochemical Cycles, 15, 337-350. |
[48] | Sitaula BK, Bakken LR, Abrahamsen G (1995). N-fertilization and soil acidification effects on N2O and CO2 emission from temperate pine forest soil.Soil Biology & Biochemistry, 27, 1401-1408. |
[49] | Sotta ED, Meir P, Malhi Y, Nobre AD, Hodnett M, Grace J (2004). Soil CO2 efflux in a tropical forest in the central Amazon.Global Change Biology, 10, 601-617. |
[50] | Stevens CJ, Dise NB, Mountford JO, Gowing DJ (2004). Impact of nitrogen deposition on the species richness of grasslands.Science, 303, 1876-1879. |
[51] | Treseder KK (2004). A meta-analysis of mycorrhizal responses to nitrogen, phosphorus, and atmospheric CO2 in field studies. New Phytologist, 164, 347-355. |
[52] | Tu LH, Dai HZ, Hu TX, Zhang J, Luo SH (2011). Effects of simulated nitrogen deposition on soil respiration in aBambusa pervariabilis × Dendrocala mopsi plantation in rainy area of West China. Chinese Journal of Applied Ecology, 22, 829-836. (in Chinese with English abstract)[涂利华, 戴洪忠, 胡庭兴, 张健, 雒守华 (2011). 模拟氮沉降对华西雨屏区撑绿杂交竹林土壤呼吸的影响. 应用生态学报, 22, 829-836.] |
[53] | Tu LH, Hu TX, Zhang J (2010). Effects of simulated nitrogen deposition on the fine root characteristics and soil respiration in a Pleioblastus amarus plantation in rainy area of West China. Chinese Journal of Applied Ecology, 21, 2472-2478. (in Chinese with English abstract)[涂利华, 胡庭兴, 张健 (2010). 模拟氮沉降对华西雨屏区苦竹林细根特性和土壤呼吸的影响. 应用生态学报, 21, 2472-2478.] |
[54] | Wang XG, Zhu B, Wang YQ, Zheng XH (2007). Soil respiration and its sensitivity to temperature under different land use conditions.Acta Ecologica Sinica, 27, 1960-1968. (in Chinese with English abstract)[王小国, 朱波, 王艳强, 郑循华 (2007). 不同土地利用方式下土壤呼吸及其温度敏感性. 生态学报, 27, 1960-1968.] |
[55] | Wessel WW, Tietema A, Beier C, Emmett BA, Peñuelas J, Nielsen TR (2004). A qualitative ecosystem assessment for different shrublands in western Europe under impact of climate change. Ecosystems, 7, 662-671. |
[56] | Wu D, Zhang R, Gao SH, Fu X, Deng HB, Shao GF, Zhang XD (2015). Effects of simulated nitrogen deposition on the each component of soil respiration in the Populus L. plantations in a riparian zone of the mid-lower Yangtze River. Acta Ecologica Sinica, 35, 717-724. (in Chinese with English abstract)[吴迪, 张蕊, 高升华, 付晓, 邓红兵, 邵国凡, 张旭东 (2015). 模拟氮沉降对长江中下游滩地杨树林土壤呼吸各组分的影响. 生态学报, 35, 717-724.] |
[57] | Xie HH, Yang LL, Bao ZY (2006). Resources of the Spiraeas and their application to landscaping. Scientia Silvae Sinicae, 42(7), 104-112. (in Chinese with English abstract)[谢华辉, 杨莉莉, 包志毅 (2006). 绣线菊属植物资源及其在园林中的应用前景. 林业科学, 42(7), 104-112.] |
[58] | Xu M, Qi Y (2001). Spatial and seasonal variations ofQ10 determined by soil respiration measurements at a Sierra Nevada forest. Global Biogeochemical Cycles, 15, 687-696. |
[59] | Yang QP, Xu M, Liu HS, Wang JS, Liu LX, Chi YG, Zheng YP (2011). Impact factors and uncertainties of the temperature sensitivity of soil respiration. Acta Ecologica Sinica, 31, 2301-2311. (in Chinese with English abstract)[杨庆朋, 徐明, 刘洪升, 王劲松, 刘丽香, 迟永刚, 郑云普 (2011). 土壤呼吸温度敏感性的影响因素和不确定性. 生态学报, 31, 2301-2311.] |
[60] | Yao H, Hu XY, Zhu JL, Zhu JX, Ji CJ, Fang JY (2015). Soil respiration and the 20-year change in three temperate forests in Mt. Dongling, Beijing.Chinese Journal of Plant Ecology, 39, 849-856. (in Chinese with English abstract)[姚辉, 胡雪洋, 朱江玲, 朱剑霄, 吉成均, 方精云 (2015). 北京东灵山3种温带森林土壤呼吸及其20年的变化. 植物生态学报, 39, 849-856.] |
