植物生态学报 ›› 2014, Vol. 38 ›› Issue (1): 45-53.DOI: 10.3724/SP.J.1258.2014.00005
所属专题: 生态系统碳水能量通量; 土壤呼吸
吴君君, 杨智杰*(), 刘小飞, 熊德成, 林伟盛, 陈朝琪, 王小红
收稿日期:
2013-10-21
接受日期:
2013-12-05
出版日期:
2014-10-21
发布日期:
2014-01-15
通讯作者:
杨智杰
作者简介:
*(E-mail:daoyang9@163.com)WU Jun-Jun, YANG Zhi-Jie*(), LIU Xiao-Fei, XIONG De-Cheng, LIN Wei-Sheng, CHEN Chao-Qi, WANG Xiao-Hong
Received:
2013-10-21
Accepted:
2013-12-05
Online:
2014-10-21
Published:
2014-01-15
Contact:
YANG Zhi-Jie
摘要:
区分森林土壤呼吸组分是了解生态系统碳循环的重要环节。该文以福建省三明市格氏栲自然保护区米槠(Castanopsis carlesii)人工林和邻近的杉木(Cunninghamia lanceolata)人工林为研究对象, 于2012年8月至2013年7月, 采用LI-8100开路式土壤碳通量系统, 通过挖壕沟方法, 测定了土壤呼吸及异养呼吸的速率, 同时测定了5 cm深处的土壤温度和0-12 cm深处的土壤含水量。利用指数模型和双因素模型, 分析土壤呼吸及其组分与土壤温度和土壤含水量的关系, 同时计算了土壤呼吸各组分在土壤呼吸中所占的比例, 并分析了不同森林类型对土壤呼吸及其组分的影响。结果表明: 米槠人工林和杉木人工林土壤呼吸及其组分的季节变化显著, 均呈单峰型曲线, 与5 cm深处的土壤温度呈极显著正相关关系。土壤温度可以分别解释米槠人工林土壤呼吸、自养呼吸和异养呼吸变化的70.3%、73.4%和58.2%, 可以解释杉木人工林土壤呼吸、自养呼吸和异养呼吸变化的77.9%、65.7%和79.2%。土壤呼吸及其组分与土壤含水量没有相关关系。米槠和杉木人工林自养呼吸的年通量分别为4.00和2.18 t C·hm-2·a-1, 占土壤呼吸年通量的32.5%和24.1%; 异养呼吸年通量分别为8.32和6.88 t C·hm-2·a-1, 分别占土壤呼吸年通量的67.5%和75.9%, 米槠人工林土壤呼吸及其组分的年通量都大于杉木人工林。
方法 Method
吴君君, 杨智杰, 刘小飞, 熊德成, 林伟盛, 陈朝琪, 王小红. 米槠和杉木人工林土壤呼吸及其组分分析. 植物生态学报, 2014, 38(1): 45-53. DOI: 10.3724/SP.J.1258.2014.00005
WU Jun-Jun, YANG Zhi-Jie, LIU Xiao-Fei, XIONG De-Cheng, LIN Wei-Sheng, CHEN Chao-Qi, WANG Xiao-Hong. Analysis of soil respiration and components in Castanopsis carlesiiand Cunninghamia lanceolataplantations. Chinese Journal of Plant Ecology, 2014, 38(1): 45-53. DOI: 10.3724/SP.J.1258.2014.00005
试验地 Study site | 土壤深度 Soil depth (cm) | 有机碳 Organic carbon (g·kg-1) | 全氮 Total N (g·kg-1) | 全磷 Total P (g·kg-1) | 容重 Bulk density (g·cm-3) | pH | 年凋落物量 Annual litter-fall biomass (t·hm-2) |
---|---|---|---|---|---|---|---|
米槠人工林 Castanopsis carlesii plantation | 0-10 | 29.84 | 1.97 | 0.48 | 1.12 | 4.40 | 5.91 |
10-20 | 17.90 | 1.36 | 0.52 | 1.24 | 4.10 | ||
杉木人工林 Cunninghamia lanceolata plantation | 0-10 | 22.91 | 1.51 | 0.36 | 1.20 | 4.87 | 3.40 |
10-20 | 14.47 | 1.01 | 0.31 | 1.35 | 4.64 |
表1 试验地主要特征和表层土壤(0-20 cm深处)性质
Table 1 Major characteristics of study sites and surface soil (0-20 cm depth) properties
试验地 Study site | 土壤深度 Soil depth (cm) | 有机碳 Organic carbon (g·kg-1) | 全氮 Total N (g·kg-1) | 全磷 Total P (g·kg-1) | 容重 Bulk density (g·cm-3) | pH | 年凋落物量 Annual litter-fall biomass (t·hm-2) |
---|---|---|---|---|---|---|---|
米槠人工林 Castanopsis carlesii plantation | 0-10 | 29.84 | 1.97 | 0.48 | 1.12 | 4.40 | 5.91 |
10-20 | 17.90 | 1.36 | 0.52 | 1.24 | 4.10 | ||
杉木人工林 Cunninghamia lanceolata plantation | 0-10 | 22.91 | 1.51 | 0.36 | 1.20 | 4.87 | 3.40 |
10-20 | 14.47 | 1.01 | 0.31 | 1.35 | 4.64 |
图1 米槠和杉木人工林土壤呼吸速率(RS)、异养呼吸速率(RH)和自养呼吸速率(RA)的年动态(平均值±标准偏差)。
Fig. 1 Annual dynamics of soil respiration rate (RS), hetero- trophic respiration rate (RH), and autotrophic respiration rate (RA) in Castanopsis carlesii and Cunninghamia lanceolata plantations (mean ± SD).
