植物生态学报 ›› 2021, Vol. 45 ›› Issue (11): 1241-1250.DOI: 10.17521/cjpe.2021.0221
所属专题: 红树林及红树植物
张小燕1,2, WEE Kim Shan Alison1, KAJITA Tadashi3, 曹坤芳1,2,*()
收稿日期:
2021-06-09
接受日期:
2021-08-31
出版日期:
2021-11-20
发布日期:
2021-09-29
通讯作者:
曹坤芳
作者简介:
* (Kunfangcao@gxu.edu.cn)基金资助:
ZHANG Xiao-Yan1,2, WEE Kim Shan Alison1, KAJITA Tadashi3, CAO Kun-Fang1,2,*()
Received:
2021-06-09
Accepted:
2021-08-31
Online:
2021-11-20
Published:
2021-09-29
Contact:
CAO Kun-Fang
Supported by:
摘要:
植物叶片具有根据不同环境状况调整表型特征的能力, 叶片性状对环境的适应能力直接影响植物在气候变化背景下的生存、分布和迁移。受全球气候变暖的影响, 红树林正向高纬度地区扩张, 然而关于红树植物叶片性状对不同生长地点温度变异的适应性遗传仍缺乏了解。该研究采用同质园法以来自6个不同纬度种群的木榄(Bruguiera gymnorhiza)和5个不同纬度种群的秋茄树(Kandelia obovata)幼苗为研究对象, 测定了其叶片解剖结构和生理功能参数, 分析红树幼苗叶片的解剖结构特征与生理功能之间的关系及对种源地温度的适应性遗传。结果发现: 木榄幼苗的叶片厚度、栅栏组织和表皮厚度与种源地年平均气温均呈显著负相关关系, 角质层厚度随年平均气温的升高呈下降的趋势; 与木榄幼苗相比, 秋茄树幼苗叶片具有较厚的表皮和角质层, 较小的气孔密度和叶脉密度, 叶片解剖结构未与种源地年平均气温表现出相关性。两种红树不同种源地幼苗的数据合在一起, 叶片栅栏组织和海绵组织厚度均与光合速率呈正相关关系, 与海绵组织厚度的相关性更强, 说明叶肉组织厚度变化对红树光合作用有影响; 叶脉密度与气孔密度、最大气孔导度也均呈显著正相关关系, 说明两种红树在遗传适应上能够维持叶片水平的水分供需平衡。综上所述, 两种红树叶片解剖结构存在差异, 对种源地温度的适应性遗传有显著区别, 木榄对长期生长环境形成适应性遗传; 秋茄树通过建成性的叶片结构特征遗传适应种源地温度; 叶片结构的差异引起了红树光合作用、最大气孔导度等生理功能发生相应的变化, 从而有利于红树在气候变化的背景下得以生存和繁衍。
张小燕, WEE Kim Shan Alison, KAJITA Tadashi, 曹坤芳. 种源地对两种红树叶片结构和功能的影响: 对温度的适应性遗传. 植物生态学报, 2021, 45(11): 1241-1250. DOI: 10.17521/cjpe.2021.0221
ZHANG Xiao-Yan, WEE Kim Shan Alison, KAJITA Tadashi, CAO Kun-Fang. Effects of provenance on leaf structure and function of two mangrove species: the genetic adaptation to temperature. Chinese Journal of Plant Ecology, 2021, 45(11): 1241-1250. DOI: 10.17521/cjpe.2021.0221
树种 Species | 种源地 Provenance | 地理坐标 Geographical coordinates | 年平均气温 Mean annual temperature (℃) |
---|---|---|---|
木榄 Bruguiera gymnorhiza | 中国文昌 Wenchang, China | 19.62° N, 110.84° E | 24.4 |
中国北海 Beihai, China | 21.50° N, 109.76° E | 23.2 | |
中国福田 Futian, China | 22.52° N, 114.01° E | 22.6 | |
中国云霄 Yunxiao, China | 23.86° N, 117.51° E | 21.0 | |
日本西田川 Nishida, Japan | 24.41° N, 123.78° E | 23.0 | |
日本冲绳 Okinawa, Japan | 26.66° N, 128.01° E | 21.9 | |
秋茄树 Kandelia obovata | 中国山口 Shankou, China | 21.42° N, 109.21° E | 23.2 |
中国云霄 Yunxiao, China | 23.92° N, 117.42° E | 20.7 | |
日本西田川 Nishida, Japan | 24.39° N, 123.82° E | 23.0 | |
日本冲绳 Okinawa, Japan | 26.46° N, 127.94° E | 22.3 | |
中国福鼎 Fuding, China | 27.28° N, 120.30° E | 18.4 |
表1 本研究选用的两种红树植物种源的地理位置及其年平均气温
Table 1 Geographical location and mean annual temperature of the selected provenances of two mangrove species in this study
树种 Species | 种源地 Provenance | 地理坐标 Geographical coordinates | 年平均气温 Mean annual temperature (℃) |
---|---|---|---|
木榄 Bruguiera gymnorhiza | 中国文昌 Wenchang, China | 19.62° N, 110.84° E | 24.4 |
中国北海 Beihai, China | 21.50° N, 109.76° E | 23.2 | |
中国福田 Futian, China | 22.52° N, 114.01° E | 22.6 | |
