植物生态学报 ›› 2010, Vol. 34 ›› Issue (5): 477-487.DOI: 10.3773/j.issn.1005-264x.2010.05.001
• 研究论文 • 下一篇
刘琪璟1,*(), 张国春1, 徐倩倩1, 王义东2, 王辉民2
收稿日期:
2009-05-14
接受日期:
2009-09-12
出版日期:
2010-05-14
发布日期:
2010-05-01
通讯作者:
刘琪璟
作者简介:
* E-mail: liuqijing@gmail.com
LIU Qi-Jing1,*(), ZHANG Guo-Chun1, XU Qian-Qian1, WANG Yi-Dong2, WANG Hui-Min2
Received:
2009-05-14
Accepted:
2009-09-12
Online:
2010-05-14
Published:
2010-05-01
Contact:
LIU Qi-Jing
摘要:
利用LI-8100土壤呼吸测定系统, 在室内控制温度条件下测定了长白山高山苔原季节性雪斑大白花地榆(Sanguisorba sitchensis (=S. stipulata))群落土壤呼吸对温度的响应过程, 并根据野外连续测定的全年温度, 估算了雪斑群落土壤呼吸的季节变化, 同时模拟气温升高对土壤呼吸的影响。雪斑土壤温度全年大部分时间维持在0 ℃以上, 极端温度变动幅度不超过20 ℃。模拟计算了10 cm深土壤的呼吸强度, 海拔2 036 m处为307.1 g C·m-2·a-1, 海拔2 260 m处的呼吸量为270.9 g C·m-2·a-1。由于积雪时间长, 冬季呼吸占很大比例, 而且随着海拔的升高比例加大。从海拔2 036 m到2 260 m, 积雪期土壤呼吸分别占全年的42.5% (125.4 g C·m-2·a-1)和49.7% (128.7 g C·m-2·a-1)。模拟气温升高1 ℃并假设积雪时间减少20天, 冬天的呼吸量减少8%左右, 但全年总呼吸量增加8%左右。升温后, 平均增加的呼吸量为0.25 g C·kg-1·a-1 (或22.65 g C·m-2·a-1), 冬季呼吸量减少0.118 g C·kg-1·season-1 (或10.81 g C·m-2·season-1)。
刘琪璟, 张国春, 徐倩倩, 王义东, 王辉民. 长白山高山苔原季节性雪斑土壤呼吸对温度响应的模拟研究. 植物生态学报, 2010, 34(5): 477-487. DOI: 10.3773/j.issn.1005-264x.2010.05.001
LIU Qi-Jing, ZHANG Guo-Chun, XU Qian-Qian, WANG Yi-Dong, WANG Hui-Min. Simulation of soil respiration in response to temperature under snowpacks in the Changbai Mountain, China. Chinese Journal of Plant Ecology, 2010, 34(5): 477-487. DOI: 10.3773/j.issn.1005-264x.2010.05.001
项目 Items | 海拔2 036 m Alt. 2 036 m | 海拔2 260 m Alt. 2 260 m |
---|---|---|
年平均温度 Annual mean temperature (℃) | 3.8 | 2.2 |
日平均最高温度 Daily temperature max (℃) | 16.0 | 15.8 |
日平均最低温度 Daily temperature min (℃) | -1.3 | -2.0 |
日极端最高温度 Extreme temperature max (℃) | 19.0 | 22.1 |
日极端最低温度 Extreme temperature min (℃) | -1.3 | -2.1 |
生物学积温 Bio-cumulated temperature (℃) | 1 447.0 | 1 068.9 |
温暖指数 Warmth index (℃·month) | 25.0 | 17.2 |
寒冷指数 Coldness index (℃·month) | 0 | 0 |
平均温度≥ 1 ℃日数 Days of temperature ≥ 11 ℃ | 129 | 107 |
平均温度≤ -1 ℃日数 Day of temperature ≤ -1 ℃ | 31 | 126 |
平均温度 ± 0.9 ℃天数 Days of ± 0.9 ℃ | 205 | 132 |