米槠人工林 Castanopsis carlesii plantation | 杉木人工林 Cunninghamia lanceolata plantation | |||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ERA | ERH | ERS | ERA | ERH | ERS | |||||||||||||||
年通量 Annual CO2 efflux (t C·hm-2·a-1) | 4.00 ± 0.77 | 8.32 ± 0.52 | 12.30 ± 0.80 | 2.18 ± 0.88 | 6.88 ± 1.23 | 9.06 ± 0.82 | ||||||||||||||
ERA和ERH在ERS中的比例(%) The proportion of ERH and ERAto ERS (%) | 32.5 | 67.5 | 100.0 | 24.1 | 75.9 | 100.0 | ||||||||||||||
Q10 | 3.74 | 1.92 | 2.41 | 3.00 | 1.82 | 2.12 |
表2 土壤呼吸及其组分的年通量和土壤呼吸温度敏感性(Q10) (平均值±标准偏差)
Table 2 Annual CO2 efflux of soil respiration and partitioning of the components and the temperature sensitivity of soil respiration (Q10) (mean ± SD)
米槠人工林 Castanopsis carlesii plantation | 杉木人工林 Cunninghamia lanceolata plantation | |||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ERA | ERH | ERS | ERA | ERH | ERS | |||||||||||||||
年通量 Annual CO2 efflux (t C·hm-2·a-1) | 4.00 ± 0.77 | 8.32 ± 0.52 | 12.30 ± 0.80 | 2.18 ± 0.88 | 6.88 ± 1.23 | 9.06 ± 0.82 | ||||||||||||||
ERA和ERH在ERS中的比例(%) The proportion of ERH and ERAto ERS (%) | 32.5 | 67.5 | 100.0 | 24.1 | 75.9 | 100.0 | ||||||||||||||
Q10 | 3.74 | 1.92 | 2.41 | 3.00 | 1.82 | 2.12 |
RS= aebT | RS= aW + b | RS= aebTWc | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
a | b | R2 | a | b | R2 | a | b | c | R2 | ||
米槠人工林 Castanopsis carlesii plantation | RA | 0.047 | 0.154 | 0.734** | 1.693 | -0.027 | 0.025 | 0.021 | 0.186 | 0.055 | 0.701** |
RH | 0.616 | 0.065 | 0.582** | 1.184 | 0.055 | 0.149 | 0.160 | 0.087 | 0.312 | 0.677** | |
RS | 0.573 | 0.088 | 0.703** | 3.774 | -0.014 | 0.002 | 0.181 | 0.119 | 0.197 | 0.727** | |
杉木人工林 Cunninghamia lanceolata plantation | RA | 0.094 | 0.110 | 0.657** | 0.653 | 0.015 | 0.044 | 0.069 | 0.094 | 0.256 | 0.652** |
RH | 0.528 | 0.060 | 0.792** | 1.738 | -0.001 | 0.000 | 0.278 | 0.066 | 0.127 | 0.720** | |
RS | 0.593 | 0.075 | 0.779** | 2.103 | 0.029 | 0.038 | 0.323 | 0.079 | 0.194 | 0.785** |
表3 土壤呼吸速率与土壤温度(T)和土壤含水量(W)不同模型的参数
Table 3 Parameters for different models showing the relationships of soil respiration with soil temperature (T) and soil water content (W)
RS= aebT | RS= aW + b | RS= aebTWc | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
a | b | R2 | a | b | R2 | a | b | c | R2 | ||
米槠人工林 Castanopsis carlesii plantation | RA | 0.047 | 0.154 | 0.734** | 1.693 | -0.027 | 0.025 | 0.021 | 0.186 | 0.055 | 0.701** |
RH | 0.616 | 0.065 | 0.582** | 1.184 | 0.055 | 0.149 | 0.160 | 0.087 | 0.312 | 0.677** | |
RS | 0.573 | 0.088 | 0.703** | 3.774 | -0.014 | 0.002 | 0.181 | 0.119 | 0.197 | 0.727** | |
杉木人工林 Cunninghamia lanceolata plantation | RA | 0.094 | 0.110 | 0.657** | 0.653 | 0.015 | 0.044 | 0.069 | 0.094 | 0.256 | 0.652** |
RH | 0.528 | 0.060 | 0.792** | 1.738 | -0.001 | 0.000 | 0.278 | 0.066 | 0.127 | 0.720** | |
RS | 0.593 | 0.075 | 0.779** | 2.103 | 0.029 | 0.038 | 0.323 | 0.079 | 0.194 | 0.785** |
图2 米槠和杉木人工林土壤温度和含水量年动态(平均值±标准偏差)。
Fig. 2 Annual dynamics of soil temperature and water content in Castanopsis carlesii and Cunninghamia lanceolata plantations (mean ± SD).
