植物生态学报 ›› 2014, Vol. 38 ›› Issue (3): 238-248.DOI: 10.3724/SP.J.1258.2014.00021
所属专题: 土壤呼吸
李悦1,3, 刘颖慧2,3,*(), 申卫军4, 徐霞3, 田玉强3
收稿日期:
2013-07-01
接受日期:
2014-01-07
出版日期:
2014-07-01
发布日期:
2014-02-27
通讯作者:
刘颖慧
作者简介:
*E-mail: lyh@bnu.edu.cn基金资助:
LI Yue1,3, LIU Ying-Hui2,3,*(), SHEN Wei-Jun4, XU Xia3, TIAN Yu-Qiang3
Received:
2013-07-01
Accepted:
2014-01-07
Online:
2014-07-01
Published:
2014-02-27
Contact:
LIU Ying-Hui
摘要:
土壤异养呼吸在野外自然条件下除受温湿度影响外, 还受其他多种因子的综合影响, 很难利用野外观测数据确定土壤异养呼吸对温湿度变化的响应方程形式, 以及温湿度间是否存在交互作用。该研究在严格控制温湿度的条件下对内蒙古克氏针茅(Stipa krylovii)(西北针茅(Stipa sareptana var. krylovii))草原土样进行室内培养实验, 旨在解决上述问题。该研究的正交实验包括5个温度梯度(9、14、22、30、40 ℃)和5个湿度梯度(土壤持水力(water holding capacity, WHC)分别为20%、40%、60%、80%、100%)。室内培养实验持续71天, 土壤异养呼吸速率测定为2天(后期为1周)一次, 土壤可溶性有机碳和微生物生物量碳含量测定约为18天一次。研究结果显示: 土壤异养呼吸与温度呈显著正相关(p < 0.001)且温度间差异显著(p = 0.001), 呼吸温度敏感性(Q10)与土壤水分含量呈正相关(p < 0.001); 呼吸与土壤水分二项式拟合效果较好, 在80% WHC时呼吸速率最大, 且最适湿度随温度上升而增加。土壤温度和水分的交互作用显著(p < 0.05), 土壤异养呼吸最适响应方程为lnRh = 0.914 + 0.098T + 0.046M + 0.001TM - 0.002T2 - 0.001M2 (Rh为异养呼吸, T为温度, M为湿度), 这说明加和形式的温湿度响应模型可能优于乘积形式。微生物生物量碳与土壤异养呼吸的相关性随培养时间发生变化, 土壤可溶性有机碳与土壤异养呼吸无显著相关(培养第20天除外), 原因可能是培养期间微生物死亡或群落结构改变导致微生物总体代谢活性的变化。
李悦, 刘颖慧, 申卫军, 徐霞, 田玉强. 内蒙古克氏针茅草原土壤异养呼吸对土壤温度和水分变化的响应. 植物生态学报, 2014, 38(3): 238-248. DOI: 10.3724/SP.J.1258.2014.00021
LI Yue, LIU Ying-Hui, SHEN Wei-Jun, XU Xia, TIAN Yu-Qiang. Responses of soil heterotrophic respiration to changes in soil temperature and moisture in a Stipa krylovii grassland in Nei Mongol. Chinese Journal of Plant Ecology, 2014, 38(3): 238-248. DOI: 10.3724/SP.J.1258.2014.00021
编号 Number | 模型 Model | 形式 Form | 参考文献 Reference |
---|---|---|---|
1 | lnRh = y0+ aT + bM + cTM | 加和 Additive | Wang et al., 2003; Webster et al., 2008 |
2 | lnRh = y0+ aT + bM + cTM + dT2 + eM2 | 加和 Additive | Li et al., 2000; Webster et al., 2008 |
3 | Rh = aebTMc | 乘积 Multiple | Yang et al., 2006; Webster et al., 2008 |
4 | Rh=aebT (cM2 + dM) | 乘积 Multiple | Yan et al., 2010 |
表1 土壤异养呼吸(Rh)温湿度响应模型
Table 1 Soil heterotrophic respiration (Rh) models responding to soil temperature and moisture
编号 Number | 模型 Model | 形式 Form | 参考文献 Reference |
---|---|---|---|
1 | lnRh = y0+ aT + bM + cTM | 加和 Additive | Wang et al., 2003; Webster et al., 2008 |
2 | lnRh = y0+ aT + bM + cTM + dT2 + eM2 | 加和 Additive | Li et al., 2000; Webster et al., 2008 |
3 | Rh = aebTMc | 乘积 Multiple | Yang et al., 2006; Webster et al., 2008 |
4 | Rh=aebT (cM2 + dM) | 乘积 Multiple | Yan et al., 2010 |
图2 土样异养呼吸速率随培养时间的动态曲线(n = 20)。左, 不同温度梯度下。右, 不同湿度梯度下; 未标出误差线是为了使数据点更清晰。WHC, 土壤持水力。
Fig. 2 Dynamics of soil heterotrophic respiration during incubation (n = 20) . Left, under different temperatures; right, under different moisture levels. Error bars were not presented for the clearness of the data points. WHC, water holding capacity.
