植物生态学报 ›› 2011, Vol. 35 ›› Issue (7): 731-740.DOI: 10.3724/SP.J.1258.2011.00731
所属专题: 生态系统碳水能量通量
发布日期:
2011-08-18
通讯作者:
周文嘉
作者简介:
* E-mail: wenjia851209@163.com
ZHOU Wen-Jia*(), SHI Zhao-Yong, WANG Wei
Published:
2011-08-18
Contact:
ZHOU Wen-Jia
摘要:
土壤呼吸是陆地碳循环中仅次于全球总初级生产力的第二大碳通量途径, 揭示土壤呼吸的时空格局对整个陆地碳循环具有重要意义。该文在中国东部亚热带季风气候区, 按纬度梯度由南向北选取深圳梧桐山、杨东山十二度水保护区、宁波天童山3个区域作为研究对象, 于2009年8月至2010年10月测定了不同季节各个区域内代表性植被类型的土壤呼吸速率及地下5 cm处土壤温度, 旨在初步了解中国东部亚热带森林地区土壤呼吸的时空格局及其影响因素。结果显示: 3个区域的土壤呼吸速率均存在显著的季节变化, 其变幅为2.64-6.24 μmol CO2·m -2·s-1, 总体趋势和地下5 cm处土壤温度的季节变化一致, 均为夏季最高冬季最低; 土壤温度的变化可以解释不同样地土壤呼吸季节变化的58.3%-90.2%; 各样地全年的Q10值从1.56到3.27; 通过离样地最近的气象站点的日平均气温与试验样地地下5 cm处土壤温度之间的线性正相关关系推算出日土壤温度的变化, 利用土壤呼吸速率和地下5 cm处土壤温度之间的指数关系, 估算出各样地全年的土壤CO2通量为1 077-2 058 g C·m-2·a-1, 在全球所有生态系统类型中处于较高水平。
周文嘉, 石兆勇, 王娓. 中国东部亚热带森林土壤呼吸的时空格局. 植物生态学报, 2011, 35(7): 731-740. DOI: 10.3724/SP.J.1258.2011.00731
ZHOU Wen-Jia, SHI Zhao-Yong, WANG Wei. Temporal and spatial patterns of soil respiration in subtropical forests of eastern China. Chinese Journal of Plant Ecology, 2011, 35(7): 731-740. DOI: 10.3724/SP.J.1258.2011.00731
研究区Research region | 编号Code | 森林类型 Forest type | 经纬度 Longitude and latitude | 海拔 Altitude (m) | 坡度Gradient | 主要优势树种 Dominant species |
---|---|---|---|---|---|---|
梧桐山Wutongshan | WT-A | 南亚热带常绿阔叶林 South subtropical evergreen broad-leaved forest | 22°34′58′′ N 114°10′51′′ E | 175-184 | 15°-20° | 鹅掌柴 Schefflera octophylla 黄牛木 Cratoxylum cochinchinense 土沉香 Aquilaria sinensis |
WT-B | 南亚热带常绿阔叶林 South subtropical evergreen broad-leaved forest | 22°34′58′′ N 114°10′53′′ E | 194-198 | <10° | 鹅掌柴 Schefflera octophylla 马尾松 Pinus massoniana 土沉香 Aquilaria sinensis | |
WT-C | 南亚热带山地常绿阔叶林South subtropical montanic evergreen broad-leaved forest | 22°34′31′′ N 114°10′48′′ E | 400-420 | >20° | 黧蒴锥 Castanopsis fissa 白背算盘子 Glochidion wrightii | |
杨东山十二度水 Yangdongshan Shierdushui | YDS-A | 亚热带常绿阔叶林 Subtropical evergreen broad-leaved forest | 25°13′40′′ N 113°26′27′′ E | 461-469 | 10°-15° | 烟斗柯 Lithocarpus corneus 红锥 Castanopsis hystrix 广东润楠 Machilus kwangtungensis |
YDS-B | 亚热带常绿针阔混交林Subtropical evergreen broad-leaved and coniferous mixed forest | 25°13′17′′ N 113°27′23′′ E | 461-470 | 10°-15° | 马尾松 Pinus massoniana 红椎 Castanopsis hystrix 芳樟 Cinnamomum camphora var. linaloolifera | |