气候带 Climatic zone | 植被类型 Vegetation type | 方法 Method | RA/RS (%) | 参考文献 Reference |
---|---|---|---|---|
寒温带 Cold temperate zone | 挪威云杉林 Picea abies forest | 环割 Tree-girdling | 53 | H?gberget al., |
枹栎林 Quercus serrataforest | 壕沟 Trench | 23 | Tomotsune et al., | |
温带 Temperate zone | 落叶林 Deciduous forest | 环割 Tree-girdling | 50 | Levy-Varon et al., |
冷杉林 Abies holophyllaforest | 壕沟 Trench | 34 | Lee et al., | |
落叶林 Deciduous forest | 壕沟 Trench | 31 | Lee et al., | |
蒙古栎林 Quercus mongolicaforest | 壕沟 Trench | 67 | Wang &Yang, | |
山杨林 Populus davidiana forest | 壕沟 Trench | 77 | Wang &Yang, | |
阔叶林 Broad-leaved forest | 壕沟 Trench | 69 | Wang &Yang, | |
山杨和白桦混交林 Populus davidianaand Betula platyphyllamixed forest | 壕沟 Trench | 62 | Wang &Yang, | |
红松林 Pinus koraiensisforest | 壕沟 Trench | 83 | Wang &Yang, | |
落叶松林 Larix gmeliniiforest | 壕沟 Trench | 52 | Wang &Yang, | |
锐齿栎林 Quercus acutidentata forest | 壕沟 Trench | 18.4-39.9 | Luan et al., | |
杨树林 Hybrid poplar forest | 壕沟 Trench | 37 | Saurette et al., | |
亚热带 Subtropical zone | 杉木林 Cunninghamia lanceolataforest | 壕沟 Trench | 33 | Tian et al., |
次生林 Secondary forest | 壕沟 Trench | 31 | Shen et al., | |
锥栗林 Castanopsis chinensis forest | 壕沟和排除根系 Trench and root exclusion | 52-56 | Yi et al., | |
马尾松林 Pinus massoniana forest | 壕沟和排除根系 Trench and root exclusion | 55-63 | Yi et al., | |
马尾松和木荷混交林 Pinus massonianaand Schima superbamixed forest | 壕沟和排除根系 Trench and root exclusion | 54-59 | Yi et al., | |
马尾松林 Pinus massoniana forest | 壕沟 Trench | 39.48 | Han et al., | |
针阔叶混交林 Coniferous and broad-leaved mixed forest | 壕沟 Trench | 33.29 | Han et al., | |
季风常绿阔叶林 Monsoon evergreen broad-leaved forest | 壕沟 Trench | 44.52 | Han et al., | |
杉木林 Cunninghamia lanceolata forest | 壕沟 Trench | 24.1 | 本研究 This study | |
米槠林 Castanopsis carlesii forest | 壕沟 Trench | 32.5 | 本研究 This study | |
热带 Tropical zone | 低地雨林 Lowland tropical forest | 壕沟 Trench | 38 | Sayer & Tanner, |
桉树林 Eucalyptus forest | 壕沟 Trench | 48 | Marsden et al., | |
多树草原 Woody savannas | 壕沟 Trench | 63 | Butler et al., |
表4 不同气候带森林土壤自养呼吸年通量占土壤呼吸的比例
Table 4 Proportions of annual CO2 efflux through autotrophic respiration of forest soil to soil respiration in different climate zones
气候带 Climatic zone | 植被类型 Vegetation type | 方法 Method | RA/RS (%) | 参考文献 Reference |