图3 不同温度下土样异养呼吸速率的差异性比较(平均值±标准误差, n = 20)。不同字母表示处理间差异显著(p < 0.05)。
Fig. 3 Soil heterotrophic respiration averaged by temperature (mean ± SE, n = 20). Different letters indicate significant differences among treatments (p < 0.05).
图4 不同土壤湿度条件下温度对土壤异养呼吸速率的影响(平均值±标准误差, n = 4)。WHC, 土壤持水力。
Fig. 4 Effects of temperature on soil heterotrophic respiration under different soil moisture levels (mean ± SE, n = 4). WHC, water holding capacity.
使用9-40 ℃温度梯度 Using 9-40 °C temperature level | 使用9-30 ℃温度梯度 Using 9-30 °C temperature level | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
WHC (%) | 公式 Equation | R2 | p | Q10 | 公式 Equation | R2 | p | Q10 | ||
20 | Rh = 12.041e0.017T | 0.36 | 0.007 | 1.19 | Rh = 9.267e0.033T | 0.59 | 0.001 | 1.39 | ||
40 | Rh = 20.907e0.027T | 0.62 | <0.001 | 1.31 | Rh = 15.181e0.047T | 0.86 | <0.001 | 1.60 | ||
60 | Rh = 12.400e0.049T | 0.70 | <0.001 | 1.63 | Rh = 7.688e0.074T | 0.93 | <0.001 | 2.10 | ||
80 | Rh = 6.757e0.071T | 0.83 | <0.001 | 2.03 | Rh = 4.419e0.103T | 0.87 | <0.001 | 2.80 | ||
100 | Rh = 3.470e0.067T | 0.94 | <0.001 | 1.95 | Rh = 2.917e0.078T | 0.93 | <0.001 | 2.18 |
表2 土壤异养呼吸(Rh)与温度的指数拟合及呼吸温度敏感性(Q10)值(n = 4)
Table 2 Exponential relationship between soil heterotrophic respiration (Rh) and temperature and temperature sensitivity of soil heterotrophic respiration (Q10) values (n = 4)
使用9-40 ℃温度梯度 Using 9-40 °C temperature level | 使用9-30 ℃温度梯度 Using 9-30 °C temperature level | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
WHC (%) | 公式 Equation | R2 | p | Q10 | 公式 Equation | R2 | p | Q10 | ||
20 | Rh = 12.041e0.017T | 0.36 | 0.007 | 1.19 | Rh = 9.267e0.033T | 0.59 | 0.001 | 1.39 | ||
40 | Rh = 20.907e0.027T | 0.62 | <0.001 | 1.31 | Rh = 15.181e0.047T | 0.86 | <0.001 | 1.60 | ||
60 | Rh = 12.400e0.049T | 0.70 | <0.001 | 1.63 | Rh = 7.688e0.074T | 0.93 | <0.001 | 2.10 | ||
80 | Rh = 6.757e0.071T | 0.83 | <0.001 | 2.03 | Rh = 4.419e0.103T | 0.87 | <0.001 | 2.80 | ||
100 | Rh = 3.470e0.067T | 0.94 | <0.001 | 1.95 | Rh = 2.917e0.078T | 0.93 | <0.001 | 2.18 |
图5 不同温度条件下土壤湿度对土壤异养呼吸速率的影响(平均值±标准误差, n = 4)。WHC, 土壤持水力。
Fig. 5 Effects of soil water content on soil heterotrophic respiration in different temperature (mean ± SE, n = 4). WHC, water holding capacity.
