植物生态学报 ›› 2014, Vol. 38 ›› Issue (3): 231-237.DOI: 10.3724/SP.J.1258.2014.00020
所属专题: 生态化学计量; 青藏高原植物生态学:生态系统生态学
宾振钧1, 王静静1, 张文鹏1, 徐当会1,*(), 程雪寒1, 李柯杰2, 曹德昊2
收稿日期:
2013-10-23
接受日期:
2013-12-09
出版日期:
2014-10-23
发布日期:
2014-02-27
通讯作者:
徐当会
作者简介:
*E-mail: dhxu@lzu.edu.cn基金资助:
BIN Zhen-Jun1, WANG Jing-Jing1, ZHANG Wen-Peng1, XU Dang-Hui1,*(), CHENG Xue-Han1, LI Ke-Jie2, CAO De-Hao2
Received:
2013-10-23
Accepted:
2013-12-09
Online:
2014-10-23
Published:
2014-02-27
Contact:
XU Dang-Hui
摘要:
以青藏高原高寒草甸为研究对象, 通过人工氮肥添加试验, 研究6个群落优势种在不同施氮(N)水平下叶片碳(C)、N、磷(P)元素含量的变化以及生态化学计量学特征。结果表明: 自然条件下, 6个物种叶片N、P质量浓度存在显著的差异, 表现为: 黄花棘豆(Oxytropis ochrocephala)最高, 为24.5和2.51 g·kg-1, 其叶片N含量低于而P含量高于我国其他草地的豆科植物; 其余5个物种叶片N、P质量浓度分别为11.5-18.1和1.49-1.72 g·kg-1, 嵩草(Kobresia myosuroides)叶片N含量最低, 垂穗披碱草(Elymus nutans)叶片P含量最低, 与我国其他区域的研究结果相比, 其叶片N和P含量均低于我国其他草地非豆科植物。随氮素添加量的增大, 6种群落优势种叶片的C和P含量保持不变; 其他5种植物叶片N含量显著增加, 黄花棘豆叶片N含量保持不变。未添加氮肥时, 6种植物叶片N:P为7.3-11.2, 说明该区植物生长更多地受N限制。随N添加量的增加, 除黄花棘豆外, 其他5种植物叶片N:P大于16, 表现为植物生长受P限制。综合研究表明, 青藏草原高寒草甸植物叶片N含量较低, 植物受N影响显著, 但不同物种对N的添加反应不同, 豆科植物黄花棘豆叶片对N添加不敏感, 其他5个物种叶片全N含量随着N添加量的升高而增加, 该研究结果可为高寒草甸科学施肥提供理论依据。
宾振钧, 王静静, 张文鹏, 徐当会, 程雪寒, 李柯杰, 曹德昊. 氮肥添加对青藏高原高寒草甸6个群落优势种生态化学计量学特征的影响. 植物生态学报, 2014, 38(3): 231-237. DOI: 10.3724/SP.J.1258.2014.00020
BIN Zhen-Jun, WANG Jing-Jing, ZHANG Wen-Peng, XU Dang-Hui, CHENG Xue-Han, LI Ke-Jie, CAO De-Hao. Effects of N addition on ecological stoichiometric characteristics in six dominant plant species of alpine meadow on the Qinghai-Xizang Plateau, China. Chinese Journal of Plant Ecology, 2014, 38(3): 231-237. DOI: 10.3724/SP.J.1258.2014.00020
土层 Soil layer (cm) | 有机质 Organic matter (g·kg-1) | 全氮 Total nitrogen (g·kg-1) | 全磷 Total phosphorus (g·kg-1) | pH |
---|---|---|---|---|
0-15 | 70.5 | 3.72 | 0.984 | 6.33 |
15-30 | 36.3 | 1.95 | 0.712 | 6.44 |
30-45 | 24.0 | 1.23 | 0.618 | 6.63 |
表1 氮素添加前土壤的养分状况
Table 1 Soil nutrient status before N addition
土层 Soil layer (cm) | 有机质 Organic matter (g·kg-1) | 全氮 Total nitrogen (g·kg-1) | 全磷 Total phosphorus (g·kg-1) | pH |
---|---|---|---|---|
0-15 | 70.5 | 3.72 | 0.984 | 6.33 |
15-30 | 36.3 | 1.95 | 0.712 | 6.44 |
30-45 | 24.0 | 1.23 | 0.618 | 6.63 |
元素 Element | 处理 Treatment | 草玉梅 Anemone rivularis | 甘肃马先蒿Pedicularis kansuensis | 莓叶委陵菜 Potentilla ragarioides | 黄花棘豆 Oxytropis ochrocephala | 垂穗披碱草 Elymus nutans | 嵩草 Kobresia myosuroides |