---|---|---|---|---|
寒温带 Cold temperate zone | 挪威云杉林 Picea abies forest | 环割 Tree-girdling | 53 | H?gberget al., |
枹栎林 Quercus serrataforest | 壕沟 Trench | 23 | Tomotsune et al., | |
温带 Temperate zone | 落叶林 Deciduous forest | 环割 Tree-girdling | 50 | Levy-Varon et al., |
冷杉林 Abies holophyllaforest | 壕沟 Trench | 34 | Lee et al., | |
落叶林 Deciduous forest | 壕沟 Trench | 31 | Lee et al., | |
蒙古栎林 Quercus mongolicaforest | 壕沟 Trench | 67 | Wang &Yang, | |
山杨林 Populus davidiana forest | 壕沟 Trench | 77 | Wang &Yang, | |
阔叶林 Broad-leaved forest | 壕沟 Trench | 69 | Wang &Yang, | |
山杨和白桦混交林 Populus davidianaand Betula platyphyllamixed forest | 壕沟 Trench | 62 | Wang &Yang, | |
红松林 Pinus koraiensisforest | 壕沟 Trench | 83 | Wang &Yang, | |
落叶松林 Larix gmeliniiforest | 壕沟 Trench | 52 | Wang &Yang, | |
锐齿栎林 Quercus acutidentata forest | 壕沟 Trench | 18.4-39.9 | Luan et al., | |
杨树林 Hybrid poplar forest | 壕沟 Trench | 37 | Saurette et al., | |
亚热带 Subtropical zone | 杉木林 Cunninghamia lanceolataforest | 壕沟 Trench | 33 | Tian et al., |
次生林 Secondary forest | 壕沟 Trench | 31 | Shen et al., | |
锥栗林 Castanopsis chinensis forest | 壕沟和排除根系 Trench and root exclusion | 52-56 | Yi et al., | |
马尾松林 Pinus massoniana forest | 壕沟和排除根系 Trench and root exclusion | 55-63 | Yi et al., | |
马尾松和木荷混交林 Pinus massonianaand Schima superbamixed forest | 壕沟和排除根系 Trench and root exclusion | 54-59 | Yi et al., | |
马尾松林 Pinus massoniana forest | 壕沟 Trench | 39.48 | Han et al., | |
针阔叶混交林 Coniferous and broad-leaved mixed forest | 壕沟 Trench | 33.29 | Han et al., | |
季风常绿阔叶林 Monsoon evergreen broad-leaved forest | 壕沟 Trench | 44.52 | Han et al., | |
杉木林 Cunninghamia lanceolata forest | 壕沟 Trench | 24.1 | 本研究 This study | |
米槠林 Castanopsis carlesii forest | 壕沟 Trench | 32.5 | 本研究 This study | |
热带 Tropical zone | 低地雨林 Lowland tropical forest | 壕沟 Trench | 38 | Sayer & Tanner, |
桉树林 Eucalyptus forest | 壕沟 Trench | 48 | Marsden et al., | |
多树草原 Woody savannas | 壕沟 Trench | 63 | Butler et al., |
[1] | Adachi M, Bekku YS, Rashidah W, Okuda T, Koizumi H (2006). Differences in soil respiration between different tropical ecosystems. Applied Soil Ecology, 34,258-265. |
[2] |
Bond-Lamberty B, Thomson A (2010). Temperature-associated increases in the global soil respiration record. Nature, 464,579-583.