温度 Temperature (℃) | 公式 Equation | R2 | p | 呼吸最大值所在湿度 Water level where largest respiration occurred |
---|---|---|---|---|
9 | Rh = -0.004M2 + 0.34M + 11.266 | 0.67 | <0.001 | 40% WHC |
14 | Rh = -0.0082M2 + 0.94M - 2.108 | 0.49 | 0.005 | 40% WHC |
22 | Rh = -0.016M2 + 2.049M - 13.262 | 0.51 | 0.003 | 40% WHC |
30 | Rh = -0.024M2 + 3.217M - 35.986 | 0.62 | <0.001 | 80% WHC |
40 | Rh = -0.016M2 + 2.532M - 30.261 | 0.45 | 0.008 | 80% WHC |
表3 土壤异养呼吸(Rh)与土壤湿度的二项式拟合(n = 4)
Table 3 Quadratic relationship between soil heterotrophic respiration (Rh) and soil moisture (n = 4)
温度 Temperature (℃) | 公式 Equation | R2 | p | 呼吸最大值所在湿度 Water level where largest respiration occurred |
---|---|---|---|---|
9 | Rh = -0.004M2 + 0.34M + 11.266 | 0.67 | <0.001 | 40% WHC |
14 | Rh = -0.0082M2 + 0.94M - 2.108 | 0.49 | 0.005 | 40% WHC |
22 | Rh = -0.016M2 + 2.049M - 13.262 | 0.51 | 0.003 | 40% WHC |
30 | Rh = -0.024M2 + 3.217M - 35.986 | 0.62 | <0.001 | 80% WHC |
40 | Rh = -0.016M2 + 2.532M - 30.261 | 0.45 | 0.008 | 80% WHC |
因变量 Dependent variable | 源 Source | df | F | p |
---|---|---|---|---|
Rh | 校正模型 Corrected model | 24 | 65.642 | <0.001 |
截距 Intercept | 1 | 3 396.826 | <0.001 | |
土壤温度 Soil temperature (T) | 4 | 187.527 | <0.001 | |
土壤湿度 Soil moisture (M) | 4 | 119.112 | <0.001 | |
土壤温度 × 土壤湿度 T × M | 16 | 21.804 | <0.001 | |
误差 Error | 75 |
表4 土壤温度和湿度对土壤异养呼吸(Rh)交互控制的two-way ANOVA分析表(n = 4)
Table 4 Two-way ANOVA for interactive effects of soil temperature and moisture on soil heterotrophic respiration (Rh) (n = 4)
因变量 Dependent variable | 源 Source | df | F | p |
---|---|---|---|---|
Rh | 校正模型 Corrected model | 24 | 65.642 | <0.001 |
截距 Intercept | 1 | 3 396.826 | <0.001 | |
土壤温度 Soil temperature (T) | 4 | 187.527 | <0.001 | |
土壤湿度 Soil moisture (M) | 4 | 119.112 | <0.001 | |
土壤温度 × 土壤湿度 T × M | 16 | 21.804 | <0.001 | |
误差 Error | 75 |
项目 Item | 模型系数 Model coefficient | R2 | p | 赤池信息量准则 Akaike information criterion | |||||
---|---|---|---|---|---|---|---|---|---|
y0 | a | b | c | d | e | ||||
模型1 Model 1 | 3.328 | 0.002 | -0.018 | NA | NA | 0.001 | 0.55 | <0.001 | 40.875 |
p | <0.001 | 0.941 | 0.036 | NA | NA | 0.027 | |||
模型2 Model 2 | 0.914 | 0.098 | 0.046 | -0.002 | -0.001 | 0.001 | 0.91 | <0.001 | 2.660 |
p | 0.022 | 0.001 | <0.001 | <0.001 | <0.001 | <0.001 | |||
模型3 Model 3 | NA | 4.389 | 0.036 | 0.291 | NA | NA | 0.47 | <0.001 | 221.701 |
p | NA | 0.205 | <0.001 | 0.003 | NA | NA |
表5 土壤异养呼吸温湿度响应模型系数及拟合优度指标(n = 4)
Table 5 Coefficients of soil heterotrophic respiration models responding to soil temperature and water content, with good-of-fit indices evaluated for models (n = 4)