---|---|---|---|---|---|---|---|
C | N0 | 431 ± 14.931a | 464 ± 2.480a | 442 ± 3.724a | 467 ± 1.424a | 459 ± 5.314a | 461 ± 4.993a |
N1 | 438 ± 15.271a | 466 ± 3.954a | 451 ± 6.083a | 468 ± 3.143a | 460 ± 10.902a | 453 ± 3.444a | |
N2 | 440 ± 12.064a | 465 ± 6.991a | 456 ± 11.410a | 471 ± 4.913a | 461 ± 11.675a | 463 ± 3.652a | |
N3 | 445 ± 10.442a | 467 ± 3.992a | 452 ± 13.700a | 461 ± 4.393a | 463 ± 10.904a | 467 ± 6.454a | |
N | N0 | 16.5 ± 1.094a | 17.3 ± 2.087a | 18.1 ± 1.131a | 24.5 ± 1.113a | 16.7 ± 0.036a | 11.5 ± 0.188a |
N1 | 18.9 ± 1.298b | 21.1 ± 2.094b | 25.7 ± 2.74b | 22.6 ± 1.190a | 21.2 ± 0.166b | 15.8 ± 0.211b | |
N2 | 24.1 ± 2.127c | 26.0 ± 1.158c | 29.7 ± 2.144c | 26.8 ± 1.114a | 26.3 ± 0.122c | 18.8 ± 0.212c | |
N3 | 32.5 ± 2.169d | 32.2 ± 2.087d | 36.7 ± 1.081d | 23.1 ± 1.124a | 31.0 ± 0.366d | 22.8 ± 0.211d | |
P | N0 | 1.716 ± 0.077a | 1.636 ± 0.053a | 1.672 ± 0.083a | 2.509 ± 0.089a | 1.488 ± 0.070a | 1.591 ± 0.077a |
N1 | 1.713 ± 0.065a | 1.640 ± 0.070a | 1.682 ± 0.095a | 2.488 ± 0.080a | 1.490 ± 0.081a | 1.575 ± 0.042a | |
N2 | 1.718 ± 0.076a | 1.638 ± 0.063a | 1.668 ± 0.064a | 2.506 ± 0.114a | 1.478 ± 0.067a | 1.555 ± 0.064a | |
N3 | 1.721 ± 0.090a | 1.628 ± 0.075a | 1.679 ± 0.071a | 2.511 ± 0.109a | 1.502 ± 0.070a | 1.585 ± 0.073a |
表2 氮肥添加对6种群落优势种植物叶片C、N、P含量(g·kg-1)的影响(平均值±标准误差, n = 6)
Table 2 Effects of nitrogen addition on leaf C, N, and P contents (g·kg-1) in six dominant plant species (mean ± SE, n = 6)
元素 Element | 处理 Treatment | 草玉梅 Anemone rivularis | 甘肃马先蒿Pedicularis kansuensis | 莓叶委陵菜 Potentilla ragarioides | 黄花棘豆 Oxytropis ochrocephala | 垂穗披碱草 Elymus nutans | 嵩草 Kobresia myosuroides |
---|---|---|---|---|---|---|---|
C | N0 | 431 ± 14.931a | 464 ± 2.480a | 442 ± 3.724a | 467 ± 1.424a | 459 ± 5.314a | 461 ± 4.993a |
N1 | 438 ± 15.271a | 466 ± 3.954a | 451 ± 6.083a | 468 ± 3.143a | 460 ± 10.902a | 453 ± 3.444a | |
N2 | 440 ± 12.064a | 465 ± 6.991a | 456 ± 11.410a | 471 ± 4.913a | 461 ± 11.675a | 463 ± 3.652a | |
N3 | 445 ± 10.442a | 467 ± 3.992a | 452 ± 13.700a | 461 ± 4.393a | 463 ± 10.904a | 467 ± 6.454a | |
N | N0 | 16.5 ± 1.094a | 17.3 ± 2.087a | 18.1 ± 1.131a | 24.5 ± 1.113a | 16.7 ± 0.036a | 11.5 ± 0.188a |