DOI URL PMID |
[3] | Bond-Lamberty B, Wang CK, Gower ST (2004). A global relationship between the heterotrophic and autotrophic components of soil respiration? Global Change Biology, 10,1756-1766. |
[4] | Borken W, Xu YJ, Davidson EA, Beese F (2002). Site and temporal variation of soil respiration in European beech, Norway spruce and Scots pine forests. Global Change Biology, 8,1205-1216. |
[5] | Butler A, Meir P, Saiz G, Maracahipes L, Marimon BS, Grace J (2012). Annual variation in soil respiration and its component parts in two structurally contrasting woody savannas in Central Brazil. Plant and Soil, 352,129-142. |
[6] | Carbone MS, Trumbore SE (2007). Contribution of new photosynthetic assimilates to respiration by perennial grasses and shrubs: residence times and allocation patterns. New Phytologist, 176,124-135. |
[7] | Chen GS, Yang YS, Lü PP (2008). Regional patterns of soil respiration in China’s forests. Acta Ecologica Sinica, 28,1748-1761. (in Chinese with English abstract) |
[ 陈光水, 杨玉盛, 吕萍萍 (2008). 中国森林土壤呼吸模式. 生态学报, 28,1748-1761.] | |
[8] | Comstedt D, Boström B, Ekblad A (2011). Autotrophic and heterotrophic soil respiration in a Norway spruce forest: estimating the root decomposition and soil moisture effects in a trenching experiment. Biogeochemistry, 104,121-132. |
[9] | Craine JM, Fierer N, McLauchlan K (2010). Widespread coupling between the rate and temperature sensitivity of organic matter decay. Nature Geoscience, 3,854-857. |
[10] | Dannoura M, Maillard P, Fresneau C, Plain C, Berveiller D, Gerant D, Chipeaux C, Bosc A, Ngao J, Damesin C, Loustau D, Epron D (2011). In situ assessment of the velocity of carbon transfer by tracing 13C in trunk CO 2 efflux after pulse labelling: variations among tree species and seasons. New Phytologist, 190,181-192. |
[11] | Davidson EA, Janssens IA, Luo YQ (2006). On the variability of respiration in terrestrial ecosystems: moving beyond Q 10. Global Change Biology, 12,154-164. |
[12] | Fang C, Moncrieff JB (2001). The dependence of soil CO 2 efflux on temperature. Soil Biology & Biochemistry, 33,155-165. |
[13] | Fischer DG, Hart SC, LeRoy CJ, Whitham TG (2007). Variation in below-ground carbon fluxes along a Populus hybridization gradient. New Phytologist, 176,415-425. |
[14] | Fu SL, Cheng WX, Susfalk R (2002). Rhizosphere respiration varies with plant species and penology, a greenhouse pot experiment. Plant and Soil, 239,133-140. |
[15] |
Gaumont-Guay D, Black TA, Barr AG, Jassal RS, Nesic Z (2008). Biophysical controls on rhizospheric and heterotrophic components of soil respiration in a boreal black spruce stand. Tree Physiology, 28,161-171.
DOI URL PMID |
[16] | Gaumont-Guay D, Black TA, Mccaughey H, Barr AG, Krishnan P, Jassal RS, Nesic Z (2009). Soil CO 2 efflux in contrasting boreal deciduous and coniferous stands and its contribution to the ecosystem carbon balance. Global Change Biology, 15,1302-1319. |
[17] | Han TF, Zhou YG, Li YL, Liu XJ, Zhang DQ (2011). Partitioning soil respiration in lower subtropical forests at different successional stages in southern China. Chinese Journal of Plant Ecology, 35,946-954. (in Chinese with English abstract) |
[ 韩天丰, 周国逸, 李跃林, 刘菊秀, 张德强 (2011). 中国南亚热带森林不同演替阶段土壤呼吸的分离量化. 植物生态学报, 35,946-954.] | |
[18] | Hanson PJ, Edwards NT, Garten CT, Andrews JA (2000). Separating root and soil microbial contributions to soil respiration: a review of methods and observations. Biogeochemistry, 48,115-146. |
[19] | Högberg P, Bhupinderpal-Sing h, Löfvenius MO, Nordgren A (2009). Partitioning of soil respiration into its autotrophic and heterotrophic components by means of tree-girdling in old boreal spruce forest. Forest Ecology and Management, 257,1764-1767. |
[20] |
Högberg P, Nordgren A, Buchmann N, Taylor AFS, Ekblad A, Högberg MN, Nyberg G, Löfvenius MO, Read DJ (2001). Large-scale forest girdling shows that current photosy- nthesis drives soil respiration. Nature, 411,789-792.
URL PMID |
[21] |
Högberg P, Read DJ (2006). Towards a more plant physiological perspective on soil ecology. Trends in Ecology and Evolution, 21,548-554.
DOI URL PMID |
[22] | Janssens IA, Carrara A, Ceulemans R (2004). Annual Q 10 of soil respiration reflects plant phenological patterns as well as temperature sensitivity. Global Change Biology, 10,161-169. |
[23] | Jassal RS, Black TA, Novak MD, Gaumont-Guay D, Nesic Z (2008). Effect of soil water stress on soil respiration and its temperature sensitivity in an 18-year-old temperate Douglas-fir stand. Global Change Biology, 14,1305-1318. |
[24] |
Johnson D, Phoenix GK, Grime JP (2008). Plant community composition, not diversity, regulates soil respiration in grasslands. Biology Letters, 4,345-348.