项目 Item | 模型系数 Model coefficient | R2 | p | 赤池信息量准则 Akaike information criterion | |||||
---|---|---|---|---|---|---|---|---|---|
y0 | a | b | c | d | e | ||||
模型1 Model 1 | 3.328 | 0.002 | -0.018 | NA | NA | 0.001 | 0.55 | <0.001 | 40.875 |
p | <0.001 | 0.941 | 0.036 | NA | NA | 0.027 | |||
模型2 Model 2 | 0.914 | 0.098 | 0.046 | -0.002 | -0.001 | 0.001 | 0.91 | <0.001 | 2.660 |
p | 0.022 | 0.001 | <0.001 | <0.001 | <0.001 | <0.001 | |||
模型3 Model 3 | NA | 4.389 | 0.036 | 0.291 | NA | NA | 0.47 | <0.001 | 221.701 |
p | NA | 0.205 | <0.001 | 0.003 | NA | NA |
图6 5次取样微生物生物量(MBC)和可溶性有机碳(DOC)含量的动态变化(平均值±标准误差, n = 100)。
Fig. 6 Dynamics of soil microbial biomass (MBC) and dissolved organic carbon (DOC) during five sampling events (mean ± SE, n = 100).
图7 不同温度条件下微生物生物量5次取样含量的动态变化(平均值±标准误差, n = 20)。
Fig. 7 Dynamics of soil microbial biomass (MBC) under different temperatures at five sampling times (mean ± SE, n = 20).
[1] | Birch HF (1958). The effect of soil drying on humus decomposition and nitrogen availability. Plant and Soil, 10, 9-31. |
[2] | Borken W, Xu YJ, Davidson EA, Beese F (2002). Site and temporal variation of soil respiration in European beech, Norway spruce, and Scots pine forests. Global Change Biology, 8, 1205-1216. |
[3] | Chapin FS III, Matson PA, Mooney HA (2002). Principles of Terrestrial Ecosystem Ecology., Springer, New York. |
[4] | Chen QS, Li LH, Han XG, Yan ZD (2003). Effects of water content on soil respiration and the mechanisms. Acta Ecologica Sinica, 23, 972-978. (in Chinese with English abstract) |
[ 陈全胜, 李凌浩, 韩兴国, 阎志丹 (2003). 水分对土壤呼吸的影响及机理. 生态学报, 23, 972-978.] | |
[5] | Chen QS, Li LH, Han XG, Yan ZD, Wang YF, Zhang Y, Xiong XG, Chen SP, Zhang LX, Gao YZ, Tang F, Yang J, Dong YS (2004). Temperature sensitivity of soil respiration in relation to soil moisture in 11 communities of typical temperature steppe in Inner Mongolia. Acta Ecologica Sinica, 24, 831-836. (in Chinese with English abstract) |
[ 陈全胜, 李凌浩, 韩兴国, 阎志丹, 王艳芬, 张焱, 熊小刚, 陈世苹, 张丽霞, 高英志, 唐芳, 杨晶, 董云社 (2004). 典型温带草原群落土壤呼吸温度敏感性与土壤水分的关系. 生态学报, 24, 831-836.] | |
[6] | Chen SQ, Cui XY, Zhou GS, Li LH (1999). Study on the CO2-release rate of soil respiration and litter decomposition in Stipa grandis steppe in Xilin River Basin, Inner Mongolia Acta Botanica Sinica, 41, 645-650. (in Chinese with English abstract) |
[ 陈四清, 崔骁勇, 周广胜, 李凌浩 (1999). 内蒙古锡林河流域大针茅草原土壤呼吸和凋落物分解的CO2排放速率研究. 植物学报, 41, 645-650.] | |
[7] | Cusack DF, Torn MS, McDowell WH, Silver WL (2010). The response of heterotrophic activity and carbon cycling to nitrogen additions and warming in two tropical soils. Global Change Biology, 18, 2555-2572. |
