植物生态学报 ›› 2014, Vol. 38 ›› Issue (2): 209-218.DOI: 10.3724/SP.J.1258.2014.00018
所属专题: 青藏高原植物生态学:植物-土壤-微生物; 土壤呼吸
• 研究论文 • 上一篇
温军1,2,*(), 周华坤2,**(
), 姚步青2, 李以康2, 赵新全2, 陈哲2,3, 连利叶1, 郭凯先1
收稿日期:
2013-01-11
接受日期:
2013-05-24
出版日期:
2014-01-11
发布日期:
2014-02-12
通讯作者:
周华坤
作者简介:
* (E-mail: 729492987@qq.com)基金资助:
WEN Jun1,2,*(), ZHOU Hua-Kun2,**(
), YAO Bu-Qing2, LI Yi-Kang2, ZHAO Xin-Quan2, CHEN Zhe2,3, LIAN Li-Ye1, GUO Kai-Xian1
Received:
2013-01-11
Accepted:
2013-05-24
Online:
2014-01-11
Published:
2014-02-12
Contact:
ZHOU Hua-Kun
摘要:
为了研究高寒草原退化对土壤呼吸的影响, 对三江源区不同退化程度的高寒草原土壤呼吸进行了测定, 分析了土壤呼吸与生物量、土壤温度以及土壤湿度的相关性, 结果表明: 1)不同退化程度的高寒草原土壤呼吸均表现出一定的月动态, 这种月动态在不同退化程度间各有不同。2)高寒草原在退化演替序列上生长季平均土壤呼吸速率呈先增加后降低的变化趋势, 其中在中度退化程度下达到最高值((2.46 ± 0.27) μmol·m-2·s-1), 显著高于未退化((1.92 ± 0.11) μmol·m-2·s-1)和重度退化((1.30 ± 0.16) μmol·m-2·s-1)水平(p < 0.01), 与轻度退化((2.22 ± 0.19) μmol·m-2·s-1)无显著差异(p > 0.05), 重度退化程度下呼吸速率显著低于其他退化水平(p < 0.01)。3)地上生物量和土壤呼吸存在极显著线性正相关关系(p = 0.004), 而地下生物量与土壤呼吸的相关性不很显著(p = 0.056)。4)除重度退化外, 未退化、轻度退化和中度退化高寒草原土壤呼吸与土壤温度显著正相关; 土壤呼吸与土壤湿度的二项式拟合方程在轻度退化程度下达到显著水平(p < 0.05), 而在未退化、中度退化和重度退化程度下均达到极显著水平(p < 0.01)。
温军, 周华坤, 姚步青, 李以康, 赵新全, 陈哲, 连利叶, 郭凯先. 三江源区不同退化程度高寒草原土壤呼吸特征. 植物生态学报, 2014, 38(2): 209-218. DOI: 10.3724/SP.J.1258.2014.00018
WEN Jun, ZHOU Hua-Kun, YAO Bu-Qing, LI Yi-Kang, ZHAO Xin-Quan, CHEN Zhe, LIAN Li-Ye, GUO Kai-Xian. Characteristics of soil respiration in different degraded alpine grassland in the source region of Three-River. Chinese Journal of Plant Ecology, 2014, 38(2): 209-218. DOI: 10.3724/SP.J.1258.2014.00018
退化程度 Degradation degree | 经纬度 Latitude and longitude | 海拔 Altitude (m) | 植被 Vegetation |
---|---|---|---|
未退化 No degradation | 34°52′ N, 98°15 E | 4 217 | 典型紫花针茅草原 Typical Stipa purpuea steppe |
轻度退化 Light degradation | 34°50′ N, 98°19′ E | 4 227 | 紫花针茅草原 Stipa purpurea steppe |
中度退化 Moderate degradation | 34°51′ N, 98°17′ E | 4 225 | 杂类草草原 Forbs steppe |
重度退化 Heavy degradation | 34°50′ N, 98°19′ E | 3 953 | 沙化草原 Desertified grassland |
表1 玛多县不同退化程度高寒草原样地概况
Table 1 Description of sample plots in different degraded alpine grassland in Madoi County
退化程度 Degradation degree | 经纬度 Latitude and longitude | 海拔 Altitude (m) | 植被 Vegetation |
---|---|---|---|
未退化 No degradation | 34°52′ N, 98°15 E | 4 217 | 典型紫花针茅草原 Typical Stipa purpuea steppe |
