植物生态学报 ›› 2023, Vol. 47 ›› Issue (7): 1010-1019.DOI: 10.17521/cjpe.2022.0113
收稿日期:
2022-04-01
接受日期:
2022-09-28
出版日期:
2023-07-20
发布日期:
2023-07-21
通讯作者:
*桑英(基金资助:
ZHANG Min, SANG Ying(), SONG Jin-Feng
Received:
2022-04-01
Accepted:
2022-09-28
Online:
2023-07-20
Published:
2023-07-21
Contact:
*SANG Ying(Supported by:
摘要:
木质部正压力(根压)在长期被低估之后, 作为一种潜在的重要过程引起了人们的新兴趣, 其可以恢复组织的水分, 保持植物液压系统的功能和相互连接, 并有助于细胞和组织的生长。该研究以株高60-80 cm水培龙舌兰科富贵竹(Dracaena sanderiana)为研究对象, 将压力传感器连接到茎干上端测量其根压, 研究其昼夜节律变化以及温度、矿质元素(氮)、分蘖和去根等对其的影响, 从而揭示根压在木质部水分向上运输中的重要作用。结果表明: (1)富贵竹的正根压全天存在, 实验中测到的最大值为103 kPa, 具有较明显的昼高夜低变化规律; (2)根压随水培温度下降而下降, 水温为0 ℃时, 根压几乎降低为0, 根压的昼夜节律也随之改变; (3)不同浓度的硝酸盐(KNO3)处理均增加根压, 但未改变昼夜节律; (4)具有分蘖的富贵竹茎干根压值比无分蘖的小, 但也为正值; (5)剪掉全部须根后, 根压迅速降为负值, 但下降速率低于降温处理。综上所述, 相较于其株高, 大部分水培富贵竹全天存在的根部正压完全能够提供蒸腾耗水向上运输需要的动力, 可以排除掉蒸腾拉力的影响。同时, 水培富贵竹根压呈现出较稳定的节律变化, 即昼高夜低, 且受温度、氮含量、分蘖和去根等因素影响较为显著。
张敏, 桑英, 宋金凤. 水培富贵竹的根压及其影响因素. 植物生态学报, 2023, 47(7): 1010-1019. DOI: 10.17521/cjpe.2022.0113
ZHANG Min, SANG Ying, SONG Jin-Feng. Root pressure of hydroponic Dracaena sanderiana and its determinants. Chinese Journal of Plant Ecology, 2023, 47(7): 1010-1019. DOI: 10.17521/cjpe.2022.0113
[1] |
Andersen PC, Brodbeck BV (1989). Diurnal and temporal changes in the chemical profile of xylem exudate from Vitis rotundifolia. Physiologia Plantarum, 75, 63-70.
DOI URL |
[2] |
Barrios-Masias FH, Knipfer T, McElrone AJ (2015). Differential responses of grapevine rootstocks to water stress are associated with adjustments in fine root hydraulic physiology and suberization. Journal of Experimental Botany, 66, 6069-6078.
DOI PMID |
[3] | Bonan GB (1992). Soil temperature as an ecological factor in boreal forests//Shugart HH, Leemans R, Bonan GB. System Analysis of the Global Boreal Forest. Cambridge University Press, Cambridge, UK. 126-143. |
[4] |
Cao KF, Yang SJ, Zhang YJ, Brodribb TJ (2012). The maximum height of grasses is determined by roots. Ecology Letters, 15, 666-672.
DOI URL |
[5] |
Chaumont F, Tyerman SD (2014). Aquaporins: highly regulated channels controlling plant water relations. Plant Physiology, 164, 1600-1618.
DOI PMID |
[6] |
Clearwater MJ, Blattmann P, Luo Z, Lowe RG (2007). Control of scion vigour by kiwifruit rootstocks is correlated with spring root pressure phenology. Journal of Experimental Botany, 58, 1741-1751.