[61] | Zak DR, Pregitzer KS, Curtis PS, Vogel CS, Holmes WE, Lussenhop J (2000). Atmospheric CO2, soil-N availability, and allocation of biomass and nitrogen byPopulus tremuloides. Ecological Applications, 10, 34-46. |
[62] | Zhang DQ, Shi PL, Zhang XZ (2005). Some advance in the main factors controlling soil respiration. Advances in Earth Science, 20, 778-785. (in Chinese with English abstract)[张东秋, 石培礼, 张宪洲 (2005). 土壤呼吸主要影响因素的研究进展. 地球科学进展, 20, 778-785.] |
[63] | Zhang JH (2015). Effects of Nitrogen Addition on Carbon Cycling of Shrublands in Mt. Dongling, Beijing. PhD dissertation, University of Chinese Academy of Sciences, Beijing. (in Chinese with English abstract)[张建华 (2015). 氮添加对北京东灵山灌丛碳循环的影响. 博士学位论文, 中国科学院大学, 北京.] |
[64] | Zhang JR, Gao JR, Cui Q, Yang QL (2013). Point pattern analysis for relationships of Vitex negundo var. heterophylla in three typical stands. Journal of Zhejiang Agriculture and Forestry University, 30, 226-233. (in Chinese with English abstract)[张金瑞, 高甲荣, 崔强, 杨麒麟 (2013). 3种典型立地荆条种群及种间分布的空间点格局. 浙江农林大学学报, 30, 226-233.] |
[65] | Zhang Y, Hong M (2014). Response of soil respiration to experimental warming and nitrogen addition in Inner Mongolia desert steppe.Acta Agrestia Sinica, 22, 1227-1231. (in Chinese with English abstract)[张宇, 红梅 (2014). 内蒙古荒漠草原土壤呼吸对模拟增温和氮素添加的响应. 草地学报, 22, 1227-1231.] |
[66] | Zheng JJ, Fang HJ, Chen SL, Yu GR, Zhang PL, Xiu MJ, Zhang YN (2012). Effects of N addition on soil organic carbon components in an alpine meadow on the eastern Qinghai-Tibetan Plateau.Acta Ecologica Sinica, 32, 5363-5372. (in Chinese with English abstract)[郑娇娇, 方华军, 程淑兰, 于贵瑞, 张裴雷, 徐敏杰, 李英年 (2012). 增氮对青藏高原东缘典型高寒草甸土壤有机碳组成的影响. 生态学报, 32, 5363-5372.] |
[1] | 夏璟钰 张扬建 郑周涛 赵广 赵然 朱艺旋 高洁 沈若楠 李文宇 郑家禾 张雨雪 朱军涛 孙建新. 青藏高原那曲高山嵩草草甸植物物候对增温的异步响应[J]. 植物生态学报, 2023, 47(预发表): 0-0. |
[2] | 杨元合 张典业 魏斌 刘洋 冯雪徽 毛超 徐玮婕 贺美 王璐 郑志虎 王媛媛 陈蕾伊 彭云峰. 草地群落多样性和生态系统碳氮循环对氮输入的非线性响应及其机制[J]. 植物生态学报, 2023, 47(1): 0-0. |
[3] | 冯继广, 张秋芳, 袁霞, 朱彪. 氮磷添加对土壤有机碳的影响: 进展与展望[J]. 植物生态学报, 2022, 46(8): 855-870. |
[4] | 张英, 张常洪, 汪其同, 朱晓敏, 尹华军. 氮沉降下西南山地针叶林根际和非根际土壤微生物养分限制特征差异[J]. 植物生态学报, 2022, 46(4): 473-483. |
[5] | 田磊, 朱毅, 李欣, 韩国栋, 任海燕. 不同降水条件下内蒙古荒漠草原主要植物物候对长期增温和氮添加的响应[J]. 植物生态学报, 2022, 46(3): 290-299. |
[6] | 丛楠, 张扬建, 朱军涛. 北半球中高纬度地区近30年植被春季物候温度 敏感性[J]. 植物生态学报, 2022, 46(2): 125-135. |
[7] | 谢欢, 张秋芳, 曾泉鑫, 周嘉聪, 马亚培, 吴玥, 刘苑苑, 林惠瑛, 尹云锋, 陈岳民. 氮添加对杉木苗期磷转化和分解类真菌的影响[J]. 植物生态学报, 2022, 46(2): 220-231. |
[8] | 吕亚香, 戚智彦, 刘伟, 孙佳美, 潘庆民. 早春和夏季氮磷添加对内蒙古典型草原退化群落碳交换的影响[J]. 植物生态学报, 2021, 45(4): 334-344. |
[9] | 韩广轩, 李隽永, 屈文笛. 氮输入对滨海盐沼湿地碳循环关键过程的影响及机制[J]. 植物生态学报, 2021, 45(4): 321-333. |
[10] | 朱湾湾, 王攀, 许艺馨, 李春环, 余海龙, 黄菊莹. 降水量变化与氮添加下荒漠草原土壤酶活性及其影响因素[J]. 植物生态学报, 2021, 45(3): 309-320. |
[11] | 张宏锦, 王娓. 生态系统多功能性对全球变化的响应: 进展、问题与展望[J]. 植物生态学报, 2021, 45(10): 1112-1126. |
[12] | 赵河聚, 岳艳鹏, 贾晓红, 成龙, 吴波, 李元寿, 周虹, 赵雪彬. 模拟增温对高寒沙区生物土壤结皮-土壤系统呼吸的影响[J]. 植物生态学报, 2020, 44(9): 916-925. |
[13] | 胡宗达, 刘世荣, 罗明霞, 胡璟, 刘兴良, 李亚非, 余昊, 欧定华. 川西亚高山不同演替阶段天然次生林土壤碳氮含量及酶活性特征[J]. 植物生态学报, 2020, 44(9): 973-985. |
[14] | 郑甲佳, 黄松宇, 贾昕, 田赟, 牟钰, 刘鹏, 查天山. 中国森林生态系统土壤呼吸温度敏感性空间变异特征及影响因素[J]. 植物生态学报, 2020, 44(6): 687-698. |
[15] | 冯继广, 朱彪. 氮磷添加对树木生长和森林生产力影响的研究进展[J]. 植物生态学报, 2020, 44(6): 583-597. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19