N1 | 18.9 ± 1.298b | 21.1 ± 2.094b | 25.7 ± 2.74b | 22.6 ± 1.190a | 21.2 ± 0.166b | 15.8 ± 0.211b | |
N2 | 24.1 ± 2.127c | 26.0 ± 1.158c | 29.7 ± 2.144c | 26.8 ± 1.114a | 26.3 ± 0.122c | 18.8 ± 0.212c | |
N3 | 32.5 ± 2.169d | 32.2 ± 2.087d | 36.7 ± 1.081d | 23.1 ± 1.124a | 31.0 ± 0.366d | 22.8 ± 0.211d | |
P | N0 | 1.716 ± 0.077a | 1.636 ± 0.053a | 1.672 ± 0.083a | 2.509 ± 0.089a | 1.488 ± 0.070a | 1.591 ± 0.077a |
N1 | 1.713 ± 0.065a | 1.640 ± 0.070a | 1.682 ± 0.095a | 2.488 ± 0.080a | 1.490 ± 0.081a | 1.575 ± 0.042a | |
N2 | 1.718 ± 0.076a | 1.638 ± 0.063a | 1.668 ± 0.064a | 2.506 ± 0.114a | 1.478 ± 0.067a | 1.555 ± 0.064a | |
N3 | 1.721 ± 0.090a | 1.628 ± 0.075a | 1.679 ± 0.071a | 2.511 ± 0.109a | 1.502 ± 0.070a | 1.585 ± 0.073a |
图1 氮肥添加对6种植物叶片C:N的影响(平均值±标准误差, n = 6)。N0、N1、N2和N3指氮素添加量分别为0、7、14和21 g·m-2。不同字母表示处理间差异显著(p < 0.05)。
Fig. 1 Effects of nitrogen (N) addition on leaf C:N in six plant species (mean ± SE, n = 6). N0, N1, N2, and N3 represent the nitrogen addition treatment of 0, 7, 14, and 21 g·m-2, respectively. Different letters indicate significant differences between treatments (p < 0.05). Ar, Anemone rivularis; En, Elymus nutans; Km, Kobresia myosuroides; Oo, Oxytropis ochoocephala; Pk, Pedicularis kansuensis; Pf, Potentilla fragarioides.
图2 氮肥添加对6种植物叶片C:P的影响(平均值±标准误差, n = 6)。N0、N1、N2和N3指氮素添加量分别为0、7、14和21 g·m-2。不同字母表示处理间差异显著(p < 0.05)。
Fig. 2 Effects of nitrogen (N) addition on leaf C:P in six plant species (mean ± SE, n = 6). N0, N1, N2, and N3 represent the nitrogen addition treatment of 0, 7, 14, and 21 g·m-2, respectively. Different letters indicate significant differences between treatments (p < 0.05). Ar, Anemone rivularis; En, Elymus nutans; Km, Kobresia myosuroides; Oo, Oxytropis ochoocephala; Pk, Pedicularis kansuensis; Pf, Potentilla fragarioides.
图3 氮肥添加对6种植物叶片N:P的影响(平均值±标准误差, n = 6)。N0、N1、N2和N3指氮素添加量分别为0、7、14和21 g·m-2。不同字母表示处理间差异显著(p < 0.05)。
Fig. 3 Effects of nitrogen (N) addition on leaf N:P in six plant species (mean ± SE, n = 6). N0, N1, N2, and N3 represent the nitrogen addition treatment of 0, 7, 14, and 21 g·m-2, respectively. Different letters indicate significant differences between treatments (p < 0.05). Ar, Anemone rivularis; En, Elymus nutans; Km, Kobresia myosuroides; Oo, Oxytropis ochoocephala; Pk, Pedicularis kansuensis; Pf, Potentilla fragarioides.