天童山 Tiantongshan | TT-A | 亚热带常绿阔叶林 Subtropical evergreen broad-leaved forest | 29°48′08′′ N 121°47′17′′ E | 152-155 | <10° | 木荷 Schima superba |
TT-B | 亚热带常绿阔叶林 Subtropical evergreen broad-leaved forest | 29°48′26′′ N 121°47′56′′ E | 209-219 | 10°-15° | 米槠 Castanopsis carlesii 木荷 Schima superba | |
TT-C | 亚热带常绿阔叶林 Subtropical broad-leaved evergreen forest | 29°48′14′′ N 121°47′13′′ E | 207-223 | 15°-20° | 栲 Castanopsis fargesii |
表1 样地概况
Table 1 General situation of site
研究区Research region | 编号Code | 森林类型 Forest type | 经纬度 Longitude and latitude | 海拔 Altitude (m) | 坡度Gradient | 主要优势树种 Dominant species |
---|---|---|---|---|---|---|
梧桐山Wutongshan | WT-A | 南亚热带常绿阔叶林 South subtropical evergreen broad-leaved forest | 22°34′58′′ N 114°10′51′′ E | 175-184 | 15°-20° | 鹅掌柴 Schefflera octophylla 黄牛木 Cratoxylum cochinchinense 土沉香 Aquilaria sinensis |
WT-B | 南亚热带常绿阔叶林 South subtropical evergreen broad-leaved forest | 22°34′58′′ N 114°10′53′′ E | 194-198 | <10° | 鹅掌柴 Schefflera octophylla 马尾松 Pinus massoniana 土沉香 Aquilaria sinensis | |
WT-C | 南亚热带山地常绿阔叶林South subtropical montanic evergreen broad-leaved forest | 22°34′31′′ N 114°10′48′′ E | 400-420 | >20° | 黧蒴锥 Castanopsis fissa 白背算盘子 Glochidion wrightii | |
杨东山十二度水 Yangdongshan Shierdushui | YDS-A | 亚热带常绿阔叶林 Subtropical evergreen broad-leaved forest | 25°13′40′′ N 113°26′27′′ E | 461-469 | 10°-15° | 烟斗柯 Lithocarpus corneus 红锥 Castanopsis hystrix 广东润楠 Machilus kwangtungensis |
YDS-B | 亚热带常绿针阔混交林Subtropical evergreen broad-leaved and coniferous mixed forest | 25°13′17′′ N 113°27′23′′ E | 461-470 | 10°-15° | 马尾松 Pinus massoniana 红椎 Castanopsis hystrix 芳樟 Cinnamomum camphora var. linaloolifera | |
天童山 Tiantongshan | TT-A | 亚热带常绿阔叶林 Subtropical evergreen broad-leaved forest | 29°48′08′′ N 121°47′17′′ E | 152-155 | <10° | 木荷 Schima superba |
TT-B | 亚热带常绿阔叶林 Subtropical evergreen broad-leaved forest | 29°48′26′′ N 121°47′56′′ E | 209-219 | 10°-15° | 米槠 Castanopsis carlesii 木荷 Schima superba | |
TT-C | 亚热带常绿阔叶林 Subtropical broad-leaved evergreen forest | 29°48′14′′ N 121°47′13′′ E | 207-223 | 15°-20° | 栲 Castanopsis fargesii |
图1 土壤呼吸和地下5 cm处土壤温度的季节变化。TT-A、TT-B、TT-C、WT-A、WT-B、WT-C、YDS-A和YDS-B见表1。
Fig. 1 Seasonal variations of soil respiration and soil temperature of 5 cm below the mineral soil surface. TT-A, TT-B, TT-C, WT-A, WT-B, WT-C, YDS-A and YDS-B see Table 1.