轻度退化 Light degradation | 34°50′ N, 98°19′ E | 4 227 | 紫花针茅草原 Stipa purpurea steppe |
中度退化 Moderate degradation | 34°51′ N, 98°17′ E | 4 225 | 杂类草草原 Forbs steppe |
重度退化 Heavy degradation | 34°50′ N, 98°19′ E | 3 953 | 沙化草原 Desertified grassland |
退化程度Degradation degree | 物种数Number of species | 香农威纳指数Shannon-Wiener index | Pielou指数Pielou index | 盖度 Coverage (%) | 地上生物量 Aboveground biomass (g·m-2) | 地下生物量 Underground biomass (g·m-2) | 优势种 Dominant species |
---|---|---|---|---|---|---|---|
未退化 No degradation | 5.0±0.11a | 0.77±0.02a | 0.48±0.01b | 70 | 86.10±6.40a | 1440.64±226.78a | 紫花针茅 Stipa purpurea |
轻度退化 Light degradation | 8.8±0.80b | 1.45±0.24b | 0.67±0.09a | 55 | 92.49±11.04a | 992.91±71.26b | 紫花针茅、多裂委陵菜 Potentilla multifida、薹草 Carex tristachya |
中度退化 Moderate degradation | 8.4±0.51b | 1.24±0.05b | 0.59±0.03a | 62 | 118.01±9.71b | 902.28±134.54b | 薹草、披针叶黄华 Thermopsis lanceolata、细叶亚菊 Ajania tenuifolia |
重度退化 Heavy degradation | 4.6±0.87a | 0.96±0.20a | 0.66±0.11a | <15 | 29.56±6.13c | 376.76±67.11c | 细叶亚菊、西伯利亚蓼Polygonum sibiricum |
表2 玛多县不同退化程度高寒草原植物群落特征(平均值±标准误差, n = 5)
Table 2 Characteristics of plant community in different degraded alpine grassland in Madoi County (mean ± SE, n = 5)
退化程度Degradation degree | 物种数Number of species | 香农威纳指数Shannon-Wiener index | Pielou指数Pielou index | 盖度 Coverage (%) | 地上生物量 Aboveground biomass (g·m-2) | 地下生物量 Underground biomass (g·m-2) | 优势种 Dominant species |
---|---|---|---|---|---|---|---|
未退化 No degradation | 5.0±0.11a | 0.77±0.02a | 0.48±0.01b | 70 | 86.10±6.40a | 1440.64±226.78a | 紫花针茅 Stipa purpurea |
轻度退化 Light degradation | 8.8±0.80b | 1.45±0.24b | 0.67±0.09a | 55 | 92.49±11.04a | 992.91±71.26b | 紫花针茅、多裂委陵菜 Potentilla multifida、薹草 Carex tristachya |
中度退化 Moderate degradation | 8.4±0.51b | 1.24±0.05b | 0.59±0.03a | 62 | 118.01±9.71b | 902.28±134.54b | 薹草、披针叶黄华 Thermopsis lanceolata、细叶亚菊 Ajania tenuifolia |
重度退化 Heavy degradation | 4.6±0.87a | 0.96±0.20a | 0.66±0.11a | <15 | 29.56±6.13c | 376.76±67.11c | 细叶亚菊、西伯利亚蓼Polygonum sibiricum |
图1 不同退化程度高寒草原土壤呼吸特征(平均值±标准误差)。不同字母表示差异显著(p < 0.05)。
Fig. 1 Characteristics of soil respiration in different degraded alpine grasslands (mean ± SE). Different letters indicate significant differences at p < 0.05.