[8] | Dilly O, Munch JC (1998). Ratios between estimates of microbial biomass content and microbial activity in soils. Biology and Fertility of Soils, 27, 374-379. |
[9] | Fan ZP, Wang H, Deng DZ, Sun XK, Gao JG, Zeng DH (2008). Measurement methods of soil heterotrophic respiration and key factors affecting the temperature sensitivity of the soil heterotrophic respiration. Chinese Journal of Ecology, 27, 1221-1226. (in Chinese with English abstract) |
[ 范志平, 王红, 邓东周, 孙学凯, 高俊刚, 曾德慧 (2008). 土壤异养呼吸的测定及其温度敏感性影响因子. 生态学杂志, 27, 1221-1226.] | |
[10] | Gao J, Wang LX, Wang W, Liu HM, Zhou YL (2011). Comparative research on soil respiration of wetland plant: communities under different utilizations in Xilin River Basin. Journal of Inner Mongolia University (Natural Science Edition), 42, 404-411. (in Chinese with English abstract) |
[ 高娟, 王立新, 王炜, 刘华民, 周延林 (2011). 放牧对典型草原区湿地植物群落土壤呼吸的影响. 内蒙古大学学报(自然科学版), 42, 404-411.] | |
[11] | Harper CW, Blair JM, Fay PA, Knapp AK, Carlisle JD (2005). Increased rainfall variability and reduced rainfall amount decreases soil CO2 flux in a grassland ecosystem. Global Change Biology, 11, 322-334. |
[12] | Huang JY, Zhu XG, Yuan ZY, Song SH, Li X, Li LH (2008). Changes in nitrogen resorption traits of six temperate grassland species along a multi-level N addition gradient. Plant and Soil, 306, 149-158. |
[13] | Li LH, Wang QB, Bai YF, Zhou GS, Xing XR (2000). Soil respiration of a Leymus chinensis grassland stand in the Xilin River Basin as affected by over-grazing and climate. Acta Phytoecologica Sinica, 24, 680-686. (in Chinese with English abstract) |
[ 李凌浩, 王其兵, 白永飞, 周广胜, 邢雪荣 (2000). 锡林河流域羊草草原群落土壤呼吸及其影响因子的研究. 植物生态学报, 24, 680-686.] | |
[14] | Li YQ, Xu M, Zou XM (2006). Heterotrophic soil respiration in relation to environmental factors and microbial biomass in two wet tropical forests. Plant and Soil, 281, 193-201. |
[15] | Liu HS, Li LH, Han XG, Huang JH, Sun JX, Wang HY (2006). Respiratory substrate availability plays a crucial role in the response of soil respiration to environmental factors. Applied Soil Ecology, 32, 284-292. |
[16] | Liu WX, Zhang Z, Wan SQ (2009). Predominant role of water in regulating soil and microbial respiration and their responses to climate change in a semiarid grassland. Global Change Biology, 15, 184-195. |
[17] | Liu Y, Han SJ, Hu YL, Dai GH (2005). Effects of soil temperature and humidity on soil respiration rate under Pinus sylvestriformis forest. Chinese Journal of Applied Ecology, 16, 1581-1585. (in Chinese with English abstract) |