图2 土壤呼吸速率和地下5 cm处土壤温度的关系。TT-A、TT-B、TT-C、WT-A、WT-B、WT-C、YDS-A和YDS-B见表1。
Fig. 2 Relationship between soil respiration and soil temperature of 5 cm below the mineral soil surface. TT-A, TT-B, TT-C, WT-A, WT-B, WT-C, YDS-A and YDS-B see Table 1.
图3 各样地全年Q10。TT-A、TT-B、TT-C、WT-A、WT-B、WT-C、YDS-A和YDS-B见表1。
Fig. 3 Annual Q10 of each site. TT-A, TT-B, TT-C, WT-A, WT-B, WT-C, YDS-A and YDS-B see Table 1.
样地 Site | n | 方程 Formula | R2 | p |
---|---|---|---|---|
WT-A | 8 | Ts = 0.7536T0 + 3.9730 | R2 = 0.983 0 | <0.001 |
WT-B | 11 | Ts = 0.7461T0 + 4.5447 | R2 = 0.910 8 | <0.001 |
WT-C | 9 | Ts = 0.6185T0 + 7.0324 | R2 = 0.830 9 | 0.001 |
YDS-A | 8 | Ts = 0.6484T0 + 5.5002 | R2 = 0.911 8 | <0.001 |
YDS-B | 7 | Ts = 0.6949T0 + 3.9978 | R2 = 0.855 9 | 0.003 |
TT-A | 9 | Ts = 0.7487T0 + 3.4752 | R2 = 0.906 0 | <0.001 |
TT-B | 11 | Ts = 0.7503T0 + 3.1306 | R2 = 0.882 4 | <0.001 |
TT-C | 11 | Ts = 0.7259T0 + 3.4620 | R2 = 0.971 9 | <0.001 |
表2 各样地地下5 cm处土壤温度与最近站点日平均气温的换算方程
Table 2 Conversion formula between soil temperature of 5 cm below the mineral soil surface of each site and the diurnal mean air temperature of the nearest station
样地 Site | n | 方程 Formula | R2 | p |
---|---|---|---|---|
WT-A | 8 | Ts = 0.7536T0 + 3.9730 | R2 = 0.983 0 | <0.001 |
WT-B | 11 | Ts = 0.7461T0 + 4.5447 | R2 = 0.910 8 | <0.001 |
WT-C | 9 | Ts = 0.6185T0 + 7.0324 | R2 = 0.830 9 | 0.001 |
YDS-A | 8 | Ts = 0.6484T0 + 5.5002 | R2 = 0.911 8 | <0.001 |
YDS-B | 7 | Ts = 0.6949T0 + 3.9978 | R2 = 0.855 9 | 0.003 |
TT-A | 9 | Ts = 0.7487T0 + 3.4752 | R2 = 0.906 0 | <0.001 |
TT-B | 11 | Ts = 0.7503T0 + 3.1306 | R2 = 0.882 4 | <0.001 |
TT-C | 11 | Ts = 0.7259T0 + 3.4620 | R2 = 0.971 9 | <0.001 |
[1] |
Bond-Lamberty B, Thomson A (2010a). Temperature-associ- ated increases in the global soil respiration record. Nature, 464, 579-582.
DOI URL PMID |
[2] | Bond-Lamberty B, Thomson A (2010b). A global database of soil respiration data. Biogeosciences Discuss, 7, 1321-1344. |
[3] | Booner RD, Nadelhoffer KJ, Canary JD, Kaye JP (1998). Roots exert a strong influence on the temperature sensitivity of soil respiration. Nature, 396, 570-572. |
[4] | Bronson DR, Gower ST, Tanner M, Linder S, van Herk I. (2008). Response of soil surface CO2 flux in a boreal forest to ecosystem warming. Global Change Biology, 14, 856-867. |
[5] | Buchmann N (2000). Biotic and abiotic factors controlling soil respiration rates in Picea abies stands. Soil Biology & Biochemistry, 32, 1625-1635. |
[6] | Chen GS, Yang YS, Guo JF, Xie JS, Wang ZJ (2011). Relationships between carbon allocation and partitioning of soil respiration across world mature forests. Plant Ecology, 212, 195-206. |
[7] | Chen QS (陈全胜), Li LH (李凌浩), Han XG (韩兴国), Yan ZD (阎志丹), Dong YS (董云社) (2003). Response of soil respiration under global warming. Earth Science Frontiers (地学前缘), 10, 506. (in Chinese) |
[8] |
Davidson EA, Janssens IA (2006). Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature, 440, 165-173.