图2 不同退化程度高寒草原生长季土壤呼吸(平均值±标准误差)。不同字母表示差异显著(p < 0.05)。
Fig. 2 Soil respiration during the growth season in different degraded alpine grasslands (mean ± SE). Different letters indicate significant differences at p < 0.05.
图3 不同退化程度高寒草原生长季地上、地下生物量特征(平均值±标准误差)。
Fig. 3 Characteristics of above- and under-ground biomass during the growth season in different degraded alpine grasslands (mean ± SE).
图4 玛多县不同退化程度高寒草原土壤呼吸与土壤温度的关系。
Fig. 4 Relationships between soil respiration and soil temperature in different degraded alpine grassland in Madoi County.
退化程度 Degradation degree | 拟合方程 Fitting equation | R2 | p | Q10 |
---|---|---|---|---|
未退化 No degradation | SR = 0.998e0.064T | 0.565 | <0.01 | 1.90 |
轻度退化 Light degradation | SR = 1.3624e0.0477T | 0.636 | <0.01 | 1.61 |
中度退化 Moderate degradation | SR = 1.4236e0.0494T | 0.256 | <0.05 | 1.64 |
重度退化 Heavy degradation | SR = 1.2944e-0.006T | 0.009 | >0.05 | - |
表3 玛多县不同退化程度高寒草原土壤呼吸温度敏感性(Q10)
Table 3 Temperature sensitivity of soil respiration (Q10) in different degraded alpine grassland in Madoi County
退化程度 Degradation degree | 拟合方程 Fitting equation | R2 | p | Q10 |
---|---|---|---|---|
未退化 No degradation | SR = 0.998e0.064T | 0.565 | <0.01 | 1.90 |
轻度退化 Light degradation | SR = 1.3624e0.0477T | 0.636 | <0.01 | 1.61 |
中度退化 Moderate degradation | SR = 1.4236e0.0494T | 0.256 | <0.05 | 1.64 |
重度退化 Heavy degradation | SR = 1.2944e-0.006T | 0.009 | >0.05 | - |
退化程度 Degradation degree | 拟合方程 Fitting equation | R2 | p |
---|---|---|---|
未退化 No degradation | SR = -108.13M2 + 53.678M - 4.2154 | 0.592 | <0.01 |
轻度退化 Light degradation | SR = -59.815M2 + 30.758M - 1.4415 | 0.197 | <0.05 |
中度退化 Moderate degradation | SR = -197.75M2 + 102.53M - 10.212 | 0.700 | <0.01 |
重度退化 Heavy degradation | SR = -47.074M2 + 5.8791M + 1.9995 | 0.658 | <0.01 |
表4 土壤呼吸与土壤湿度的拟合关系
Table 4 Fitting relationships between soil respiration and soil moisture
退化程度 Degradation degree | 拟合方程 Fitting equation | R2 | p |
---|---|---|---|
未退化 No degradation | SR = -108.13M2 + 53.678M - 4.2154 | 0.592 | <0.01 |
轻度退化 Light degradation | SR = -59.815M2 + 30.758M - 1.4415 | 0.197 | <0.05 |
中度退化 Moderate degradation | SR = -197.75M2 + 102.53M - 10.212 | 0.700 | <0.01 |
重度退化 Heavy degradation | SR = -47.074M2 + 5.8791M + 1.9995 | 0.658 | <0.01 |
图5 玛多县不同退化程度高寒草原土壤呼吸与土壤湿度的 关系。
Fig. 5 Relationships between soil respiration and soil moisture in different degraded alpine grassland in Madoi County.