PMID |
[7] |
Cobb AR, Choat B, Holbrook NM (2007). Dynamics of freeze- thaw embolism in Smilax rotundifolia (Smilacaceae). American Journal of Botany, 94, 640-649.
DOI URL |
[8] |
Cochard H, Ewers FW, Tyree MT (1994). Water relations of a tropical vine-like bamboo (Rhipidocladum racemiflorum): root pressures, vulnerability to cavitation and seasonal changes in embolism. Journal of Experimental Botany, 45, 1085-1089.
DOI URL |
[9] |
Davis TA (1961). High root-pressures in palms. Nature, 192, 277-278.
DOI |
[10] |
de Swaef T, Hanssens J, Cornelis A, Steppe K (2013). Non- destructive estimation of root pressure using sap flow, stem diameter measurements and mechanistic modelling. Annals of Botany, 111, 271-282.
DOI PMID |
[11] | Ding PH, Xi RT (1991). The laws and composition of walnut xylem bleeding. Journal of Hebei Agricultural University, 14(1), 40-43. |
[丁平海, 郗荣庭 (1991). 核桃伤流液发生规律及成分测定. 河北农业大学学报, 14(1), 40-43.] | |
[12] | Dong ZM (2003). The nature of root pressure. Acta Botanica Boreali-Occidentalia Sinica, 23, 1098-1104. |
[董忠民 (2003). 根压的本质. 西北植物学报, 23, 1098-1104.] | |
[13] |
Dustmamatov AG, Zholkevich VN (2008). Effects of HgCl2 on principal parameters of exudation from maize detached root system. Russian Journal of Plant Physiology, 55, 814-820.
DOI URL |
[14] |
Enns LC, Canny MJ, McCully ME (2000). An investigation of the role of solutes in the xylem sap and in the xylem parenchyma as the source of root pressure. Protoplasma, 211, 183-197.
DOI URL |
[15] |
Ewers FW, Améglio T, Cochard H, Beaujard F, Martignac M, Vandame M, Bodet C, Cruiziat P (2001). Seasonal variation in xylem pressure of walnut trees: root and stem pressures. Tree Physiology, 21, 1123-1132.
DOI PMID |
[16] |
Ewers FW, Cochard H, Tyree MT (1997). A survey of root pressures in vines of a tropical lowland forest. Oecologia, 110, 191-196.
DOI PMID |
[17] |
Fan SH, Blake TJ, Blumwald E (1994). The relative contribution of elastic and osmotic adjustments to turgor maintenance of woody species. Physiologia Plantarum, 90, 408-413.
DOI URL |
[18] |
Fricke W (2015). The significance of water co-transport for sustaining transpirational water flow in plants: a quantitative approach. Journal of Experimental Botany, 66, 731-739.
DOI PMID |
[19] |
Gleason SM, Wiggans DR, Bliss CA, Young JS, Cooper M, Willi KR, Comas LH (2017). Embolized stems recover overnight in Zea mays: the role of soil water, root pressure, and nighttime transpiration. Frontiers in Plant Science, 8, 662. DOI: 10.3389/fpls.2017.00662.
DOI PMID |
[20] |
Grossenbacher KA (1938). Diurnal fluctuation in root pressure. Plant Physiology, 13, 669-676.
DOI PMID |
[21] | Guo JR, Wan XC (2017). Circadian rhythm of root pressure in intact poplar seedlings and the influencing factors. Scientia Silvae Sinicae, 53(10), 22-28. |
[郭建荣, 万贤崇 (2017). 杨树苗木完整植株根压的昼夜节律及其影响因素. 林业科学, 53(10), 22-28.] | |
[22] |
Hachez C, Moshelion M, Zelazny E, Cavez D, Chaumont F (2006). Localization and quantification of plasma membrane aquaporin expression in maize primary root: a clue to understanding their role as cellular plumbers. Plant Molecular Biology, 62, 305-323.