DOI URL PMID |
[9] | Davidson EA, Verchot LV, Cattânio JH, Ackerman IL, Carvalho JEM. (2000). Effects of soil water content on soil respiration in forests and cattle pastures of eastern Amazonia. Biogeochemistry, 48, 53-69. |
[10] | Deng Q (邓琦), Liu SZ (刘世忠), Liu JX (刘菊秀), Meng Z (孟泽), Zhang DQ (张德强) (2007). Contributions of litter-fall to soil respiration and its affecting factors in southern subtropical forests of China. Advances in Earth Science (地球科学进展), 31, 976-986. (in Chinese with English abstract) |
[11] | Fahey TJ, Yavitt JB (2005). An in situ approach for measuring root-associated respiration and nitrate uptake of forest trees. Plant and Soil, 272, 125-131. |
[12] | Fang C, Moncrief JB (2001). The dependence of soil CO2 efflux on temperature. Soil Biology & Biochemistry, 33, 155-165. |
[13] | Fang C, Moncrief JB, Gholz HL, Clark KL (1998). Soil CO2 efflux and its spatial variation in a Florida slash pine plantation. Plant and Soil, 205, 135-146. |
[14] | Fang JY (方精云), Wang W (王娓) (2007). Soil respiration as a key belowground process: issues and perspectives. Journal of Plant Ecology (Chinese Version) (植物生态学报), 31, 345-347. (in Chinese with English abstract) |
[15] | Feng WT (冯文婷), Zou XM (邹晓明), Sha LQ (沙丽清), Chen JH (陈建会), Feng ZL (冯志立), Li JZ (李检舟) (2008). Comparisons between seasonal and diurnal patterns of soil respiration in a montane evergreen broad- leaved forest of Ailao mountains, China. Journal of Plant Ecology (Chinese Version) (植物生态学报), 32, 31-39. (in Chinese with English abstract) |
[16] | Han GX (韩广轩), Zhou GS (周广胜) (2009). Review of spatial and temporal variations of soil respiration and driving mechanisms. Chinese Journal of Plant Ecology (植物生态学报), 33, 197-205. (in Chinese with English abstract) |
[17] |
Hanson PJ, Edwards NT, Garten CT, AndrewJA (2000). Separating root and microbial contributions to soil respiration: a review of methods and observations. Biogeochemistry, 48, 115-146.
DOI URL |
[18] | Huang CC (黄承才), Ge Y (葛滢), Chang J (常杰), Lu R (卢蓉), Xu QS (徐青山) (1999). Studies on the soil respiration of three woody plant communities in the east mid-subtropical zone, China. Acta Ecologica Sinica (生态学报), 19, 324-328. (in Chinese with English abstract) |
[19] |
Hungate BA, Holland EA, Jackson RB, Chapin FS III, Mooney HA, Field CB (1997). The fate of carbon in grasslands under carbon dioxide enrichment, Nature, 388, 576-579.
DOI URL |
[20] |
Janssens IA, Lankreijer H, Matteucci G, Kowalski AS, Buchmann N, Epron D, Pilegaard K, Kutsch W, Longdoz B, Grünwald T, Montagnani L, Dore S, Rebmann C, Moors EJ, Grelle A, Rannik Ü, Morgenstern K, Oltchev S, Clement R, Guðmundsson J, Minerbi S, Berbigier P, Ibrom A, Moncrieff J, Aubinet M, Bernhofer C, Jensen NO, Vesala Y, Granier A, Schulze ED, Lindroth A, Dolman AJ, Jarvis PJ, Ceulemans R, Valentini R (2001). Productivity overshadows temperature in determining soil and ecosystem respiration across European forests. Global Change Biology, 7, 269-278.