[1] | An Y, Han GD (1999). The difference between the grass and soil in different stage of grassland deterioration. Grassland of China, ( 4), 31-36. (in Chinese with English abstract) |
[ 安渊, 韩国栋 (1999). 不同退化梯度草地植物和土壤的差异. 中国草地, ( 4), 31-36.] | |
[2] | Baumann F, He JS, Schmidt K, Kühn P, Scholten T (2009). Pedogenesis, permafrost, and soil moisture as controlling factors for soil nitrogen and carbon contents across the Tibetan Plateau. Global Change Biology, 15, 3001-3017. |
[3] | Boone RD, Nadelhoffer KJ, Canary JD, Kaye JP (1998). Roots exert a strong influence on the temperature sensitivity of soil respiration. Nature, 396, 570-572. |
[4] | Bortolon ESO, Mielniczuk J, Tornquist CG, Lopes F, Bergamaschi H (2011). Validation of the century model to estimate the impact of agriculture on soil organic carbon in Southern Brazil. Geoderma, 167, 156-166. |
[5] | Cao GM, Li YN, Zhang JX, Zhao XQ (2001). Values of carbon dioxide emission from different land-use patterns of alpine meadow. Environmental Science, 22(6), 14-19. (in Chinese with English abstract) |
[ 曹广民, 李英年, 张金霞, 赵新全 (2001). 高寒草甸不同土地利用格局土壤CO2的释放量. 环境科学, 22(6), 14-19.] | |
[6] | Chen GM (2005). The status of the degraded pasture and its strategies of management in black beach of the headwater region of the Three River. Journal of Sichuan Grassland,( 10), 37-44. (in Chinese with English abstract) |
[ 陈国民 (2005). 三江源地区“黑土滩”退化草地现状及治理对策. 四川草原, ( 10), 37-44.] | |
[7] | Chen QS, Li LH, Han XG, Yan ZD, Wang YF, Zhang Y, Yuan ZY, Tang F (2003). Responses of soil respiration to temperature in eleven communities in Xilingol Grassland, Inner Mongolia. Acta Phytoecologica Sinica, 27, 441-447. (in Chinese with English abstract) |
[ 陈全胜, 李凌浩, 韩兴国, 阎志丹, 王艳芬, 张焱, 袁志友, 唐芳 (2003). 温带草原11个植物群落夏秋土壤呼吸对气温变化的响应. 植物生态学报, 27, 441-447.] | |
[8] | Conant RT, Paustian K, Elliott ET (2001). Grassland management and conversion into grassland: effects on soil carbon. Ecological Applications, 11, 343-355. |
[9] | Cui XY, Chen SQ, Chen ZZ (2000). CO2 release from typical Stipa grandis grassland soil. Chinese Journal of Applied Ecology, 11, 390-394. (in Chinese with English abstract) |
[ 崔骁勇, 陈四清, 陈佐忠 (2000). 大针茅典型草原土壤CO2排放规律的研究. 应用生态学报, 11, 390-394.] | |
[10] | Davidson EA, Belk E, Boone RD (1998). Soil water content and temperature as independent or confounded factors controlling soil respiration in a temperate mixed hardwood forest. Global Change Biology, 4, 217-227. |
[11] | Eswaran H, van Den Berg E, Reich P (1993). Organic carbon in soils of the world. Soil Science Society of America Journal, 57, 192-194. |
[12] | Fang JY, Liu GH, Xu SL (1996). Soil carbon pool in China and its global significance. Journal of Environmental Sciences, 8, 249-254. |
[13] |
Fang JY, Yang YH, Ma WH, Mohammat A, Shen HH (2010). Ecosystem carbon stocks and their changes in China’s grasslands. Science China Life Sciences, 53, 757-765.
DOI URL PMID |
[14] |
Giardina CP, Ryan MG (2000). Evidence that decomposition rates of organic carbon in mineral soil do not vary with temperature. Nature, 404, 858-861.