URL PMID |
[25] |
Karhu K, Fritze H, Hämäläinen K, Vanhala P, Jungner H, Oinonen M, Sonninen E, Tuomi M, Spetz P, Kitunen V, Liski J (2010). Temperature sensitivity of soil carbon fractions in boreal forest soil. Ecology, 91,370-376.
DOI URL PMID |
[26] | Kutsch LW, Staack A, Wötzel J, Middelhoff U, Kappen L (2001). Field measurements of root respiration and total soil respiration in an alder forest. New Phytologist, 150,157-168. |
[27] | Kuzyakov Y (2006). Sources of CO 2 efflux from soil and review of partitioning methods. Soil Biology & Biochemistry, 38,425-488. |
[28] | Kuzyakov Y, Gabrichkova O (2010). Time lag between photosynthesis and carbon dioxide efflux from soil: a review of mechanisms and controls. Global Change Biology, 16,3386-3406. |
[29] | Laik R, Kumar K, Das DK, Chaturvedi OP (2009). Labile soil organic matter pools in a calciorthent after 18 years of afforestation by different plantations. Applied Soil Ecology, 42,71-78. |
[30] | Lavigne MB, Boutin R, Foster RJ, Goodine G, Bernier PY, Robitaille G (2003). Soil respiration responses to tempera- ture are controlled more by roots than by decomposition in balsam fir ecosystems. Canadian Journal of Forest Research, 33,1744-1753. |
[31] |
Lee NY, Koo JW, Noh NJ, Kim J, Son Y (2010). Autotrophic and heterotrophic respiration in needle fir and Quercus- dominated stands in a cool-temperate forest, central Korea. Journal of Plant Research, 123,485-495.
DOI URL PMID |
[32] |
Levy-Varon JH, Schuster WSF, Griffin KL (2012). The autotrophic contribution to soil respiration in a northern temperate deciduous forest and its response to stand disturbance. Oecologia, 169,211-220.
DOI URL PMID |
[33] | Liu Q (2012). The Amount and Nutrient Dynamics of Litterfall in Mid-subtropical Forest with Different Regeneration Patterns. Master degree dissertation, Fujian Normal University, Fuzhou. (in Chinese with English abstract) |
[ 刘强 (2012). 中亚热带不同更新方式森林凋落物数量及养分动态. 硕士学位论文, 福建师范大学, 福州.] | |
[34] | Luan JW, Liu SR, Wang JX, Zhu XL, Shi ZM (2011). Rhizospheric and heterotrophic respiration of a warm-tem- perate oak chronosequence in China. Soil Biology & Biochemistry, 43,503-512. |
[35] | Marsden C, Nouvellon Y, M’Bou AT, Saint-Andre L, Jourdan C, Kinana A, Epron D (2008). Two independent estimations of stand-level root respiration on clonal Eucalyptus stands in Congo: up scaling of direct measurements on roots versus the trenched-plot technique. New Phytologist, 177,676-687. |
[36] | Mikan CJ, Schimel JP, Doyle AP (2002). Temperature controls of microbial respiration in arctic tundra soils above and below freezing. Soil Biology & Biochemistry, 34,1785-1795. |
[37] | Moren AS, Lindroth A (2000). CO 2 exchange at the floor of a boreal forest. Agricultural and Forest Meteorology, 101,1-14. |
[38] | Moyano FE, Kutsch WL, Schulze ED (2007). Response of mycorrhizal, rhizosphere and soil basal respiration to temperature and photosynthesis in a barley field. Soil Biology & Biochemistry, 39,843-853. |
[39] | Ngao J, Longdoz B, Granier A, Epron D (2007). Estimation of autotrophic and heterotrophic components of soil respiration by trenching is sensitive to corrections for root decomposition and changes in soil water content. Plant and Soil, 301,99-110. |
[40] | Nordgren A, Löfvenius MO, Högberg MN, Mellander PE, Högberg P (2003). Tree root and soil heterotrophic respiration as revealed by girdling of boreal Scots pine forest: extending observations beyond the first year. Plant, Cell & Environment, 26,1287-1296. |
[41] | Raich JW, Potter CS, Bhagawati D (2002). Inter annual variability in global soil respiration, 1980-94. Global Change Biology, 8,800-812. |