平均温度≤ 0 ℃天数 Days of temperature ≤ 0 ℃ | 90 | 256 |
表1 雪斑大白花地榆群落土壤温度特征
Table 1 Soil thermal condition in Sanguisorba sitchensis community in snowpack
项目 Items | 海拔2 036 m Alt. 2 036 m | 海拔2 260 m Alt. 2 260 m |
---|---|---|
年平均温度 Annual mean temperature (℃) | 3.8 | 2.2 |
日平均最高温度 Daily temperature max (℃) | 16.0 | 15.8 |
日平均最低温度 Daily temperature min (℃) | -1.3 | -2.0 |
日极端最高温度 Extreme temperature max (℃) | 19.0 | 22.1 |
日极端最低温度 Extreme temperature min (℃) | -1.3 | -2.1 |
生物学积温 Bio-cumulated temperature (℃) | 1 447.0 | 1 068.9 |
温暖指数 Warmth index (℃·month) | 25.0 | 17.2 |
寒冷指数 Coldness index (℃·month) | 0 | 0 |
平均温度≥ 1 ℃日数 Days of temperature ≥ 11 ℃ | 129 | 107 |
平均温度≤ -1 ℃日数 Day of temperature ≤ -1 ℃ | 31 | 126 |
平均温度 ± 0.9 ℃天数 Days of ± 0.9 ℃ | 205 | 132 |
平均温度≤ 0 ℃天数 Days of temperature ≤ 0 ℃ | 90 | 256 |
编号 Code | 采样时期 Sampling time | 全氮 Total N (%) | 速效氮Available N (mg·kg-1) | 有机质 Organic matter (%) | 有机碳 Organic C (%) |
---|---|---|---|---|---|
1 | 2007-06-26 | 0.466 | 447.3 | 10.256 | 5.949 |
2 | 2008-10-16 | 0.193 | 291.9 | 4.429 | 2.569 |
3 | 2007-10-16 | 0.291 | 288.3 | 5.988 | 3.473 |
14 | 2007-08-30 | 0.299 | 289.0 | 6.506 | 3.774 |
15 | 2008-08-22 | 0.374 | - | 8.463 | 4.909 |
平均 Mean | 0.325 | 329.1 | 7.128 | 4.135 |
表2 雪斑大白花地榆群落土壤养分及有机质
Table 2 Soil organic matter and nutrients in Sanguisorba sitchensis community in snowpack
编号 Code | 采样时期 Sampling time | 全氮 Total N (%) | 速效氮Available N (mg·kg-1) | 有机质 Organic matter (%) | 有机碳 Organic C (%) |
---|---|---|---|---|---|
1 | 2007-06-26 | 0.466 | 447.3 | 10.256 | 5.949 |
2 | 2008-10-16 | 0.193 | 291.9 | 4.429 | 2.569 |
3 | 2007-10-16 | 0.291 | 288.3 | 5.988 | 3.473 |
14 | 2007-08-30 | 0.299 | 289.0 | 6.506 | 3.774 |
15 | 2008-08-22 | 0.374 | - | 8.463 | 4.909 |
平均 Mean | 0.325 | 329.1 | 7.128 | 4.135 |
编号 Code | a | b | r | Q10 | 采样时间 Sampling time | 处理 Treatment | -1 ℃时的呼吸 Respiration at -1 ℃ | -2 ℃时的呼吸 Respiration at -2 ℃ |
---|---|---|---|---|---|---|---|---|