DOI PMID |
[23] | Hales S(1727). Vegetable Staticks: or, an Account of Some Statical Experiments on the Sap in Vegetables. J. Peele, London, UK. |
[24] |
Henzler T, Waterhouse RN, Smyth AJ, Carvajal M, Cooke DT, Schäffner AR, Steudle E, Clarkson DT (1999). Diurnal variations in hydraulic conductivity and root pressure can be correlated with the expression of putative aquaporins in the roots of Lotus japonicus. Planta, 210, 50-60.
PMID |
[25] |
Hölttä T, Dominguez Carrasco MDR, Salmon Y, Aalto J, Vanhatalo A, Bäck J, Lintunen A (2018). Water relations in silver birch during springtime: How is sap pressurised? Plant Biology, 20, 834-847.
DOI PMID |
[26] |
Johansson I (1998). Water transport activity of the plasma membrane aquaporin PM28A is regulated by phosphorylation. Plant Cell, 10, 451-459.
DOI PMID |
[27] | Knipfer T, Eustis A, Brodersen C, Walker AM, McElrone AJ (2015). Grapevine species from varied native habitats exhibit differences in embolism formation/repair associated with leaf gas exchange and root pressure. Plant, Cell & Environment, 38, 1503-1513. |
[28] | Kundt W, Gruber E (2006). The water circuit of the plants—Do plants have hearts? [2022-04-01]. https://arxiv.org/abs/q-bio/0603019. |
[29] | Kusakina J, Gould PD, Hall A (2014). A fast circadian clock at high temperatures is a conserved feature across Arabidopsis accessions and likely to be important for vegetative yield. Plant, Cell & Environment, 37, 327-340. |
[30] | McClure B, Franklintong N (2010). How does water get through roots? Journal of Experimental Botany, 61(7), 3-4. |
[31] |
Miller DM (1985). Studies of root function in Zea mays: III. Xylem sap composition at maximum root pressure provides evidence of active transport into the xylem and a measurement of the reflection coefficient of the root. Plant Physiology, 77, 162-167.
DOI PMID |
[32] |
Parsons LR, Kramer PJ (1974). Diurnal cycling in root resistance to water movement. Physiologia Plantarum, 30, 19-23.
DOI URL |
[33] |
Schenk HJ, Jansen S, Hölttä T (2021). Positive pressure in xylem and its role in hydraulic function. New Phytologist, 230, 27-45.
DOI PMID |
[34] |
Siligan C, Horner A, Akimov S, Pohl P (2017). Mechanism of water and solute cotransport by the sodium glucose cotransporter SGLT1. Biophysical Journal, 112, 549a. DOI: 10.1016/j.bpj.2016.11.2966.
DOI |
[35] | Singh S (2016). Root pressure: getting to the root of pressure//Lüttge U, Cánovas FM, Matyssek R. Progress in Botany 77. Springer International Publishing, Cham, Switzerland. 105-150. |
[36] | Tan HC, Li YY (2007). Advance in tree stem diameter changes and its relationship to water transport and water storage. Journal of Northwest Forestry University, 22(6), 51-55. |
[谭红朝, 李秧秧 (2007). 树干直径变化与其水分传输和贮存关系研究进展. 西北林学院学报, 22(6), 51-55.] | |
[37] |
Tryon PR, Chapin III FS (1983). Temperature control over root growth and root biomass in taiga forest trees. Canadian Journal of Forest Research, 13, 827-833.
DOI URL |
[38] | Vandeleur RK, Sullivan W, Athman A, Jordans C, Gilliham M, Kaiser BN, Tyerman SD (2014). Rapid shoot-to-root signalling regulates root hydraulic conductance via aquaporins. Plant, Cell & Environment, 37, 520-538. |
[39] |
Wan XC, Steudle E, Hartung W (2004). Gating of water channels (aquaporins) in cortical cells of young corn roots by mechanical stimuli (pressure pulses): effects of ABA and of HgCl2. Journal of Experimental Botany, 55, 411-422.