DOI URL |
[21] |
Jassal RS, Black TA, Novak MD, Gaumont-Guay D, Nesic Z (2008). Effect of soil water stress on soil respiration and its temperature sensitivity in an 18-year-old temperate Douglas-fir stand. Global Change Biology, 14, 1-14.
DOI URL |
[22] | Jiang Y (姜艳), Wang B (王兵), Wang YR (汪玉如), Yang QP (杨清培) (2010). Soil respiration in subtropical forests and model simulation of its relationships with soil temperature and moisture content. Chinese Journal of Applied Ecology (应用生态学报), 21, 1641-1648. (in Chinese with English abstract) |
[23] |
Kang SY, Doh S, Lee D, Lee D, Jin VL, Kimball JS (2003). Topographic and climatic controls on soil respiration in six temperate mixed-hardwood forest slopes, Korea. Global Change Biology, 9, 1427-1437.
DOI URL |
[24] |
Keith H, Jacobsen KL, Raison RJ (1997). Effects of soil phosphorus availability, temperature and moisture on soil respiration in Eucalyptus pauciflora forest. Plant and Soil, 190, 127-141.
DOI URL |
[25] |
Kelting DL, Burger JA, Edwards GS (1998). Estimating root respiration, microbial respiration in the rhizasphere, and root-free soil respiration in forest soils. Soil Biology & Biochemistry, 30, 961-968.
DOI URL |
[26] |
Kosugi Y, Mitani T, Itoh M, Noguchi S, Tani M, Matsuo N, Takanashi S, Ohkubo S, Nik AR (2007). Spatial and temporal variation in soil respiration in a Southeast Asian tropical rainforest. Agricultural and Forest Meteorology, 147, 35-47.
DOI URL |
[27] |
Kretzsehmar A, Ladd JN (1993). Decomposition of 14C-labeled plant material in soil: the influence of substrate location, soil compaction and earthworm numbers. Soil Biology & Biochemistry, 25, 803-809.
DOI URL |
[28] | Liu SH (刘绍辉), Fang JY (方精云) (1997). Effect factors of soil respiration and the temperature’s effects on soil respiration in the global scale. Acta Ecologica Sinica (生态学报), 17, 469-476. (in Chinese with English abstract) |
[29] |
Lloyd J, Taylor JA (1994). On the temperature dependence of soil respiration. Functional Ecology, 8, 315-323.
DOI URL |
[30] |
Londo AJ, Messina MG, Sohoenholtz SH (1999). Forest harvesting effects on soil temperature, moisture, and respiration in a bottom land hardwood forest. Soil Science Society of American Journal, 63, 637-644.
DOI URL |
[31] |
Luyssaert S, Inglima I, Jung M, Richardson AD, Reichstein M, Papale D, Piao SL, Schulze ED, Wingate L, Matteucci G, Aragao L, Aubinet M, Beer C, Bernhofer C, Black KG, Bonal D, Bonnefond JM, Chambers J, Ciais P, Cook B, Davis KJ, Dolman AJ, Gielen B, Goulden M, Grace J, Granier A, Grelle A, Griffis T, Grünwald T, Guidolotti G, Hanson PJ, Harding R, Hollinger DY, Hutyra LR, Kolari P, Kruijt B, Kutsch W, Lagergren F, Laurila T, Law BE, Le Maire G, Lindroth A, Loustau D, Malhi Y, Mateus J, Migliavacca M, Misson L, Montagnani L, Moncrieff J, Moors E, Munger JW, Nikinmaa E, Ollinger SV, Pita G, Rebmann C, Roupsard O, Saigusa N, Sanz MJ, Seufert G, Sierra C, Smith ML, Tang J, Valentini R, Vesala T, Janssens IA (2007). CO2 balance of boreal, temperate, and tropical forests derived from a global database. Global Change Biology, 13, 2509-2537.