[42] | Reichstein M, Rey A, Freibauer A, Tenhunen J, Valentini R, Banza J, Casals P, Cheng YF, Grünzweig JM, Irvine J, Joffre R, Law BE, Loustau D, Miglietta F, Oechel W, Ourcival JM, Pereira JS, Peressotti A, Ponti F, Qi Y, Rambal S, Rayment M, Romanya J, Rossi F, Tedeschi V, Tirone G, Xu M, Yakir D (2003). Modeling temporal and large-scale spatial variability of soil respiration from soil water availability, temperature and vegetation productivity indices. Global Biogeochemistry Cycles, 17,1104-1119. |
[43] | Rey A, Pegoraro E, Tedeschi V, Parri ID, Jarvis PG, Valentini R (2002). Annual variation in soil respiration and its components in a coppice oak forest in Central Italy. Global Change Biology, 8,851-886. |
[44] | Ryan MG, Law BE (2005). Interpreting, measuring, and modeling soil respiration. Biogeochemistry, 73,3-27. |
[45] | Saurette DD, Chang SX, Thomas BR (2008). Autotrophic and heterotrophic respiration rates across a chronosequence of hybrid poplar plantations in northern Alberta. Canadian Journal of Soil Science, 88,261-272. |
[46] | Sayer EJ, Tanner EV (2010). A new approach to trenching experiments for measuring root-rhizosphere respiration in a lowland tropical forest. Soil Biology & Biochemistry, 42,347-352. |
[47] | Schindlbacher A, Zechmeister-Boltenstern S, Jandl R (2009). Carbon losses due to soil warming: Do autotrophic and heterotrophic soil respiration respond equally? Global Change Biology, 15,901-913. |
[48] | Shen XS, Chen ST, Hu ZH, Shi YS, Zhang Y (2011). Investigation of heterotrophic and autotrophic components of soil respiration in a secondary forest in subtropical China. Environmental Science, 32,3181-3187. (in Chinese with English abstract) |
[ 沈小帅, 陈书涛, 胡正华, 史燕姝, 张勇 (2011). 亚热带次生林土壤自养和异养呼吸研究. 环境科学, 32,3181-3187.] | |
[49] | Subke JA, Inglima I, Cotrufo MF (2006). Trends and metho-dological impacts in soil CO 2 efflux partitioning: a meta- analytical review. Global Change Biology, 12,921-943. |
[50] | Sulzman EW, Brant JB, Bowden RD, Lajtha K (2005). Contribution of aboveground litter, belowground litter and rhizosphere respiration to total soil CO 2 efflux in an old growth coniferous forest. Biogeochemistry, 73,231-256. |
[51] | Tang JW, Bolstad PV, Martin JG (2009). Soil carbon fluxes and stocks in a Great Lakes forest chronosequence. Global Change Biology, 15,145-155. |
[52] | Tian DL, Wang GJ, Peng YY, Yan WD, Fang X, Zhu F, Chen XY (2011). Contribution of autotrophic and heterotrophic respiration to soil CO 2 efflux in Chinese fir plantations. Australian Journal of Botany, 59,26-31. |
[53] | Tierney GL, Fahey TJ, Groffman PM, Hardy JP, Fitzhugh RD, Driscoll CT, Yavitt JB (2003). Environmental control of fine root dynamics in a northern hardwood forest. Global Change Biology, 9,670-679. |
[54] | Tomotsune M, Yoshitake S, Watanabe S, Koizumi H (2013). Separation of root and heterotrophic respiration within soil respiration by trenching, root biomass regression and root excising methods in a cool-temperate deciduous forest in Japan. Ecological Research, 28,259-269. |
[55] | Vasconcelos SS, Zarin DJ, Capanu M, Littell R, Davidson EA, Ishida FY, Santos EB, Araújo MM, Aragão DV, Rangel-Vasconcelos LGT, Oliveira F, McDowell WH, de Carvalho CJR (2004). Moisture and substrate availability constrain soil trace gas fluxes in an eastern Amazonian regrowth forest. Global Biogeochemical Cycles, 18,1-10. |
[56] | Wang CK, Yang JY (2007). Rhizospheric and heterotrophic components of soil respiration in six Chinese temperate forests. Global Change Biology, 13,123-131. |
[57] | Wang W, Chen WL, Wang SP (2010). Forest soil respiration and its heterotrophic and autotrophic components: global patterns and responses to temperature and precipitation. Soil Biology & Biochemistry, 42,1236-1244. |
[58] | Widen B, Majdi H (2001). Soil CO 2 efflux and root respiration at three sites in a mixed pine and spruce forest: seasonal and diurnal variation. Canadian Journal of Forest Research, 31,786-796. |
[59] |
Yang YS, Chen GS, Guo JF, Xie JS, Wang XG (2007). Soil respiration and carbon balance in a subtropical native forest and two managed plantations. Plant Ecology, 193,71-84.