URL PMID |
[15] |
Jia BR, Zhou GS, Wang FY, Wang YH (2004). A comparative study on soil respiration between grazing and fenced typical Leymus chinensis steppe, Inner Mongolia. Chinese Journal of Applied Ecology, 15, 1611-1615. (in Chinese with English abstract)
URL PMID |
[ 贾丙瑞, 周广胜, 王风玉, 王玉辉 (2004). 放牧与围栏羊草草原生态系统土壤呼吸作用比较. 应用生态学报, 15, 1611-1615.]
PMID |
|
[16] | Johnston CA, Groffman P, Breshears DD, Cardon ZG, Currie W, Emanuel W, Gaudinski J, Jackson RB, Lajtha K, Nadelhoffer K, Nelson D Jr, Post WM, Retallack G, Wielopolski L (2004). Carbon cycling in soil. Frontiers in Ecology and the Environment, 2, 522-528. |
[17] | Jong ED, Shappert HJV (1972). Calculation of soil respiration and activity form CO2 profiles in the soil. Soil Science, 113, 328-333. |
[18] | Kuzyakov Y, Gavrichkova O (2010). Time lag between photosynthesis and carbon dioxide efflux from soil: a review of mechanisms and controls. Global Change Biology, 16, 3386-3406. |
[19] |
Langley JA, Megonigal JP (2010). Ecosystem response to elevated CO2 levels limited by nitrogen-induced plant species shift. Nature, 466, 96-99.
URL PMID |
[20] | Li XY, Dong SK, Zhu L, Wen L (2010). Net carbon dioxide exchange of plant communities on degraded and restored alpine grasslands in headwater area of three rivers in China. Chinese Journal of Ecology, 29, 1944-1949. (in Chinese with English abstract) |
[ 李小艳, 董世魁, 朱磊, 温璐 (2010). 三江源区高寒草地退化与恢复过程中二氧化碳净交换特征. 生态学杂志, 29, 1944-1949.] | |
[21] | Li YM (2010). Changes of organic carbon in soil under different land use patterns in alpine agricultural region of Qinghai. Agricultural Science & Technology, 11, 124-127. (in Chinese with English abstract) |
[ 李月梅 (2010). 青海高寒农区不同土地利用方式下土壤有机碳含量变化研究. 农业科学与技术, 11, 124-127.] | |
[22] | Linn DM, Doran JW (1984). Effect of water-filled pore-space on carbon dioxide and nitrous oxide production in tilled and nontilled soils. Soil Science Society of America Journal, 48, 1267-1272. |
[23] |
Liu T, Zhang YX, Xu ZZ, Zhou GS, Hou YH, Lin L (2012). Effects of short-term warming and increasing precipitation on soil respiration of desert steppe of Inner Mongolia. Chinese Journal of Plant Ecology, 36, 1043-1053. (in Chinese with English abstract)
DOI URL |
[ 刘涛, 张永贤, 许振柱, 周广胜, 侯彦会, 林琳 (2012). 短期增温和增加降水对内蒙古荒漠草原土壤呼吸的影响. 植物生态学报, 36, 1043-1053.] | |
[24] | Luo YQ, Wan SQ, Hui DF, Wallace LL (2001). Acclimatiza-tion of soil respiration to warming in a tall grass prairie. Nature, 413, 622-625. |
[25] | Ma YS, Lang BN, Li QY, Shi JJ, Dong QM (2002). Study on rehabilitating and rebuilding technologies for degenerated alpine meadow in the Changjiang and Yellow River Source Region. Pratacultural Science, 19(9), 1-5. (in Chinese with English abstract) |
[ 马玉寿, 郞百宁, 李青云, 施建军, 董全民 (2002). 江河源区高寒草甸退化草地恢复与重建技术研究. 草业科学, 19(9), 1-5.] | |
[26] | Ma YS, Shang ZH, Shi JJ, Dong QM, Wang YL, Yang SH (2006). Studies on communities diversity and their structure of “black-soil-land” degraded grassland in the headwater of Yellow River. Pratacultural Science, 23(12), 6-11. (in Chinese with English abstract) |
[ 马玉寿, 尚占环, 施建军, 董全民, 王彦龙, 杨时海 (2006). 黄河源区“黑土滩”退化草地群落类型多样性及其群落结构研究. 草业科学, 23(12), 6-11.] | |