DOI URL |
[32] | Marland G, Boden TA, Andres RJ (1994). Globe, regional and national CO2 emissions. In: Boden TA, Kaiser DP, Sepanski RJ, Stoss FW eds. Trends ’93: a Compenduim of Data on Global Change. Carbon Dioxide Information Analysis Center, Tennessee, USA. 505-584. |
[33] |
Martin JG, Bolstad PV (2005). Annual soil respiration in broadleaf forests of northern Wisconsin: influence of moisture and site biological, chemical, and physical characteristics. Biogeochemistry, 73, 149-182.
DOI URL |
[34] |
Qi Y, Xu M, Wu JG (2002). Temperature sensitivity of soil respiration and its effects on ecosystem carbon budget: nonlinearity begets surprises. Ecological Modelling, 153, 131-142.
DOI URL |
[35] | Qi YC (齐玉春), Dong YS (董云社), Liu LX (刘立新), Liu XR (刘杏认), Peng Q (彭琴), Xiao SS (肖胜生), He YT (何亚婷) (2010). Spatial-temporal variation in soil respiration and its controlling factors in three steppes of Stipa L. in Inner Mongolia, China. Science China (Earth Sciences), 53, 341-351. (in Chinese) |
[36] |
Raich JW, Potter CS (1995). Global patterns of carbon dioxide emissions from soils. Global Biogeochemical Cycles, 9, 23-36.
DOI URL |
[37] |
Raich JW, Potter CS, Bhagawati D (2002). Interannual variability in global soil respiration. Global Change Biology, 8, 800-812.
DOI URL |
[38] |
Raich JW, Schlesinger WH (1992). The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus B, 44, 81-99.
DOI URL |
[39] |
Raich JW, Tufekcioglu A (2000). Vegetation and soil respiration: correlations and controls. Biogeochemistry, 48, 71-90.
DOI URL |
[40] |
Rayment MB, Jarvis PG (2000). Temporal and spatial variation of soil CO2 efflux in a Canadian boreal forest. Soil Biology & Biochemistry, 32, 35-45.
DOI URL |
[41] |
Rey A, Pegoraro E, Tedeschi V, De Parri I, Jarvis PG, Valentini R (2002). Annual variation in soil respiration and its components in a coppice oak forest in central Italy. Global Change Biology, 8, 851-866.
DOI URL |
[42] |
Rustad LE, Fernandez IJ (1998). Experimental soil warming effects on CO2 and CH4 flux from a low elevation spruce- fir forest soil in Maine, USA. Global Change Biology, 4, 597-605.
DOI URL |
[43] |
Savage K, Davidson EA, Richardson AD, Hollinger DY (2009). Three scales of temporal resolution from automated soil respiration measurements. Agricultural and Forest Meteorology, 149, 2012-2021.
DOI URL |
[44] |
Schimel DS, House JI, Hibbard KA, Bousquet P, Ciais P, Peylin P, Braswell BH, Apps MJ, Baker D, Bondeau A, Canadell J, Churkina G, Cramer W, Denning AS, Field CB, Friedlingstein P, Goodale C, Heimann M, Houghton RA, Melillo JM, Moore B III, Murdiyarso D, Noble I, Pacala SW, Prentice IC, Raupach MR, Rayner PJ, Scholes RJ, Steffen WL, Wirth C (2001). Recent patterns and mechanisms of carbon exchange by terrestrial ecosystems. Nature, 414, 169-172.
DOI URL PMID |
[45] | Schleser GH (1982). The response of CO2 evolution from soils to global temperature changes. Zeitschrift für Naturforschung Section A-A Journal of Physical Sciences, 37, 287-291. |
[46] |
Schlesinger WH (1977). Carbon balance in terrestrial detritus. Annual Review of Ecology and Systematic, 8, 51-81.
DOI URL |
[47] |
Schlesinger WH, Andrews JA (2000). Soil respiration and the global carbon cycle. Biogeochemistry, 48, 7-20.