1 | 17.801 | 0.112 58 | 0.91 | 3.0826 | 2007-06-26 | 扰动土 Disturbed | 15.906 | 14.212 |
2 | 14.797 | 0.088 15 | 0.89 | 2.4146 | 2008-10-16 | 扰动土Disturbed | 13.548 | 12.405 |
3 | 17.861 | 0.075 93 | 0.90 | 2.1367 | 2007-10-16 | 扰动土Disturbed | 15.345 | |
18 | 31.588 | 0.064 35 | 0.98 | 1.9031 | 2007-08-30 | 扰动土Disturbed | 27.773 | |
14 | 23.371 | 0.072 01 | 0.87 | 2.0547 | 2008-07-03 | 原状Intact | 21.747 | 20.236 |
15 | 16.719 | 0.081 75 | 0.83 | 2.2650 | 2008-08-21 | 原状Intact | 15.407 | 14.197 |
1+2+3+18 | 22.440 | 0.075 58 | 0.88 | 2.1293 | - | 扰动土Disturbed | 20.807 | 24.202 |
14+15 | 18.284 | 0.080 38 | 0.85 | 2.2340 | - | 原状 Intact | 16.872 | 16.555 |
综合 All | 21.207 | 0.077 15 | 0.87 | 2.1630 | - | 综合 All | 19.632 | 29.619 |
表3 不同季节土壤呼吸(μmol·kg-1·h-1)的温度响应方程(y=a?e(bt))参数
Table 3 Parameters for response equations (y=a?e(bt)) of soil respiration (μmol·kg-1·h-1) in different seasons
编号 Code | a | b | r | Q10 | 采样时间 Sampling time | 处理 Treatment | -1 ℃时的呼吸 Respiration at -1 ℃ | -2 ℃时的呼吸 Respiration at -2 ℃ |
---|---|---|---|---|---|---|---|---|
1 | 17.801 | 0.112 58 | 0.91 | 3.0826 | 2007-06-26 | 扰动土 Disturbed | 15.906 | 14.212 |
2 | 14.797 | 0.088 15 | 0.89 | 2.4146 | 2008-10-16 | 扰动土Disturbed | 13.548 | 12.405 |
3 | 17.861 | 0.075 93 | 0.90 | 2.1367 | 2007-10-16 | 扰动土Disturbed | 15.345 | |
18 | 31.588 | 0.064 35 | 0.98 | 1.9031 | 2007-08-30 | 扰动土Disturbed | 27.773 | |
14 | 23.371 | 0.072 01 | 0.87 | 2.0547 | 2008-07-03 | 原状Intact | 21.747 | 20.236 |
15 | 16.719 | 0.081 75 | 0.83 | 2.2650 | 2008-08-21 | 原状Intact | 15.407 | 14.197 |
1+2+3+18 | 22.440 | 0.075 58 | 0.88 | 2.1293 | - | 扰动土Disturbed | 20.807 | 24.202 |
14+15 | 18.284 | 0.080 38 | 0.85 | 2.2340 | - | 原状 Intact | 16.872 | 16.555 |
综合 All | 21.207 | 0.077 15 | 0.87 | 2.1630 | - | 综合 All | 19.632 | 29.619 |
图2 原状土和扰动土呼吸对温度的响应。共6个处理, 18个样品。
Fig. 2 Respiration of intact and disturbed soil in relation with temperature. Six treatments, each with 3 samples. y=a?e(bt), a = 21.207, b = 0.077 148, r = 0.87, n = 220, p < 0.000 1.