[1] | An Z, Niu DC, Wen HY, Yang Y, Zhang HR, Fu H (2011). Stipa bungeana of steppe grasslands in the Loess Plateau, China. Effects of N addition on nutrient resorption efficiency and C:N:P stoichiometric characteristics in Chinese Journal of Plant Ecology, 35, 801-807. (in Chinese with English abstract) |
[ 安卓, 牛得草, 文海燕, 杨益, 张洪荣, 傅华 (2011). 氮素添加对黄土高原典型草原长芒草氮磷重吸收率及C:N:P化学计量特征的影响. 植物生态学报, 35, 801-807.] | |
[2] | Chu CJ, Maestre FT, Xiao S, Weiner J, Wang YS, Duan ZH, Wang G (2008). Balance between facilitation and resource competition determines biomass-density relationships in plant populations. Ecology Letters, 11, 1189-1197. |
[3] | Elser JJ, Sterner RW, Gorokhova E, Fagan WF, Markow TA, Cotner JB, Harrison JF, Hobbie SE, Odell GM, Weider LJ (2000). Biological stoichiometry from genes to ecosystems. Ecology Letters, 3, 540-550. |
[4] | Gallardo A, Covelo F (2005). Spatial pattern and scale of leaf N and P concentration in a Quereus robur population. Plant and Soil, 273, 269-277. |
[5] | Güsewell S (2004). N:P ratios in terrestrial plants: variation and functional significance. New Phytologist, 164, 243-266. |
[6] | Han WX, Fang JY, Guo DL, Zhang Y (2005). Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China. New Phytologist, 168, 377-385. |
[7] | Hannaway DB, Shuler PE (1993). Nitrogen fertilization in alfalfa production. Journal of Production Agriculture, 6, 80-85. |
[8] | He JS, Wang L, Flynn DFB, Wang XP, Ma WH, Fang JY (2008). Leaf nitrogen: phosphorus stoichiometry across Chinese grassland biomes. Oecologia, 155, 301-310. |
[9] | Hedin LO (2004). Global organization of terrestrial plant-nutrient interactions. Proceedings of the National Academy of Sciences of the United States of America, 101, 10849-10850. |
[10] | Jenkins MB, Bottomley PJ (1984). Seasonal response of uninoculated alfalfa to N fertilizer: soil N, nodule turnover, and symbiotic effectiveness of Rhizobium meliloti. Agronomy Journal, 76, 959-963. |
[11] | Ji YJ (2006). Effects of nitrogen on the grass yield of Qinghai alpine meadow. Pratacultural Science, 23, 26-29. (in Chinese with English abstract) |
[ 纪亚君 (2006). 青海高寒草甸施氮肥增产效应浅析. 草业科学, 23, 26-29.] | |
[12] | Koerselman W, Meuleman AFM (1996). The vegetation N:P ratio: a new tool to detect the nature of nutrient limitation. Journal of Applied Ecology, 33, 1441-1450. |
[13] |
Lü XT, Cui Q, Wang QB, Han XG (2011). Nutrient resorption response to fire and nitrogen addition in a semi-arid grassland. Ecological Engineering, 37, 534-538.
DOI URL |
[14] | Reich PB, Oleksyn J (2004). Global patterns of plant leaf N and P in relation to temperature and latitude. Proceedings of the National Academy of Sciences of the United States of America, 101, 11001-11006. |
[15] | Ren QJ, Luo YJ, Wang HY, Liu JM (2004). Restoration of degraded typical alpine meadowland on the Qinghai-Tibetan Plateau―effect of fertilizing and cutting on grassland quality. Acta Prataculturae Sinica, 13, 43-49. (in Chinese with English abstract) |
[ 仁青吉, 罗燕江, 王海洋, 刘金梅 (2004). 青藏高原典型高寒草甸退化草地的恢复——施肥刈割对草地质量的影响. 草业学报, 13, 43-49.] | |
[16] | Ren ZW, Li Q, Chu CJ, Zhao LQ, Zhang JQ, Ai DXC, Yang YB, Wang G (2010). Effects of resource additions on species richness and ANPP in an alpine meadow community. Journal of Plant Ecology, 3, 25-31. |