PMID |
[40] | Wang HF (2015). Root Pressure and Influencing Factors of Woody Lianas in Xishuangbanna. Master degree dissertation, Graduate School of Chinese Academy of Sciences, Beijing. |
[王华芳 (2015). 西双版纳热带雨林木质藤本的根压及影响因素. 硕士学位论文, 中国科学院研究生院, 北京.] | |
[41] | Wang HF, Yang SJ, Zhang JL (2015). Root pressure of tropical lianas and their relationships with phylogeny and environments. Plant Diversity and Resources, 37, 751-759. |
[王华芳, 杨石建, 张教林 (2015). 热带木质藤本的根压及其与系统发育和环境的关系. 植物分类与资源学报, 37, 751-759.] | |
[42] |
Wegner LH (2014). Root pressure and beyond: energetically uphill water transport into xylem vessels? Journal of Experimental Botany, 65, 381-393.
DOI PMID |
[43] |
White PR (1938). “Root pressure” an unappreciated force in sap movement. American Journal of Botany, 25, 223-227.
DOI URL |
[44] |
White PR, Schuker E, Kern JR, Fuller FH (1958). “Root pressure” in gymnosperms. Science, 128, 308-309.
PMID |
[45] |
Wilson CC, Kramer PJ (1949). Relation between root respiration and absorption. Plant Physiology, 24, 55-59.
DOI PMID |
[46] |
Yang SJ, Zhang YJ, Goldstein G, Sun M, Ma RY, Cao KF (2015). Determinants of water circulation in a woody bamboo species: afternoon use and night-time recharge of culm water storage. Tree Physiology, 35, 964-974.
DOI URL |
[47] |
Yang SJ, Zhang YJ, Sun M, Goldstein G, Cao KF (2012). Recovery of diurnal depression of leaf hydraulic conductance in a subtropical woody bamboo species: embolism refilling by nocturnal root pressure. Tree Physiology, 32, 414-422.
DOI URL |
[48] |
Yin XH, Sterck F, Hao GY (2018). Divergent hydraulic strategies to cope with freezing in co-occurring temperate tree species with special reference to root and stem pressure generation. New Phytologist, 219, 530-541.
DOI URL |
[49] | Zaitseva RI, Minashina NG, Sudnitsyn I (1998). Influence of capillary-sorptive and osmotic moisture pressure in chernozem on the growth and guttation of barley. Eurasian Soil Science, 31, 1075-1082. |
[50] |
Zarebanadkouki M, Ahmed M, Hedwig C, Benard P, Kostka SJ, Kastner A, Carminati A (2018). Rhizosphere hydrophobicity limits root water uptake after drying and subsequent rewetting. Plant and Soil, 428, 265-277.
DOI |
[51] |
Zeuthen T (2010). Water-transporting proteins. Journal of Membrane Biology, 234, 57-73.