项目 Item | 海拔2 036 m Alt. 2 036 m | 海拔2 260 m Alt. 2 260 m |
---|---|---|
目前呼吸 Present respiration | ||
单位干土 By mass (g C·kg-1·a-1) | 3.207 | 2.814 |
单位面积 By area (g C·m-2·a-1) | 295.0 | 258.9 |
冬季 Winter (g C·kg-1·a-1) | 1.363 | 1.399 |
夏季 Summer (g C ·kg-1·a-1) | 1.844 | 1.415 |
升温1 ℃ With 1 ℃ rise | ||
单位干土 By mass (g C·kg-1·a-1) | 3.474 | 3.039 |
单位面积 By area (g C·m-2·a-1) | 319.6 | 279.6 |
冬季 Winter (g C·kg-1·a-1) | 1.243 | 1.284 |
夏季 Summer (g C·kg-1·a-1) | 2.231 | 1.755 |
预测变化 Potential change | ||
单位干土 By mass (g C·kg-1·a-1) | 0.267 | 0.225 |
单位面积 By area (g C·m-2·a-1) | 24.6 | 20.7 |
冬季 Winter (g C·kg-1·a-1) | -0.120 | -0.115 |
夏季 Summer (g C·kg-1·a-1) | 0.387 | 0.340 |
表4 现实条件与增温条件下雪斑群落土壤呼吸速率的季节变化
Table 4 Soil respiration and its seasonal variation in snowpack in current and warmed scenarios
项目 Item | 海拔2 036 m Alt. 2 036 m | 海拔2 260 m Alt. 2 260 m |
---|---|---|
目前呼吸 Present respiration | ||
单位干土 By mass (g C·kg-1·a-1) | 3.207 | 2.814 |
单位面积 By area (g C·m-2·a-1) | 295.0 | 258.9 |
冬季 Winter (g C·kg-1·a-1) | 1.363 | 1.399 |
夏季 Summer (g C ·kg-1·a-1) | 1.844 | 1.415 |
升温1 ℃ With 1 ℃ rise | ||
单位干土 By mass (g C·kg-1·a-1) | 3.474 | 3.039 |
单位面积 By area (g C·m-2·a-1) | 319.6 | 279.6 |
冬季 Winter (g C·kg-1·a-1) | 1.243 | 1.284 |
夏季 Summer (g C·kg-1·a-1) | 2.231 | 1.755 |
预测变化 Potential change | ||
单位干土 By mass (g C·kg-1·a-1) | 0.267 | 0.225 |
单位面积 By area (g C·m-2·a-1) | 24.6 | 20.7 |
冬季 Winter (g C·kg-1·a-1) | -0.120 | -0.115 |
夏季 Summer (g C·kg-1·a-1) | 0.387 | 0.340 |
图4 土壤日平均温度季节变化及升温模拟。 观测位置海拔2 260 m处。假设升温1 ℃, 积雪时间缩短20天。
Fig. 4 Seasonal variation of daily mean temperature and simulation of warming. Site location at Alt. 2 260 m. By presumption of 1 °C rising in temperature and 20 days shortening in snow-period.
处理 Treatment | a | b | 备注 |
---|---|---|---|
小时温度扰动土 Hourly disturbed | 22.440 | 0.075 579 | r = 0.88, n = 143, p < 0.000 1 |
小时温度原状 Hourly intact | 18.284 | 0.080 378 | r = 0.85, n = 116, p < 0.000 1 |
小时温度综合 Hourly both | 21.207 | 0.077 148 | r = 0.87, n = 259, p < 0.000 1 |
日平均温度扰动土 Daily mean disturbed | 22.458 | 0.076 188 | * |
日平均温度原状 Daily mean intact | 18.301 | 0.081 066 | * |
日平均温度综合 Daily mean both | 20.273 | 0.078 627 | * |
月平均温度扰动土 Monthly mean disturbed | 22.539 | 0.077 120 | * |
月平均温度原状 Monthly mean intact | 18.370 | 0.082 102 | * |
月平均温度综合 Monthly mean both | 20.348 | 0.079 611 | * |
表5 不同尺度时间步长拟合呼吸(μmol·kg-1)对温度的响应方程
Table 5 Temperature-dependent respiration equations with different time intervals
处理 Treatment | a | b | 备注 |
---|---|---|---|
小时温度扰动土 Hourly disturbed | 22.440 | 0.075 579 | r = 0.88, n = 143, p < 0.000 1 |
小时温度原状 Hourly intact | 18.284 | 0.080 378 | r = 0.85, n = 116, p < 0.000 1 |
小时温度综合 Hourly both | 21.207 | 0.077 148 | r = 0.87, n = 259, p < 0.000 1 |
日平均温度扰动土 Daily mean disturbed | 22.458 | 0.076 188 | * |