DOI URL |
[48] | Shi Z (施政), Wang JS (汪家社), He R (何容), Fang YH (方燕鸿), Xu ZK (徐自坤), Quan W (权伟), Zhang ZX (张增信), Ruan HH (阮宏华) (2008). Soil respiration and its regulating factor along an elevation gradient in Wuyi Mountain of Southeast China. Chinese Journal of Ecology (生态学杂志), 27, 563-568. (in Chinese with English abstract) |
[49] | Tang JW, Baldocchi DD, Xu LK (2005). Tree photosynthesis modulates soil respiration on a diurnal time scale. Global Change Ecology, 11, 1298-1304. |
[50] |
Tang XL, Zhou GY, Liu SG, Zhang DQ, Liu SZ, Li J, Zhou CY (2006). Dependence of soil respiration on soil temperature and soil moisture in successional forests in Southern China. Journal of Integrative Plant Biology, 48, 654-663.
DOI URL |
[51] | Trumbore SE, Chadwick OA, Amundson R (1996). Rapid exchange between soil carbon and atmospheric carbon dioxide driven by temperature change. Science, 262, 393-396. |
[52] | van’t Hoff JH (1898). Lectures on Theoretical and Physical Chemistry. Part 1. Chemical Dynamics. Edward Arnold, London. |
[53] |
Wang W, Chen WL, Wang SP (2010). Forest soil respiration and its heterotrophic and autotrophic components: global patterns and responses to temperature and precipitation. Soil Biology & Biochemistry, 42, 1236-1244.
DOI URL |
[54] | Webster KL, Creed IF, Beall FD, Bourbonnière RA (2008). Sensitivity of catchment-aggregated estimates of soil carbon dioxide efflux to topography under different climatic conditions. Journal of Geophysical Research, 113, G03040, doi: 10.1029/2008JG000707. |
[55] | Xie HH (谢慧慧), Fan J (樊军), Qi LB (齐丽彬), Hao MD (郝明德) (2010). Seasonal characteristics of soil respiration and affecting factors under typical vegetations in the water-wind erosion crisscross region of the Loess Plateau. Chinese Journal of Enviornmental Science (环境科学), 31, 2995-3003. (in Chinese with English abstract) |
[56] |
Yan JH, Wang YP, Zhou GY, Zhang DQ (2006). Estimates of soil respiration and net primary production of three forests at different succession stages in South China. Global Change Biology, 12, 810-821.
DOI URL |
[57] |
Yan JH, Zhang DQ, Zhou GY, Liu JX (2009). Soil respiration associated with forest succession in subtropical forests in Dinghushan Biosphere Reserve. Soil Biology & Biochemistry, 41, 991-999.
DOI URL |
[58] |
Yang YS, Chen GS, Guo JF, Xie JS, Wang XG (2007). Soil respiration and carbon balance in a subtropical native forest and two managed plantations. Plant Ecology, 193, 71-84.
DOI URL |
[59] |
Yuste JC, Janssens IA, Carrara A, Meiresonne L, Ceulemans R (2003). Interactive effects of temperature and precipitation on soil respiration in a temperate maritime forest. Tree Physiology, 23, 1263-1270.
DOI URL PMID |
[60] | Zhang YH (张义辉), Li HJ (李洪建), Rong YM (荣燕美), Yan JX (严俊霞), Li JJ (李君剑) (2010). Study on spatial heterogeneity of soil respiration in Taiyuan Basin. Acta Ecologica Sinica (生态学报), 30, 6606-6612. (in Chinese with English abstract) |
[61] |
Zhou GY, Liu SG, Li Z, Zhang DQ, Tang XL, Zhou CY, Yan JH, Mo JM (2006). Old-growth forests can accumulate carbon in soils. Science, 314, 1417.