[27] | Mäkiranta P, Laiho R, Fritze H, Hytönen J, Laine J, Minkkinen K (2009). Indirect regulation of heterotrophic peat soil respiration by water level via microbial community structure and temperature sensitivity. Soil Biology & Biochemistry, 41, 695-703. |
[28] | Ryan MG, Binkley D, Fownes JH, Giardina CP, Senock RS (2004). An experimental test of the causes of forest growth decline with stand age. Ecological Monographs, 74, 393-414. |
[29] | Shang ZH, Long RJ, Ma YS (2006). Discussion on restoration and rebuilding of “Blackion Soil Patch” degraded meadow in the headwater area of Yangtze and Yellow Rivers. Chinese Journal of Grassland, 28, 69-74. (in Chinese with English abstract) |
[ 尚占环, 龙瑞军, 马玉寿 (2006). 江河源区“黑土滩”退化草地特征、危害及治理思路探讨. 中国草地学报, 28, 69-74.] | |
[30] | Schimel DS, House JI, Hibbard KA, Bousquet P, Ciais P, Peylin P, Braswell BH, Apps MJ, Baker D, Bondeau A, Canadell J, Churkina G, Cramer W, Denning AS, Field CB, Friedlingstein P, Goodale C, Heimann M, Houghton RA, Melillo JM, Moore B, Murdiyarso D, Noble I, Pacala SW, Prentice IC, Raupach MR, Rayner PJ, Scholes RJ, Steffen WL, Wirth C (2001). Recent patterns and mechanisms of carbon exchange by terrestrial ecosystems. Nature, 414, 169-172. |
[31] | Schindlbacher A, Zechmeister-Boltenstern S, Kitzler B, Jandl R (2008). Experimental forest soil warming: response of autotrophic and heterotrophic soil respiration to a short-term 10 ºC temperature rise. Plant and Soil, 303, 323-330. |
[32] | Schlesinger WH, Andrews JA (2000). Soil respiration and the global carbon cycle. Biogeochemistry, 48, 7-20. |
[33] | Striegl RG, Wickland KP (2001). Soil respiration and photosynthetic uptake of carbon dioxide by ground-cover plants in four ages of jack pine forest. Canadian Journal of Forest Research, 31, 1540-1550. |
[34] | Tian YQ, Gao Q, Zhang ZC, Zhang Y, Zhu K (2009). The advances in study on plant photosynthesis and soil respiration of alpine grasslands on the Tibetan Plateau. Ecology and Environmental Sciences, 18, 711-721. (in Chinese with English abstract) |
[ 田玉强, 高琼, 张智才, 张勇, 朱锴 (2009). 青藏高原高寒草地植物光合与土壤呼吸研究进展. 生态环境学报, 18, 711-721.] | |
[35] | Tornquist CG, Mielniczuk J, Cerri CEP (2009). Modeling soil organic carbon dynamics in Oxisols of Ibirubá (Brazil) with the Century model. Soil and Tillage Research, 105, 33-43. |
[36] | Xi JX, Zhai CX, Li Y (2008). A comparative study on soil CO2 flux between a saline desert and a cropped-oasis farmland. Progress in Natural Science, 18, 262-268. (in Chinese) |
[ 谢静霞, 翟翠霞, 李彦 (2008). 盐生荒漠与绿洲农田土壤CO2通量的对比研究. 自然科学进展, 18, 262-268.] | |
[37] | Xu M, Qi Y (2001). Soil surface CO2 efflux and its spatial and temporal variations in a young ponderosa pine plantation in northern California. Global Change Biology, 7, 667-677. |
[38] | Wang GX, Cheng GD, Shen YP (2002). Soil organic carbon pool of grasslands on the Tibetan Plateau and its global implication. Journal of Glaciology and Geocryology, 24, 693-700. (in Chinese with English abstract) |
[ 王根绪, 程国栋, 沈永平 (2002). 青藏高原草地土壤有机碳库及其全球意义. 冰川冻土, 24, 693-700.] | |
[39] |
Wang GX, Qian J, Cheng GD, Lai YM (2002). Soil organic carbon pool of grassland soils on the Qinghai-Tibetan Plateau and its global implication. Science of the Total Environment, 291, 207-217.