[17] | Song YT, Zhou DW, Li Q, Wang P, Huang YX (2012). Leaf nitrogen and phosphorus stoichiometry in 80 herbaceous plant species of Songnen grassland in Northeast China. Chinese Journal of Plant Ecology, 36, 222-230. (in Chinese with English abstract) |
[ 宋彦涛, 周道玮, 李强, 王平, 黄迎新 (2012). 松嫩草地80种草本植物叶片氮磷化学计量特征. 植物生态学报, 36, 222-230.] | |
[18] | Sterner RW, Elser JJ (2002). Ecological Stoichiometry: the Biology of Elements from Molecules to the Biosphere Princeton University Press: Princeton. |
[19] | Tessier JT, Raynal DJ (2003). Use of nitrogen to phosphorus ratios in plant tissue as an indicator of nutrient limitation and nitrogen saturation. Journal of Applied Ecology, 40, 523-534. |
[20] | Tilman D, Knops J, Wedin D, Reich P, Ritchie M, Siemann E (1997). The influence of functional diversity and composition on ecosystem processes. Science, 277, 1300-1302. |
[21] | Tjoelker MG, Craine JM, Wedin D, Reich PB, Tilman D (2005). Linking leaf and root trait syndromes among 39 grassland and savannah species. New Phytologist, 167, 493-508. |
[22] | Yang K, Huang JH, Dong D, He JS (2010). Canopy leaf N and P stoichiometry in grassland communities of Qinghai- Tibetan Plateau, China. Chinese Journal of Plant Ecology, 34, 17-22. (in Chinese with English abstract) |
[ 杨阔, 黄建辉, 董丹, 贺金生 (2010). 青藏高原草地植物群落冠层叶片氮磷化学计量学分析. 植物生态学报, 34, 17-22.] | |
[23] | Zeng DH, Cheng GS (2005). Ecological stoichiometry: a science to explore the complexity of living systems. Acta Phytoecologica Sinica, 29, 1007-1019. (in Chinese with English abstract) |
[ 曾德慧, 陈广生 (2005). 生态化学计量学: 复杂生命系统奥秘的探索. 植物生态学报, 29, 1007-1019.] |
[1] | 张文瑾 佘维维 秦树高 乔艳桂 张宇清. 氮和水分添加对黑沙蒿群落优势植物叶片氮磷化学计量特征的影响[J]. 植物生态学报, 2024, 48(5): 590-600. |
[2] | 韩路, 冯宇, 李沅楷, 王雨晴, 王海珍. 地下水埋深对灰胡杨叶片与土壤养分生态化学计量特征及其内稳态的影响[J]. 植物生态学报, 2024, 48(1): 92-102. |
[3] | 李红琴, 张法伟, 仪律北. 高寒草甸表层土壤和优势植物叶片的化学计量特征对降水改变和氮添加的响应[J]. 植物生态学报, 2023, 47(7): 922-931. |
[4] | 吕自立, 刘彬, 常凤, 马紫荆, 曹秋梅. 巴音布鲁克高寒草甸植物功能多样性与生态系统多功能性关系沿海拔梯度的变化[J]. 植物生态学报, 2023, 47(6): 822-832. |
[5] | 李兆光, 文高, 和桂青, 徐天才, 和琼姬, 侯志江, 李燕, 薛润光. 滇西北藜麦氮磷钾生态化学计量特征的物候期动态[J]. 植物生态学报, 2023, 47(5): 724-732. |
[6] | 李伟, 张荣. 亚高寒草甸群落结构决定群落生产力实例验证[J]. 植物生态学报, 2023, 47(5): 713-723. |
[7] | 刘婧, 缑倩倩, 王国华, 赵峰侠. 晋西北丘陵风沙区柠条锦鸡儿叶片与土壤生态化学计量特征[J]. 植物生态学报, 2023, 47(4): 546-558. |
[8] | 林少颖, 曾瑜, 杨文文, 陈斌, 阮敏敏, 尹晓雷, 阳祥, 王维奇. 添加秸秆及其生物炭对茉莉植株与土壤碳氮磷生态化学计量特征的影响[J]. 植物生态学报, 2023, 47(4): 530-545. |
[9] | 何茜, 冯秋红, 张佩佩, 杨涵, 邓少军, 孙小平, 尹华军. 基于叶片和土壤酶化学计量的川西亚高山岷江冷杉林养分限制海拔变化规律[J]. 植物生态学报, 2023, 47(12): 1646-1657. |
[10] | 刘艳方, 王文颖, 索南吉, 周华坤, 毛旭锋, 王世雄, 陈哲. 青海海北植物群落类型与土壤线虫群落相互关系[J]. 植物生态学报, 2022, 46(1): 27-39. |
[11] | 尹晓雷, 刘旭阳, 金强, 李先德, 林少颖, 阳祥, 王维奇, 张永勋. 不同管理模式对茶树碳氮磷含量及其生态化学计量比的影响[J]. 植物生态学报, 2021, 45(7): 749-759. |
[12] | 董利军, 李金花, 陈珊, 张瑞, 孙建, 马妙君. 若尔盖湿地高寒草甸退化过程中土壤有机碳含量变化及成因分析[J]. 植物生态学报, 2021, 45(5): 507-515. |
[13] | 汪子微, 万松泽, 蒋洪毛, 胡扬, 马书琴, 陈有超, 鲁旭阳. 青藏高原不同高寒草地类型土壤酶活性及其影响因子[J]. 植物生态学报, 2021, 45(5): 528-538. |
[14] | 马书琴, 汪子微, 陈有超, 鲁旭阳. 藏北高寒草地土壤有机质化学组成对土壤蛋白酶和脲酶活性的影响[J]. 植物生态学报, 2021, 45(5): 516-527. |
[15] | 李捷, 陈莹莹, 乔福云, 郅堤港, 郭正刚. 高原鼠兔干扰对高寒草甸β多样性的影响[J]. 植物生态学报, 2021, 45(5): 476-486. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19