中国云霄 Yunxiao, China | 23.86° N, 117.51° E | 21.0 | |
日本西田川 Nishida, Japan | 24.41° N, 123.78° E | 23.0 | |
日本冲绳 Okinawa, Japan | 26.66° N, 128.01° E | 21.9 | |
秋茄树 Kandelia obovata | 中国山口 Shankou, China | 21.42° N, 109.21° E | 23.2 |
中国云霄 Yunxiao, China | 23.92° N, 117.42° E | 20.7 | |
日本西田川 Nishida, Japan | 24.39° N, 123.82° E | 23.0 | |
日本冲绳 Okinawa, Japan | 26.46° N, 127.94° E | 22.3 | |
中国福鼎 Fuding, China | 27.28° N, 120.30° E | 18.4 |
图1 不同种源木榄(A)、秋茄树(B)叶片结构特征参数柱形图。
Fig. 1 Comparison of leaf structural composition of Bruguiera gymnorhiza (A) and Kandelia obovata (B) from different provenances.
图2 不同种源地木榄和秋茄树幼苗叶片解剖结构性状与种源地年平均气温的相关性。其中R1、p1代表木榄幼苗, R2、p2代表秋茄树幼苗。
Fig. 2 Correlation between leaf anatomical structure of Bruguiera gymnorhiza and Kandelia obovata seedlings from different provenances and mean annual temperature of native habitats. R1, p1 represents the seedlings of Bruguiera gymnorhiza; R2, p2 represents the seedlings of Kandelia obovata.
图3 不同种源地木榄和秋茄树幼苗叶脉密度与气孔密度(A)、最大气孔导度(B)和栅栏组织厚度(C)之间的相关关系(平均值±标准误)。
Fig. 3 Correlation between leaf vein density and stomatal density (A), maximum stomatal conductance (B) and palisade tissue thickness (C) of seedlings of Bruguiera gymnorhiza and Kandelia obovata from different provenances (mean ± SE).
图4 不同种源地木榄和秋茄树幼苗光合速率与海绵组织厚度(A)、栅栏组织厚度(B)、叶脉密度(C)和叶片厚度(D)之间的相关关系(平均值±标准误)。
Fig. 4 Correlation between photosynthetic rate and spongy tissue thickness (A), palisade tissue thickness (B), vein density (C) and leaf thickness (D) of seedlings of Bruguiera gymnorhiza and Kandelia obovata from different provenances (mean ± SE).
图5 不同种源地木榄和秋茄树幼苗8个叶片解剖结构性状(A)和11种源地(B)的主成分分析图。CT, 角质层厚度; LT, 叶片厚度; Pn, 光合速率; PT, 栅栏组织厚度; RPS, 栅栏组织厚度/海绵组织厚度; SD, 气孔密度; ST, 海绵组织厚度; VD, 叶脉密度。
Fig. 5 Principal component analysis of 8 leaf anatomical structure characters (A) and 11 provenances (B) of Bruguiera gymnorhiza and Kandelia obovata seedlings from different provenances. CT, cuticle thickness; LT, leaf thickness; Pn, photosynthetic rate; PT, palisade tissue thickness; RPS, palisade tissue thickness/spongy tissue thickness; SD, stomatal density; ST, sponge tissue thickness; VD, vein density.
[1] |
Alberto FJ, Aitken SN, Alía R, González-Martínez SC, Hänninen H, Kremer A, Lefèvre F, Lenormand T, Yeaman S, Whetten R, Savolainen O (2013). Potential for evolutionary responses to climate change—Evidence from tree populations. Global Change Biology, 19, 1645-1661.
DOI URL |
[2] |
Brodersen CR, Vogelmann TC (2007). Do epidermal lens cells facilitate the absorptance of diffuse light? American Journal of Botany, 94, 1061-1066.
DOI PMID |
[3] |
Brodribb TJ, Jordan GJ (2011). Water supply and demand remain balanced during leaf acclimation of Nothofagus cunninghamii trees. New Phytologist, 192, 437-448.