[ 刘颖, 韩士杰, 胡艳玲, 戴冠华 (2005). 土壤温度和湿度对长白松林土壤呼吸速率的影响. 应用生态学报, 16, 1581-1585.] | |
[18] | Niu SL, Wu MY, Han Y, Xia JY, Zhang Z, Yang HJ, Wan SQ (2010). Nitrogen effects on net ecosystem carbon exchange in a temperate steppe. Global Change Biology, 16, 144-155. |
[19] | Raich JW, Potter CS, Bhagawati D (2002). Interannual variability in global soil respiration, 1980-94. Global Change Biology, 8, 800-812. |
[20] | Rey A, Petsikos C, Jarvis PG, Grace J (2005). Effect of temperature and moisture on rates of carbon mineralization in a Mediterranean oak forest soil under controlled and field conditions. European Journal of Soil Science, 56, 589-599. |
[21] | Reichstein M, Tenhunen JD, Roupsard O, Ourcival JM, Rambal S, Dore S, Valentini R (2002). Ecosystem respiration in two Mediterranean evergreen Holm Oak forests: drought effects and decomposition dynamics. Functional Ecology, 16, 27-39. |
[22] | Subke JA, Inglima I, Cotrufo MF (2006). Trends and methodological impacts in soil CO2 efflux partitioning: a metaanalytical review. Global Change Biology, 12, 921-943. |
[23] | Suseela V, Conant RT, Wallenstein MD, Dukes JS (2012). Effects of soil moisture on the temperature sensitivity of heterotrophic respiration vary seasonally in an old-field climate change experiment. Global Change Biology, 18, 336-348. |
[24] | Tingey DT, Lee EH, Waschmann R, Johnson MG, Rygiewicz PT (2006). Does soil CO2 efflux acclimatize to elevated temperature and CO2 during long-term treatment of Douglas-fir seedlings? New Phytologist, 170, 107-118. |
[25] | Vargas R, Carbone MS, Reichstein M, Baldocchi DD (2011). Frontiers and challenges in soil respiration research: from measurements to model-data integration. Biogeochemistry, 102, 1-13. |
[26] |
Wan SQ, Hui DF, Wallace L, Luo YQ (2005). Direct and indirect effects of experimental warming on ecosystem carbon processes in a tallgrass prairie. Global Biogeochemical Cycles, 19, doi: 10.1029/2004GB002315.
DOI URL PMID |
[27] | Wang FY, Zhou GS, Jia BR, Wang YH (2003). Effects of heat and water factors on soil respiration of restoring Leymus chinensis steppe in degraded land. Acta Phytoecologica Sinica, 27, 644-649. (in Chinese with English abstract) |
[ 王凤玉, 周广胜, 贾丙瑞, 王玉辉 (2003). 水热因子对退化草原羊草恢复演替群落土壤呼吸的影响. 植物生态学报, 27, 644-649.] | |
[28] | Wang GB, Tang YF, Ruan HH, Shi Z, He R, Wang Y, Lin F, Su GX (2009). Seasonal variation of soil respiration and its main regulating factors in a secondary oak forest and a pine plantation in north-subtropical area in China. Acta Ecologica Sinica, 29, 966-975. (in Chinese with English abstract) |