日平均温度原状 Daily mean intact | 18.301 | 0.081 066 | * |
日平均温度综合 Daily mean both | 20.273 | 0.078 627 | * |
月平均温度扰动土 Monthly mean disturbed | 22.539 | 0.077 120 | * |
月平均温度原状 Monthly mean intact | 18.370 | 0.082 102 | * |
月平均温度综合 Monthly mean both | 20.348 | 0.079 611 | * |
[1] | Coxson DS, Parkinson D (1987). Winter respiratory activity in aspen woodland forest floor litter and soils. Soil Biology and Biochemistry, 19, 49-59. |
[2] | Elberling B (2007). Annual soil CO2 effluxes in the High Arctic: the role of snow thickness and vegetation type. Soil Biology Biochemistry, 39, 646-654. |
[3] | Fahnestock JT, Jones MH, Welker JM (1999). Wintertime CO2 efflux from arctic soils: implications for annual carbon budgets. Global Biogeochemical Cycles, 13, 775-779. |
[4] | Fahnestock JT, Povirk KL, Welker JM (2000). Ecological significance of litter redistribution by wind and snow in arctic landscapes. Ecography, 23, 623-631. |
[5] | Fahnestock JT, Jones MH, Welker JM (1999). Wintertime CO2 efflux from arctic soils: implications for annual carbon budgets. Global Biogeochemical Cycles, 13, 775-779. |
[6] | Grogan P, Michelsen A, Ambus P, Jonasson S (2004). Freeze-thaw regime effects on carbon and nitrogen dynamics in sub-arctic heath tundra mesocosms. Soil Biology and Biochemistry, 36, 641-654. |
[7] | Grogan P, Lii CFS (1999). Arctic soil respiration: effects of climate and vegetation depend on season. Ecosystems, 2, 451-459. |
[8] | Huang XC (黄锡畴) (1999). Progress of researches on alpine tundra in Changbai Mountain. Geographical Science (地理科学), 19, 2-9. (in Chinese) |
[9] | Jones MH, Fahnestock JT, Welker JM (1999). Early and late winter CO2 efflux from arctic tundra in the Kuparuk River watershed, Alaska, USA. Arctic and Alpine Research, 31, 187-190. |
[10] | Kutzbach L, Wille C, Pfeiffer EM (2007). The exchange of carbon dioxide between wet arctic tundra and the atmosphere at the Lena River Delta, Northern Siberia. Biogeosciences Discussions, 4, 1953-2005. |
[11] | Liu JS (刘景双) (1993). A study on the elements cycling of the (Rhododendron aureum) community in alpine tundra of Changbai Mountain. Acta Ecologica Sinica (生态学报), 13, 96-99. (in Chinese) |
[12] | Mikan CJ, Schimel JP, Doyle AP (2002). Temperature controls of microbial respiration in arctic tundra soils above and below freezing. Soil Biology and Biochemistry, 34, 1785-1795. |
[13] | Nakamoto K, Oechel WC, Lipson D (2006). Continuous measurement of CO2 concentration in arctic soil by small open-path type CO2 sensors. http://adsabs.harvard.edu/abs/2006AGUFM.C51A0380N |
[14] |
Nemergut DR, Costello EK, Meyer AF, Pescador MY, Weintraub MN, Schmidt SK (2005). Structure and function of alpine and arctic soil microbial communities. Research in Microbiology, 156, 775-784.