DOI PMID |
[4] |
Burrows MT, Schoeman DS, Richardson AJ, Molinos JG, Hoffmann A, Buckley LB, Moore PJ, Brown CJ, Bruno JF, Duarte CM, Halpern BS, Hoegh-Guldberg O, Kappel CV, Kiessling W, O’Connor MI, et al. (2014). Geographical limits to species-range shifts are suggested by climate velocity. Nature, 507, 492-495.
DOI URL |
[5] | Caringella MA, Bongers FJ, Sack L (2015). Leaf hydraulic conductance varies with vein anatomy across Arabidopsis thaliana wild-type and leaf vein mutants. Plant, Cell & Environment, 38, 2735-2746. |
[6] |
Chen BY, Wang CH, Tian YK, Chu QG, Hu CH (2015). Anatomical characteristics of young stems and mature leaves of dwarf pear. Scientia Horticulturae, 186, 172-179.
DOI URL |
[7] | Chen Y, Liu KD, Li HL, Xu FH, Zhong JD, Cheng XL, Yuan CC (2014). Leaf structures and stress resistance in five mangrove species. Journal of Northeast Forestry University, 42(7), 27-31. |
[ 陈燕, 刘锴栋, 黎海利, 许方宏, 钟军弟, 成夏岚, 袁长春 (2014). 5种红树植物的叶片结构及其抗逆性比较. 东北林业大学学报, 42(7), 27-31.] | |
[8] |
Corlett RT, Westcott DA (2013). Will plant movements keep up with climate change? Trends in Ecology & Evolution, 28, 482-488.
DOI URL |
[9] | DeLucia EH, Nelson K, Vogelmann TC, Smith WK (1996). Contribution of intercellular reflectance to photosynthesis in shade leaves. Plant, Cell & Environment, 19, 159-170. |
[10] |
Domínguez E, Cuartero J, Heredia A (2011). An overview on plant cuticle biomechanics. Plant Science, 181, 77-84.
DOI PMID |
[11] |
Drake JE, Aspinwall MJ, Pfautsch S, Rymer PD, Reich PB, Smith RA, Crous KY, Tissue DT, Ghannoum O, Tjoelker MG (2015). The capacity to cope with climate warming declines from temperate to tropical latitudes in two widely distributed Eucalyptus species. Global Change Biology, 21, 459-472.
DOI PMID |
[12] | Ellison JC, Stoddart DR (1991). Mangrove ecosystem collapse during predicted sea-level rise: holocene analogues and implications. Journal of Coastal Research, 7, 151-165. |
[13] |
González-Orozco CE, Pollock LJ, Thornhill AH, Mishler BD, Knerr N, Laffan SW, Miller JT, Rosauer DF, Faith DP, Nipperess DA, Kujala H, Linke S, Butt N, Külheim C, Crisp MD, Gruber B (2016). Phylogenetic approaches reveal biodiversity threats under climate change. Nature Climate Change, 6, 1110-1114.
DOI |
[14] | Gorsuch PA, Pandey S, Atkin OK (2010). Temporal heterogeneity of cold acclimation phenotypes in Arabidopsis leaves. Plant, Cell & Environment, 33, 244-258. |
[15] | Han XB, Li RQ, Wang JB (1997). Cellular structural comparison between different thermo-resistant cultivars of Raphanus sativus L. under heat stress. Journal of Wuhan Botanical Research, 15, 173-178. |
[ 韩笑冰, 利容千, 王建波 (1997). 热胁迫下萝卜不同耐热性品种细胞组织结构比较. 武汉植物学研究, 15, 173-178.] | |
[16] |
Hanba YT, Miyazawa SI, Terashima I (1999). The influence of leaf thickness on the CO2 transfer conductance and leaf stable carbon isotope ratio for some evergreen tree species in Japanese warm-temperate forests. Functional Ecology, 13, 632-639.
DOI URL |
[17] |
Ji RX, Yu X, Chang Y, Shen C, Bai XK, Xia XL, Yin WL, Liu C (2020). Geographical provenance variation of leaf anatomical structure of Caryopteris mongholica and its significance in response to environmental changes. Chinese Journal of Plant Ecology, 44, 277-286.
DOI URL |
[ 纪若璇, 于笑, 常远, 沈超, 白雪卡, 夏新莉, 尹伟伦, 刘超 (2020). 蒙古莸叶片解剖结构的地理种源变异及其对环境变化响应的意义. 植物生态学报, 44, 277-286.] | |
[18] |
Ji ZJ, Quan XK, Wang CK (2013). Variations in leaf anatomy of Larix gmelinii reflect adaptation of its photosynthetic capacity to climate changes. Acta Ecologica Sinica, 33, 6967-6974.