URL PMID |
[40] | Wang SP, Wilkes A, Zhang ZC, Chang XF, Lang R, Wang YF, Niu HS (2011). Management and land use change effects on soil carbon in northern China’s grasslands: a synthesis. Agriculture, Ecosystems & Environment, 142, 329-340. |
[41] |
Wu LB, Gu S, Zhao L, Xu SX, Zhou HK, Feng C, Xu WX, Li YN, Zhao XQ, Tang YH (2010). Variation in net CO2 exchange, gross primary production and its affecting factors in the planted pasture ecosystem in Sanjiangyuan Region of the Qinghai-Tibetan Plateau of China. Chinese Journal of Plant Ecology, 34, 770-780. (in Chinese with English abstract)
DOI URL |
[ 吴力博, 古松, 赵亮, 徐世晓, 周华坤, 冯超, 徐维新, 李英年, 赵新全, 唐艳鸿 (2010). 三江源地区人工草地的生态系统CO2净交换、总初级生产力及其影响因子. 植物生态学报, 34, 770-780.] | |
[42] | Zeng YN, Feng ZD (2008). Effect of desertification on soil organic carbon pool of grassland in headwater area of Yellow River. Journal of Desert Research, 28, 208-211. (in Chinese with English abstract) |
[ 曾永年, 冯兆东 (2008). 黄河源区土地沙漠化及其对土壤碳库的影响研究. 中国沙漠, 28, 208-211.] | |
[43] | Zhang XZ, Shi PL, Liu YF, Ouyang H (2004). Experimental study on soil CO2 emission in the alpine grassland ecosystem on Tibetan Plateau. Science China Earth Sciences, 34, 93-199. |
[ 张宪洲, 石培礼, 刘允芬, 欧阳华 (2004). 青藏高原高寒草原生态系统土壤CO2排放及其碳平衡. 中国科学: D 辑, 34, 93-199.] | |
[44] | Zhao XQ, Cao GM, Li YN, Xu SX, Cui XY, Zhou HK (2009). Alpine Meadow Ecosystem and Global Change. Science Press, Beijing. (in Chinese) |
[ 赵新全, 曹广民, 李英年, 徐世晓, 崔骁勇, 周华坤 (2009). 高寒草甸生态系统与全球变化. 科学出版社, 北京.] | |
[45] | Zhao XQ, Ma YS, Wang QJ, Liu W, Zhou L, Zhou HK (2011). The Restoration and Sustainable Management of Degrad- ed Grassland Ecosystem in the Source Region of Three-River. Science Press, Beijing. (in Chinese) |
[ 赵新全, 马玉寿, 王启基, 刘伟, 周立, 周华坤 (2011). 三江源区退化草地生态系统恢复与可持续管理. 科学出版社, 北京.] | |
[46] |