DOI URL |
[52] | Zhai ZH, Wang XZ, Ding MX (2017). Cell Biology. Higher Education Press, Beijing. |
[翟中和, 王喜忠, 丁明孝 (2017). 细胞生物学. 高等教育出版社, 北京.] | |
[53] | Zhang ZY, Guo W, Yang SJ (2022). Recent advances in research on root pressure of plants. Guihaia, 42, 714-724. |
[张周颖, 郭雯, 杨石建 (2022). 植物根压研究进展. 广西植物, 42, 714-727.] | |
[54] | Zholkevich V (1981). On the nature of root pressure//Brouwer R, Gašparíková O, Kolek J, Loughman BC. Structure and Function of Plant Roots. Developments in Plant and Soil Science. Springer, Dordrecht, the Netherlands. |
[55] | Zimmermann U, Haase A, Meinzer DL (1993). Mechanisms of long-distance water transport in plants: a re-examination of some paradigms in the light of new evidence. Philosophical Transactions of the Royal Society of London Series B: Biological Sciences, 341, 19-31. |
[1] | 王袼, 胡姝娅, 李阳, 陈晓鹏, 李红玉, 董宽虎, 何念鹏, 王常慧. 不同类型草原土壤净氮矿化速率的温度敏感性[J]. 植物生态学报, 2024, 48(4): 523-533. |
[2] | 沈健, 何宗明, 董强, 郜士垒, 林宇. 轻度火烧对滨海沙地人工林土壤呼吸速率和非生物因子的影响[J]. 植物生态学报, 2023, 47(7): 1032-1042. |
[3] | 李卫英, 章正仁, 辛雅萱, 王飞, 辛培尧, 高洁. 云南松、思茅松和卡西亚松天然种群间的针叶表型变异[J]. 植物生态学报, 2023, 47(6): 833-846. |
[4] | 夏璟钰, 张扬建, 郑周涛, 赵广, 赵然, 朱艺旋, 高洁, 沈若楠, 李文宇, 郑家禾, 张雨雪, 朱军涛, 孙建新. 青藏高原那曲高山嵩草草甸植物物候对增温的异步响应[J]. 植物生态学报, 2023, 47(2): 183-194. |
[5] | 叶洁泓, 于成龙, 卓少菲, 陈新兰, 杨科明, 文印, 刘慧. 木兰科植物叶片光合系统耐热性与叶片形态及温度生态位的关系[J]. 植物生态学报, 2023, 47(10): 1432-1440. |
[6] | 朱明阳, 林琳, 佘雨龙, 肖城材, 赵通兴, 胡春相, 赵昌佑, 王文礼. 云南轿子山不同海拔急尖长苞冷杉径向生长动态及其低温阈值[J]. 植物生态学报, 2022, 46(9): 1038-1049. |
[7] | 熊博文, 李桐, 黄樱, 鄢春华, 邱国玉. 不同参考温度取值对三温模型反演植被蒸腾精度的影响[J]. 植物生态学报, 2022, 46(4): 383-393. |
[8] | 丛楠, 张扬建, 朱军涛. 北半球中高纬度地区近30年植被春季物候温度敏感性[J]. 植物生态学报, 2022, 46(2): 125-135. |
[9] | 杨萌, 于贵瑞. 中国干旱半干旱区土壤CO2与CH4通量的耦联解耦及其对温度的响应[J]. 植物生态学报, 2022, 46(12): 1497-1507. |
[10] | 张小燕, WEE Kim Shan Alison, KAJITA Tadashi, 曹坤芳. 种源地对两种红树叶片结构和功能的影响: 对温度的适应性遗传[J]. 植物生态学报, 2021, 45(11): 1241-1250. |
[11] | 张宏锦, 王娓. 生态系统多功能性对全球变化的响应: 进展、问题与展望[J]. 植物生态学报, 2021, 45(10): 1112-1126. |
[12] | 赵河聚, 岳艳鹏, 贾晓红, 成龙, 吴波, 李元寿, 周虹, 赵雪彬. 模拟增温对高寒沙区生物土壤结皮-土壤系统呼吸的影响[J]. 植物生态学报, 2020, 44(9): 916-925. |
[13] | 郑甲佳, 黄松宇, 贾昕, 田赟, 牟钰, 刘鹏, 查天山. 中国森林生态系统土壤呼吸温度敏感性空间变异特征及影响因素[J]. 植物生态学报, 2020, 44(6): 687-698. |
[14] | 李建军, 刘恋, 陈迪马, 许丰伟, 程军回, 白永飞. 底座入土深度和面积对典型草原土壤呼吸测定结果的影响[J]. 植物生态学报, 2019, 43(2): 152-164. |
[15] | 王景旭, 黄华国, 林起楠, 王冰, 黄侃. 红外热成像监测云南松切梢小蠹虫害: 针叶尺度 观测[J]. 植物生态学报, 2019, 43(11): 959-968. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19