DOI URL |
[ 季子敬, 全先奎, 王传宽 (2013). 兴安落叶松针叶解剖结构变化及其光合能力对气候变化的适应性. 生态学报, 33, 6967-6974.] | |
[19] |
Kröber W, Heklau H, Bruelheide H (2015). Leaf morphology of 40 evergreen and deciduous broadleaved subtropical tree species and relationships to functional ecophysiological traits. Plant Biology, 17, 373-383.
DOI PMID |
[20] | Li YY, Lin P (2006). Anatomical characteristics of leaves in three mangrove species. Journal of Tropical and Subtropical Botany, 14, 301-306. |
[ 李元跃, 林鹏 (2006). 三种红树植物叶片的比较解剖学研究. 热带亚热带植物学报, 14, 301-306.] | |
[21] | Liao BW, Zhang QM (2014). Area, distribution and species composition of mangroves in China. Wetland Science, 12, 435-440. |
[ 廖宝文, 张乔民 (2014). 中国红树林的分布、面积和树种组成. 湿地科学, 12, 435-440.] | |
[22] | Ma XF, Wang XF, Li Q, He X (2013). The analysis of drought resistance and the comparison of anatomical structures of the leave of Xanthoceras sorbifolia Bunge introduced from different regions. Journal of Arid Land Resources and Environment, 27, 92-96. |
[ 马小芬, 王兴芳, 李强, 贺晓 (2013). 不同种源地文冠果叶片解剖结构比较及抗旱性分析. 干旱区资源与环境, 27, 92-96.] | |
[23] |
McCann S, Greenlees MJ, Newell D, Shine R (2014). Rapid acclimation to cold allows the cane toad to invade montane areas within its Australian range. Functional Ecology, 28, 1166-1174.
DOI URL |
[24] |
Méndez-Alonzo R, López-Portillo J, Rivera-Monroy VH (2008). Latitudinal variation in leaf and tree traits of the mangrove Avicennia germinans (Avicenniaceae) in the central region of the Gulf of Mexico. Biotropica, 40, 449-456.
DOI URL |
[25] | Miao C, Li RQ, Wang JB (1994). Leaf structural changes of Brassica campestris and B. oleracea in response to heat stress. Journal of Wuhan Botanical Research, 12, 207-211. |
[ 苗琛, 利容千, 王建波 (1994). 热胁迫下不结球白菜和甘蓝叶片组织结构的变化. 武汉植物学研究, 12, 207-211.] | |
[26] | Oguchi R, Hikosaka K, Hirose T (2005). Leaf anatomy as a constraint for photosynthetic acclimation: differential responses in leaf anatomy to increasing growth irradiance among three deciduous trees. Plant, Cell & Environment, 28, 916-927. |
[27] |
Parkhurst DF (1994). Diffusion of CO2 and other gases inside leaves. New Phytologist, 126, 449-479.
DOI PMID |
[28] | Poulson ME, Vogelmann TC (1990). Epidermal focussing and effects upon photosynthetic light-harvesting in leaves of Oxalis. Plant, Cell & Environment, 13, 803-811. |
[29] |
Rueden CT, Hiner MC, Eliceiri KW (2016). ImageJ: image analysis interoperability for the next generation of biological image data. Microscopy and Microanalysis, 22, 2066-2067.
DOI URL |
[30] |
Suarez AV, Tsutsui ND (2008). The evolutionary consequences of biological invasions. Molecular Ecology, 17, 351-360.
DOI URL |
[31] | Tian SQ, Zhu SD, Zhu JJ, Shen ZH, Cao KF (2016). Impact of leaf morphological and anatomical traits on mesophyll conductance and leaf hydraulic conductance in mangrove plants. Plant Science Journal, 34, 909-919. |
[ 田尚青, 朱师丹, 朱俊杰, 申智骅, 曹坤芳 (2016). 红树林植物叶片形态和解剖特征对叶肉导度、叶片导水率的影响. 植物科学学报, 34, 909-919.] | |
[32] | Vogelmann TC, Martin G (1993). The functional significance of palisade tissue: penetration of directional versus diffuse light. Plant, Cell & Environment, 16, 65-72. |
[33] |
Vogelman TC, Nishio JN, Smith WK (1996). Leaves and light capture: light propagation and gradients of carbon fixation within leaves. Trends in Plant Science, 1, 65-70.
DOI URL |
[34] |
Wen Y, Zhao WL, Cao KF (2020). Global convergence in the balance between leaf water supply and demand across vascular land plants. Functional Plant Biology, 47, 904-911.