Zhou HK, Zhao XQ, Wen J, Chen Z, Yao BQ, Yang YW, Xu WX, Duan JC (2012). The characteristics of soil and vegetation of degenerated alpine steppe in the Yellow River Source Region. Acta Prataculturae Sinica, 21(5), 1-11. (in Chinese with English abstract)
DOI URL |
[ 周华坤, 赵新全, 温军, 陈哲, 姚步青, 杨元武, 徐维新, 段吉闯 (2012). 黄河源区高寒草原的植被退化与土壤退化特征. 草业学报, 21(5), 1-11.] |
[1] | 王袼, 胡姝娅, 李阳, 陈晓鹏, 李红玉, 董宽虎, 何念鹏, 王常慧. 不同类型草原土壤净氮矿化速率的温度敏感性[J]. 植物生态学报, 2024, 48(4): 523-533. |
[2] | 张敏, 桑英, 宋金凤. 水培富贵竹的根压及其影响因素[J]. 植物生态学报, 2023, 47(7): 1010-1019. |
[3] | 沈健, 何宗明, 董强, 郜士垒, 林宇. 轻度火烧对滨海沙地人工林土壤呼吸速率和非生物因子的影响[J]. 植物生态学报, 2023, 47(7): 1032-1042. |
[4] | 李卫英, 章正仁, 辛雅萱, 王飞, 辛培尧, 高洁. 云南松、思茅松和卡西亚松天然种群间的针叶表型变异[J]. 植物生态学报, 2023, 47(6): 833-846. |
[5] | 夏璟钰, 张扬建, 郑周涛, 赵广, 赵然, 朱艺旋, 高洁, 沈若楠, 李文宇, 郑家禾, 张雨雪, 朱军涛, 孙建新. 青藏高原那曲高山嵩草草甸植物物候对增温的异步响应[J]. 植物生态学报, 2023, 47(2): 183-194. |
[6] | 叶洁泓, 于成龙, 卓少菲, 陈新兰, 杨科明, 文印, 刘慧. 木兰科植物叶片光合系统耐热性与叶片形态及温度生态位的关系[J]. 植物生态学报, 2023, 47(10): 1432-1440. |
[7] | 杨元合, 张典业, 魏斌, 刘洋, 冯雪徽, 毛超, 徐玮婕, 贺美, 王璐, 郑志虎, 王媛媛, 陈蕾伊, 彭云峰. 草地群落多样性和生态系统碳氮循环对氮输入的非线性响应及其机制[J]. 植物生态学报, 2023, 47(1): 1-24. |
[8] | 朱明阳, 林琳, 佘雨龙, 肖城材, 赵通兴, 胡春相, 赵昌佑, 王文礼. 云南轿子山不同海拔急尖长苞冷杉径向生长动态及其低温阈值[J]. 植物生态学报, 2022, 46(9): 1038-1049. |
[9] | 李一丁, 桑清田, 张灏, 刘龙昌, 潘庆民, 王宇, 刘伟, 袁文平. 内蒙古半干旱地区空气和土壤加湿对幼龄樟子松生长的影响[J]. 植物生态学报, 2022, 46(9): 1077-1085. |
[10] | 熊博文, 李桐, 黄樱, 鄢春华, 邱国玉. 不同参考温度取值对三温模型反演植被蒸腾精度的影响[J]. 植物生态学报, 2022, 46(4): 383-393. |
[11] | 吴赞, 彭云峰, 杨贵彪, 李秦鲁, 刘洋, 马黎华, 杨元合, 蒋先军. 青藏高原高寒草地退化对土壤及微生物化学计量特征的影响[J]. 植物生态学报, 2022, 46(4): 461-472. |
[12] | 丛楠, 张扬建, 朱军涛. 北半球中高纬度地区近30年植被春季物候温度敏感性[J]. 植物生态学报, 2022, 46(2): 125-135. |
[13] | 杨萌, 于贵瑞. 中国干旱半干旱区土壤CO2与CH4通量的耦联解耦及其对温度的响应[J]. 植物生态学报, 2022, 46(12): 1497-1507. |
[14] | 汪子微, 万松泽, 蒋洪毛, 胡扬, 马书琴, 陈有超, 鲁旭阳. 青藏高原不同高寒草地类型土壤酶活性及其影响因子[J]. 植物生态学报, 2021, 45(5): 528-538. |
[15] | 马书琴, 汪子微, 陈有超, 鲁旭阳. 藏北高寒草地土壤有机质化学组成对土壤蛋白酶和脲酶活性的影响[J]. 植物生态学报, 2021, 45(5): 516-527. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19