URL PMID |
[15] | Oechel WC, Vourlitis G, Hastings SJ (1997). Cold season CO2 emission from Arctic soils. Global Biogeochem Cycles, 11, 163-172. |
[16] | Panikov NS, Flanagan PW, Oechel WC, Mastepanov MA, Christensen TR (2006). Microbial activity in soils frozen to below -39 °C. Soil Biology and Biochemistry, 38, 785-794. |
[17] | Post WM, Emanuel WR, Zinke PJ, Stangenberger AG (1982). Soil carbon pools and world life zones. Nature, 298, 156-159. |
[18] | Rivkina E, Friedmann EI, McKay CP, Gilichinsky DA (2000). Metabolic activity of permafrost bacteria below the freezing point. Applied and Environmental Microbiology, 66, 3230-3233. |
[19] | Romanovsky VE, Osterkamp TE (2000). Effects of unfrozen water on heat and mass transport processes in the active layer and permafrost. Permafrost and Periglacial Processes, 11, 219-239. |
[20] | Schimel JP, Fahnestock J, Michaelson G (2006). Cold-season production of CO2 in arctic soils: Can laboratory and field estimates be reconciled through a simple modeling approach? Arctic Antarctic Alpine Research, 38, 249-256. |
[21] | Schimel JP, Mikan C (2005). Changing microbial substrate use in Arctic tundra soils through a freeze-thaw cycle. Soil Biology and Biochemistry, 37, 1411-1418. |
[22] | Sun Y (孙轶), Wei J (魏晶), Wu G (吴钢), Zhao JZ (赵景柱) (2005). Soil respiration and affecting factors on the alpine tundra of Changbai Mountain. Chinese Journal of Ecology (生态学杂志), 24, 603-606. (in Chinese) |
[23] | Wada N, Liu QJ, Kawada K (2006). Seasonal variations in soil temperature on the alpine tundra community in Mt. Changbai in Northeast China: comparison with Mt. Tateyama in Central Japan. Far Eastern Studies, 5, 35-43. |
[24] | Wang YX, Wei J, Jiang P, Wu G, Wang HC (2007). Carbon storage and flux for alpine tundra ecosystem in Changbai Mountain, Northeast China. Journal of Forestry Research, 18, 109-113. |
[25] | Wang W (王娓), Wang T (汪涛), Peng SS (彭书时), Fang JY (方精云) (2007). Review of winter CO2 efflux from soils: a key process of CO2 exchange between soil and atmosphere. Journal of Plant Ecology (Chinese Version) (植物生态学报), 31, 394-402. (in Chinese with English abstract) |
[26] | Wei J (魏晶), Deng HB (邓红兵), Wu G (吴钢), Hao YJ (郝莹婕), Shang WY (尚文艳) (2004a). Spatial variations in nutrient accumulations within the tundra zone on Changbai Mountain. Acta Ecologica Sinica (生态学报), 24, 2360-2366. (in Chinese with English abstract) |
[27] | Wei J (魏晶), Wu G (吴钢), Deng HB (邓红兵) (2004b). Researches on nutrient return of litterfall in the alpine tundra ecosystem of Changbai Mountain. Acta Ecologica Sinica (生态学报), 24, 2211-2216. (in Chinese with English abstract) |