DOI URL |
[35] |
Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K, et al. (2004). The worldwide leaf economics spectrum. Nature, 428, 821-827.
DOI URL |
[36] |
Xiong DL, Flexas J, Yu TT, Peng SB, Huang JL (2017). Leaf anatomy mediates coordination of leaf hydraulic conductance and mesophyll conductance to CO2 in Oryza. New Phytologist, 213, 572-583.
DOI URL |
[37] | Zheng JJ, Lu W, Chen LH, Li PC (1996). Relationship between leaf rate of leaf air space in longan and Chinese olive and cold resistance. Journal of Fujian Agricultural University, 25(2), 40-43. |
[ 郑家基, 卢炜, 陈利恒, 李平聪 (1996). 龙眼、橄榄叶片空隙率与耐寒性的关系. 福建农业大学学报, 25(2), 40-43.] |
[1] | 王袼, 胡姝娅, 李阳, 陈晓鹏, 李红玉, 董宽虎, 何念鹏, 王常慧. 不同类型草原土壤净氮矿化速率的温度敏感性[J]. 植物生态学报, 2024, 48(4): 523-533. |
[2] | 萨其拉, 张霞, 朱琳, 康萨如拉. 长期不同放牧强度下荒漠草原优势种无芒隐子草叶片解剖结构变化[J]. 植物生态学报, 2024, 48(3): 331-340. |
[3] | 张敏, 桑英, 宋金凤. 水培富贵竹的根压及其影响因素[J]. 植物生态学报, 2023, 47(7): 1010-1019. |
[4] | 沈健, 何宗明, 董强, 郜士垒, 林宇. 轻度火烧对滨海沙地人工林土壤呼吸速率和非生物因子的影响[J]. 植物生态学报, 2023, 47(7): 1032-1042. |
[5] | 李卫英, 章正仁, 辛雅萱, 王飞, 辛培尧, 高洁. 云南松、思茅松和卡西亚松天然种群间的针叶表型变异[J]. 植物生态学报, 2023, 47(6): 833-846. |
[6] | 夏璟钰, 张扬建, 郑周涛, 赵广, 赵然, 朱艺旋, 高洁, 沈若楠, 李文宇, 郑家禾, 张雨雪, 朱军涛, 孙建新. 青藏高原那曲高山嵩草草甸植物物候对增温的异步响应[J]. 植物生态学报, 2023, 47(2): 183-194. |
[7] | 安凡, 李宝银, 钟全林, 程栋梁, 徐朝斌, 邹宇星, 张雪, 邓兴宇, 林秋燕. 不同种源刨花楠苗木生长与主要功能性状对氮添加的响应[J]. 植物生态学报, 2023, 47(12): 1693-1707. |
[8] | 叶洁泓, 于成龙, 卓少菲, 陈新兰, 杨科明, 文印, 刘慧. 木兰科植物叶片光合系统耐热性与叶片形态及温度生态位的关系[J]. 植物生态学报, 2023, 47(10): 1432-1440. |
[9] | 朱明阳, 林琳, 佘雨龙, 肖城材, 赵通兴, 胡春相, 赵昌佑, 王文礼. 云南轿子山不同海拔急尖长苞冷杉径向生长动态及其低温阈值[J]. 植物生态学报, 2022, 46(9): 1038-1049. |
[10] | 熊博文, 李桐, 黄樱, 鄢春华, 邱国玉. 不同参考温度取值对三温模型反演植被蒸腾精度的影响[J]. 植物生态学报, 2022, 46(4): 383-393. |
[11] | 丛楠, 张扬建, 朱军涛. 北半球中高纬度地区近30年植被春季物候温度敏感性[J]. 植物生态学报, 2022, 46(2): 125-135. |
[12] | 杨萌, 于贵瑞. 中国干旱半干旱区土壤CO2与CH4通量的耦联解耦及其对温度的响应[J]. 植物生态学报, 2022, 46(12): 1497-1507. |
[13] | 吴建波, 王小丹. 高寒草原优势种紫花针茅叶片解剖结构对青藏高原高寒干旱环境适应性分析[J]. 植物生态学报, 2021, 45(3): 265-273. |
[14] | 张宏锦, 王娓. 生态系统多功能性对全球变化的响应: 进展、问题与展望[J]. 植物生态学报, 2021, 45(10): 1112-1126. |
[15] | 韩大勇, 张维, 努尔买买提•依力亚斯, 杨允菲. 植物种群更新的补充限制[J]. 植物生态学报, 2021, 45(1): 1-12. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19