[ 王国兵, 唐燕飞, 阮宏华, 施政, 何容, 王莹, 蔺菲, 苏广鑫 (2009). 次生栎林与火炬松人工林土壤呼吸的季节变异及其主要影响因子. 生态学报, 29, 966-975.] | |
[29] | Wang M, Ji LZ, Li QR, Liu YQ (2003). Effects of soil temperature and moisture on soil respiration in different forest types in Changbai Mountain. Chinese Journal of Applied Ecology, 14, 1234-1238. (in Chinese with English abstract) |
[ 王淼, 姬兰柱, 李秋荣, 刘延秋 (2003). 土壤温度和水分对长白山不同森林类型土壤呼吸的影响. 应用生态学报, 14, 1234-1238.] | |
[30] | Wang W, Guo JX (2002). Contribution of CO2 emission from soil respiration and from litter decomposition in Leymus chinensis community in Northeast Songnen grassland. Acta Ecologica Sinica, 22, 655-660. (in Chinese with English abstract) |
[ 王娓, 郭继勋 (2002). 东北松嫩平原羊草群落的土壤呼吸与枯枝落叶分解释放CO2贡献量. 生态学报, 22, 655-660.] | |
[31] | Wang W, Guo JX, Zhang BT (2003). Seasonal dynamics of environmental factors and decomposition rate of litter in Leymus chinensis community in Songnen grassland in Northeast China. Acta Pratacultural Science, 12, 47-52. (in Chinese with English abstract) |
[ 王娓, 郭继勋, 张保田 (2003). 东北松嫩草地羊草群落环境因素与凋落物分解季节动态. 草业学报, 12, 47-52.] | |
[32] | Webster KL, Creed IF, Skowronski MD, Kaheil YH (2008). Comparison of the performance of statistical models that predict soil respiration from forests. Soil Biology and Biochemistry, 73, 1157-1167. |
[33] | Xiao CW, Janssens IA, Liu P, Zhou ZY, Sun OJ (2007). Irrigation and enhanced soil carbon input effects on below- ground carbon cycling in semiarid temperate grasslands. New Phytologist, 174, 835-846. |
[34] | Xiao HL, Deng XJ (2001). Effects of soil warming on soil microbial activity. Soil and Environmental Science, 10, 138-142. (in Chinese with English abstract) |
[ 肖辉林, 郑习健 (2001). 土壤变暖对土壤微生物活性的影响. 土壤与环境, 10, 138-142.] | |
[35] | Xu HH, Hou XY, Na RS (2011). Dynamics of soil respiration under different grazing systems in a Stipa breviflora desert steppe. Acta Prataculturae Sinica, 20, 219-226. (in Chinese with English abstract) |
[ 徐海红, 侯向阳, 那日苏 (2011). 不同放牧制度下短花针茅荒漠草原土壤呼吸动态研究. 草业学报, 20, 219-226.] | |
[36] | Yan LM, Chen SP, Huang JH, Lin GH (2010). Differential responses of auto-and heterotrophic soil respiration to water and nitrogen addition in a semiarid temperate steppe. Global Change Biology, 16, 2345-2357. |
[37] | Yang YS, Chen GS, Xie JS, Wang XG, Niu ZP, Han YG, Zhang YL (2006). Soil heterotrophic respiration in native Castanopsis kawakamii forest and monocultural Castanopsis kawakamii plantation in subtropical China. Acta Pedologica Sinica, 43, 53-61. (in Chinese with English abstract) |