DOI URL |
[60] | Yang YS, Chen GS, Lin P, Huang RZ, Chen YX, He ZM (2003). Fine root distribution, seasonal pattern and produc- tion in a native forest and monoculture plantations in subtropical China. Acta Ecologica Sinica, 23,1719-1730. |
[61] | Yi ZG, Fu SL, Yi WM, Zhou GY, Mo JM, Zhang DQ, Ding MM, Wang XM, Zhou LX (2007). Partitioning soil respi- ration of subtropical forests with different successional stages in south China. Forest Ecology and Management, 243,178-186. |
[1] | 沈健, 何宗明, 董强, 郜士垒, 林宇. 轻度火烧对滨海沙地人工林土壤呼吸速率和非生物因子的影响[J]. 植物生态学报, 2023, 47(7): 1032-1042. |
[2] | 杨泽, 嘎玛达尔基, 谭星儒, 游翠海, 王彦兵, 杨俊杰, 韩兴国, 陈世苹. 氮添加量和施氮频率对温带半干旱草原土壤呼吸及组分的影响[J]. 植物生态学报, 2020, 44(10): 1059-1072. |
[3] | 李建军, 刘恋, 陈迪马, 许丰伟, 程军回, 白永飞. 底座入土深度和面积对典型草原土壤呼吸测定结果的影响[J]. 植物生态学报, 2019, 43(2): 152-164. |
[4] | 李伟晶, 陈世苹, 张兵伟, 谭星儒, 王珊珊, 游翠海. 半干旱草原土壤呼吸组分区分与菌根呼吸的贡献[J]. 植物生态学报, 2018, 42(8): 850-862. |
[5] | 鲍勇, 高颖, 曾晓敏, 袁萍, 司友涛, 陈岳民, 陈滢伊. 中亚热带3种典型森林土壤碳氮含量和酶活性的关系[J]. 植物生态学报, 2018, 42(4): 508-516. |
[6] | 王祥, 朱亚琼, 郑伟, 关正翾, 盛建东. 昭苏山地草甸4种典型土地利用方式下的土壤呼吸特征[J]. 植物生态学报, 2018, 42(3): 382-396. |
[7] | 朱志成, 黄银, 许丰伟, 邢稳, 郑淑霞, 白永飞. 降雨强度和时间频次对内蒙古典型草原土壤氮矿化的影响[J]. 植物生态学报, 2017, 41(9): 938-952. |
[8] | 葛晓改, 周本智, 肖文发, 王小明, 曹永慧, 叶明. 生物质炭添加对毛竹林土壤呼吸动态和温度敏感性的影响[J]. 植物生态学报, 2017, 41(11): 1177-1189. |
[9] | 张蔷, 李家湘, 谢宗强. 氮添加对亚热带山地杜鹃灌丛土壤呼吸的影响[J]. 植物生态学报, 2017, 41(1): 95-104. |
[10] | 杜虎, 曾馥平, 宋同清, 温远光, 李春干, 彭晚霞, 张浩, 曾昭霞. 广西主要森林土壤有机碳空间分布及其影响因素[J]. 植物生态学报, 2016, 40(4): 282-291. |
[11] | 姚辉, 胡雪洋, 朱江玲, 朱剑霄, 吉成均, 方精云. 北京东灵山3种温带森林土壤呼吸及其20年的变化[J]. 植物生态学报, 2015, 39(9): 849-856. |
[12] | 李苏, 刘文耀, 石贤萌, 柳帅, 胡涛, 黄俊彪, 陈曦, 宋亮, 武传胜. 亚热带森林系统4种附生蓝藻地衣的分布对生境变化的响应[J]. 植物生态学报, 2015, 39(3): 217-228. |
[13] | 王清奎, 李艳鹏, 张方月, 贺同鑫. 短期施氮肥降低杉木幼林土壤的根系和微生物呼吸[J]. 植物生态学报, 2015, 39(12): 1166-1175. |
[14] | 王铭, 刘兴土, 张继涛, 李秀军, 王国栋, 鲁新蕊, 李晓宇. 松嫩平原西部草甸草原5种典型植物群落土壤呼吸的时空动态[J]. 植物生态学报, 2014, 38(4): 396-404. |
[15] | 李悦, 刘颖慧, 申卫军, 徐霞, 田玉强. 内蒙古克氏针茅草原土壤异养呼吸对土壤温度和水分变化的响应[J]. 植物生态学报, 2014, 38(3): 238-248. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19