DOI URL PMID |
[1] | 王袼, 胡姝娅, 李阳, 陈晓鹏, 李红玉, 董宽虎, 何念鹏, 王常慧. 不同类型草原土壤净氮矿化速率的温度敏感性[J]. 植物生态学报, 2024, 48(4): 523-533. |
[2] | 沈健, 何宗明, 董强, 郜士垒, 林宇. 轻度火烧对滨海沙地人工林土壤呼吸速率和非生物因子的影响[J]. 植物生态学报, 2023, 47(7): 1032-1042. |
[3] | 张慧玲, 张耀艺, 彭清清, 杨静, 倪祥银, 吴福忠. 中亚热带同质园不同生活型树种微量元素重吸收效率的差异[J]. 植物生态学报, 2023, 47(7): 978-987. |
[4] | 万春燕, 余俊瑞, 朱师丹. 喀斯特与非喀斯特森林乔木叶性状及其相关性网络的差异[J]. 植物生态学报, 2023, 47(10): 1386-1397. |
[5] | 杨元合, 张典业, 魏斌, 刘洋, 冯雪徽, 毛超, 徐玮婕, 贺美, 王璐, 郑志虎, 王媛媛, 陈蕾伊, 彭云峰. 草地群落多样性和生态系统碳氮循环对氮输入的非线性响应及其机制[J]. 植物生态学报, 2023, 47(1): 1-24. |
[6] | 吴秋霞, 吴福忠, 胡仪, 康自佳, 张耀艺, 杨静, 岳楷, 倪祥银, 杨玉盛. 亚热带同质园11个树种新老叶非结构性碳水化合物含量比较[J]. 植物生态学报, 2021, 45(7): 771-779. |
[7] | 曹嘉瑜, 刘建峰, 袁泉, 徐德宇, 樊海东, 陈海燕, 谭斌, 刘立斌, 叶铎, 倪健. 森林与灌丛的灌木性状揭示不同的生活策略[J]. 植物生态学报, 2020, 44(7): 715-729. |
[8] | 郑甲佳, 黄松宇, 贾昕, 田赟, 牟钰, 刘鹏, 查天山. 中国森林生态系统土壤呼吸温度敏感性空间变异特征及影响因素[J]. 植物生态学报, 2020, 44(6): 687-698. |
[9] | 陈思路, 蔡劲松, 林成芳, 宋豪威, 杨玉盛. 亚热带不同树种凋落叶分解对氮添加的响应[J]. 植物生态学报, 2020, 44(3): 214-227. |
[10] | 梅孔灿, 程蕾, 张秋芳, 林开淼, 周嘉聪, 曾泉鑫, 吴玥, 徐建国, 周锦容, 陈岳民. 不同植物来源可溶性有机质对亚热带森林土壤酶活性的影响[J]. 植物生态学报, 2020, 44(12): 1273-1284. |
[11] | 车俭, 郑洁, 蒋娅, 金毅, 乙引. 中国亚热带森林动态监测样地常绿和落叶木本被子植物谱系结构及生态习性差异[J]. 植物生态学报, 2020, 44(10): 1007-1014. |
[12] | 杨泽, 嘎玛达尔基, 谭星儒, 游翠海, 王彦兵, 杨俊杰, 韩兴国, 陈世苹. 氮添加量和施氮频率对温带半干旱草原土壤呼吸及组分的影响[J]. 植物生态学报, 2020, 44(10): 1059-1072. |
[13] | 胡姝娅,刁华杰,王惠玲,薄元超,申颜,孙伟,董宽虎,黄建辉,王常慧. 北方农牧交错带温性盐碱化草地土壤呼吸对不同形态氮添加和刈割的响应[J]. 植物生态学报, 2020, 44(1): 70-79. |
[14] | 温超,单玉梅,晔薷罕,张璞进,木兰,常虹,任婷婷,陈世苹,白永飞,黄建辉,孙海莲. 氮和水分添加对内蒙古荒漠草原放牧生态系统土壤呼吸的影响[J]. 植物生态学报, 2020, 44(1): 80-92. |
[15] | 李建军, 刘恋, 陈迪马, 许丰伟, 程军回, 白永飞. 底座入土深度和面积对典型草原土壤呼吸测定结果的影响[J]. 植物生态学报, 2019, 43(2): 152-164. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19