[ 杨玉盛, 陈光水, 谢锦升, 王小国, 牛志鹏, 韩永刚, 张有利 (2006). 格氏栲天然林与人工林土壤异养呼吸特性及动态. 土壤学报, 43, 53-61.] | |
[38] | Yuste JC, Baldocchi DD, Gershenson A, Goldstein A, Misson L, Wong S (2007). Microbial soil respiration and its dependency on carbon inputs, soil temperature and moisture. Global Change Biology, 13, 2018-2035. |
[39] | Zhang DQ, Shi PL, He YT (2006). Quantification of soil heterotrophic respiration in the growth period of alpine steppe-meadow on the Tibetan Plateau. Journal of Natural Resources, 21, 458-364. (in Chinese with English abstract) |
[ 张东秋, 石培礼, 何永涛 (2006). 西藏高原草原化小嵩草草甸生长季土壤微生物呼吸测定. 自然资源学报, 21, 458-364.] | |
[40] | Zhou P, Liu GB, Xue S (2009). Review of soil respiration and the impact factors on grassland ecosystem. Progress in Geography, 18, 184-193. (in Chinese with English abstract) |
[ 周萍, 刘国彬, 薛萐 (2009). 草地生态系统土壤呼吸及其影响因素研究进展. 草业学报, 18, 184-193.] | |
[41] | Zhou XH, Sherry RA, An Y, Wallace LL, Luo YQ (2006). Main and interactive effects of warming, clipping, and doubled precipitation on soil CO2 efflux in a grassland ecosystem. Global Biogeochemical Cycles, 20, 1-12. |
[1] | 沈健, 何宗明, 董强, 郜士垒, 林宇. 轻度火烧对滨海沙地人工林土壤呼吸速率和非生物因子的影响[J]. 植物生态学报, 2023, 47(7): 1032-1042. |
[2] | 李一丁, 桑清田, 张灏, 刘龙昌, 潘庆民, 王宇, 刘伟, 袁文平. 内蒙古半干旱地区空气和土壤加湿对幼龄樟子松生长的影响[J]. 植物生态学报, 2022, 46(9): 1077-1085. |
[3] | 李建军, 刘恋, 陈迪马, 许丰伟, 程军回, 白永飞. 底座入土深度和面积对典型草原土壤呼吸测定结果的影响[J]. 植物生态学报, 2019, 43(2): 152-164. |
[4] | 王祥, 朱亚琼, 郑伟, 关正翾, 盛建东. 昭苏山地草甸4种典型土地利用方式下的土壤呼吸特征[J]. 植物生态学报, 2018, 42(3): 382-396. |
[5] | 朱志成, 黄银, 许丰伟, 邢稳, 郑淑霞, 白永飞. 降雨强度和时间频次对内蒙古典型草原土壤氮矿化的影响[J]. 植物生态学报, 2017, 41(9): 938-952. |
[6] | 葛晓改, 周本智, 肖文发, 王小明, 曹永慧, 叶明. 生物质炭添加对毛竹林土壤呼吸动态和温度敏感性的影响[J]. 植物生态学报, 2017, 41(11): 1177-1189. |
[7] | 张蔷, 李家湘, 谢宗强. 氮添加对亚热带山地杜鹃灌丛土壤呼吸的影响[J]. 植物生态学报, 2017, 41(1): 95-104. |
[8] | 姚辉, 胡雪洋, 朱江玲, 朱剑霄, 吉成均, 方精云. 北京东灵山3种温带森林土壤呼吸及其20年的变化[J]. 植物生态学报, 2015, 39(9): 849-856. |
[9] | 王铭, 刘兴土, 张继涛, 李秀军, 王国栋, 鲁新蕊, 李晓宇. 松嫩平原西部草甸草原5种典型植物群落土壤呼吸的时空动态[J]. 植物生态学报, 2014, 38(4): 396-404. |
[10] | 温军, 周华坤, 姚步青, 李以康, 赵新全, 陈哲, 连利叶, 郭凯先. 三江源区不同退化程度高寒草原土壤呼吸特征[J]. 植物生态学报, 2014, 38(2): 209-218. |
[11] | 吴君君, 杨智杰, 刘小飞, 熊德成, 林伟盛, 陈朝琪, 王小红. 米槠和杉木人工林土壤呼吸及其组分分析[J]. 植物生态学报, 2014, 38(1): 45-53. |
[12] | 罗璐, 申国珍, 谢宗强, 周利光. 神农架海拔梯度上4种典型森林的土壤呼吸组分及其对温度的敏感性[J]. 植物生态学报, 2011, 35(7): 722-730. |
[13] | 周文嘉, 石兆勇, 王娓. 中国东部亚热带森林土壤呼吸的时空格局[J]. 植物生态学报, 2011, 35(7): 731-740. |
[14] | 马骏, 唐海萍. 内蒙古农牧交错区不同土地利用方式下土壤呼吸速率及其温度敏感性变化[J]. 植物生态学报, 2011, 35(2): 167-175. |
[15] | 刘琪璟, 张国春, 徐倩倩, 王义东, 王辉民. 长白山高山苔原季节性雪斑土壤呼吸对温度响应的模拟研究[J]. 植物生态学报, 2010, 34(5): 477-487. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19