[28] | Welker JM, Fahnestock JT, Jones MH (2000). Annual CO2 flux in dry and moist arctic tundra: field responses to increases in summer temperatures and winter snow depth. Climatic Change, 44, 139-150. |
[29] | Zamolodchikov DG, Karelin DV, Ivaschenko AI, Oechel WC, Hastings SJ (2003). CO2 flux measurements in Russian Far East tundra using eddy covariance and closed chamber techniques. Tellus, 55B, 879-892. |
[30] | Zimov SA, Zimova GM, Daviodov SP, Daviodova AI, Voropaev YV, Voropaeva ZV, Prosiannikov SF, Prosiannikova OV (1993). Winter biotic activity and production of CO2 in Siberian soils: a factor in the greenhouse effect. Journal of Geophysical Research, 98, 5017-5023. |
[31] | Zimov SA, Davidov SP, Prosiannikov YV, Semiletov IP, Chapin MC, Chapin FS (1996). Siberian CO2 efflux in winter as a CO2 source and cause of seasonality in atmospheric CO2. Climatic Change, 33, 111-120. |
[1] | 沈健, 何宗明, 董强, 郜士垒, 林宇. 轻度火烧对滨海沙地人工林土壤呼吸速率和非生物因子的影响[J]. 植物生态学报, 2023, 47(7): 1032-1042. |
[2] | 杨元合, 张典业, 魏斌, 刘洋, 冯雪徽, 毛超, 徐玮婕, 贺美, 王璐, 郑志虎, 王媛媛, 陈蕾伊, 彭云峰. 草地群落多样性和生态系统碳氮循环对氮输入的非线性响应及其机制[J]. 植物生态学报, 2023, 47(1): 1-24. |
[3] | 郑甲佳, 黄松宇, 贾昕, 田赟, 牟钰, 刘鹏, 查天山. 中国森林生态系统土壤呼吸温度敏感性空间变异特征及影响因素[J]. 植物生态学报, 2020, 44(6): 687-698. |
[4] | 杨泽, 嘎玛达尔基, 谭星儒, 游翠海, 王彦兵, 杨俊杰, 韩兴国, 陈世苹. 氮添加量和施氮频率对温带半干旱草原土壤呼吸及组分的影响[J]. 植物生态学报, 2020, 44(10): 1059-1072. |
[5] | 胡姝娅,刁华杰,王惠玲,薄元超,申颜,孙伟,董宽虎,黄建辉,王常慧. 北方农牧交错带温性盐碱化草地土壤呼吸对不同形态氮添加和刈割的响应[J]. 植物生态学报, 2020, 44(1): 70-79. |
[6] | 温超,单玉梅,晔薷罕,张璞进,木兰,常虹,任婷婷,陈世苹,白永飞,黄建辉,孙海莲. 氮和水分添加对内蒙古荒漠草原放牧生态系统土壤呼吸的影响[J]. 植物生态学报, 2020, 44(1): 80-92. |
[7] | 李建军, 刘恋, 陈迪马, 许丰伟, 程军回, 白永飞. 底座入土深度和面积对典型草原土壤呼吸测定结果的影响[J]. 植物生态学报, 2019, 43(2): 152-164. |
[8] | 王祥, 朱亚琼, 郑伟, 关正翾, 盛建东. 昭苏山地草甸4种典型土地利用方式下的土壤呼吸特征[J]. 植物生态学报, 2018, 42(3): 382-396. |
[9] | 朱志成, 黄银, 许丰伟, 邢稳, 郑淑霞, 白永飞. 降雨强度和时间频次对内蒙古典型草原土壤氮矿化的影响[J]. 植物生态学报, 2017, 41(9): 938-952. |
[10] | 杨开军, 杨万勤, 谭羽, 贺若阳, 庄丽燕, 李志杰, 谭波, 徐振锋. 川西亚高山云杉林冬季土壤呼吸对雪被去除的短期响应[J]. 植物生态学报, 2017, 41(9): 964-971. |
[11] | 杨青霄, 田大栓, 曾辉, 牛书丽. 降水格局改变背景下土壤呼吸变化的主要影响因素及其调控过程[J]. 植物生态学报, 2017, 41(12): 1239-1250. |
[12] | 葛晓改, 周本智, 肖文发, 王小明, 曹永慧, 叶明. 生物质炭添加对毛竹林土壤呼吸动态和温度敏感性的影响[J]. 植物生态学报, 2017, 41(11): 1177-1189. |
[13] | 张建华, 唐志尧, 沈海花, 方精云. 氮添加对北京东灵山地区灌丛土壤呼吸的影响[J]. 植物生态学报, 2017, 41(1): 81-94. |
[14] | 张蔷, 李家湘, 谢宗强. 氮添加对亚热带山地杜鹃灌丛土壤呼吸的影响[J]. 植物生态学报, 2017, 41(1): 95-104. |
[15] | 李晓杰, 刘小飞, 熊德成, 林伟盛, 林廷武, 施友文, 谢锦升, 杨玉盛. 中亚热带杉木人工林和米槠次生林凋落物添加与去除对土壤呼吸的影响[J]. 植物生态学报, 2016, 40(5): 447-457. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19