植物生态学报 ›› 2018, Vol. 42 ›› Issue (4): 508-516.DOI: 10.17521/cjpe.2017.0311
• 研究论文 • 上一篇
出版日期:
2018-04-20
发布日期:
2018-06-01
基金资助:
Yong BAO,Ying GAO,Xiao-Min ZENG,Ping YUAN,You-Tao SI*(),Yue-Min CHEN,Ying-Yi CHEN
Online:
2018-04-20
Published:
2018-06-01
摘要:
森林类型更替是影响生态系统有机质循环的重要因素, 它对森林生态系统的生产力、碳吸存和养分保持功能有影响。然而关于中亚热带不同森林类型对土壤碳氮含量和酶活性的影响及土壤碳氮含量和酶活性之间的关系鲜有报道。该文研究了福建省三明市3种典型亚热带森林——米槠(Castanopsis carlesii)天然次生林(SF)、米槠人工促进天然更新林(AR)、马尾松(Pinus massoniana)人工林(PM)的淋溶层(A层)土壤碳氮含量和土壤微生物酶活性的关系。结果表明: 在3种森林类型表层土壤中, 可溶性有机质中可溶性有机碳、可溶性有机氮(DON)、荧光发射光谱腐殖化指数的趋势均为SF > AR > PM, 芳香化指数大小为PM > AR > SF; SF和AR的NH4 +-N显著高于PM, NO3 --N在3种林分中的含量低且差异不明显, 造成这种差异的原因是树种差异和人为干扰程度不同。PM的β-葡萄糖苷酶活性显著低于SF和AR; 纤维素水解酶活性大小为AR > SF > PM; PM多酚氧化酶显著高于SF和AR, 3种林分过氧化物酶无显著差异。AR的β-N-乙酰氨基葡萄糖苷酶(NAG)显著高于其他两种林分。冗余分析显示土壤总氮和DON是驱动淋溶层土壤酶活性的主要环境因子。总之, 土壤总氮含量与NAG活性呈正相关关系, 并且可溶性有机氮可能是氮循环中的重要一环; 土壤微生物优先利用易分解碳; 且碳氮养分循环之间存在一定的耦合关系。氮提高了与土壤碳相关的水解酶活性, 从而可促进碳周转。
鲍勇, 高颖, 曾晓敏, 袁萍, 司友涛, 陈岳民, 陈滢伊. 中亚热带3种典型森林土壤碳氮含量和酶活性的关系. 植物生态学报, 2018, 42(4): 508-516. DOI: 10.17521/cjpe.2017.0311
Yong BAO, Ying GAO, Xiao-Min ZENG, Ping YUAN, You-Tao SI, Yue-Min CHEN, Ying-Yi CHEN. Relationships between carbon and nitrogen contents and enzyme activities in soil of three typical subtropical forests in China. Chinese Journal of Plant Ecology, 2018, 42(4): 508-516. DOI: 10.17521/cjpe.2017.0311
酶 Enzyme | 缩写 Abbreviation | 功能 Function | 底物 Substrate |
---|---|---|---|
β-葡萄糖苷酶 β-glucosidase | βG | 分解易降解碳 Decomposition of labile carbon | 4-甲基伞形酮-β-D-葡萄糖苷 4-methylumbelliferyl-β-D-glucoside |
纤维素水解酶 Cellulose hydrolysis | CBH | 分解易降解碳 Decomposition of labile carbon | 4-甲基伞形酮-β-D-纤维素二糖苷 4-methylumbelliferyl-β-D-cellobioside |
β-N-乙酰氨基葡萄糖苷酶 β-N-acetylglucosaminidase | NAG | 分解氮 Hydrolyze nitrogen | 4-甲基伞形酮-2-乙酰氨基-2-脱氧-β-D-吡喃葡萄糖苷 4-methylumbelliferyl-N-acetyl-β-D-glucosaminide |
多酚氧化酶 Phenol oxidase | PHO | 分解难降解碳 Decomposition of recalcitrant carbon | 二羟基苯 L-dihydroxyphenylalanine |
过氧化物酶 Peroxidase | PEO | 分解难降解碳 Decomposition of recalcitrant carbon | 二羟基苯 L-dihydroxyphenylalanine |
表1 土壤酶的名称、缩写、功能及底物
Table 1 The abbreviations, function and substrates of soil enzyme
酶 Enzyme | 缩写 Abbreviation | 功能 Function | 底物 Substrate |
---|---|---|---|
β-葡萄糖苷酶 β-glucosidase | βG | 分解易降解碳 Decomposition of labile carbon | 4-甲基伞形酮-β-D-葡萄糖苷 4-methylumbelliferyl-β-D-glucoside |
纤维素水解酶 Cellulose hydrolysis | CBH | 分解易降解碳 Decomposition of labile carbon | 4-甲基伞形酮-β-D-纤维素二糖苷 4-methylumbelliferyl-β-D-cellobioside |
β-N-乙酰氨基葡萄糖苷酶 β-N-acetylglucosaminidase | NAG | 分解氮 Hydrolyze nitrogen | 4-甲基伞形酮-2-乙酰氨基-2-脱氧-β-D-吡喃葡萄糖苷 4-methylumbelliferyl-N-acetyl-β-D-glucosaminide |
多酚氧化酶 Phenol oxidase | PHO | 分解难降解碳 Decomposition of recalcitrant carbon | 二羟基苯 L-dihydroxyphenylalanine |
过氧化物酶 Peroxidase | PEO | 分解难降解碳 Decomposition of recalcitrant carbon | 二羟基苯 L-dihydroxyphenylalanine |
林分类型 Forest type | pH | 含水率 Moisture (%) | 土壤总有机碳 Total soil organic carbon (g·kg-1) | 全氮 Total nitrogen (g·kg-1) | C:N | NH4+-N (mg·kg-1) | NO3--N (mg·kg-1) | 可溶性有机碳 Dissolved organic carbon (mg·kg-1) | 可溶性有机氮 Dissolved organic nitrogen (mg·kg-1) | |
---|---|---|---|---|---|---|---|---|---|---|
SF | 4.72 ± 0.18a | 27.24 ± 1.42b | 41.69 ± 1.46a | 2.43 ± 0.11b | 17.20 ± 0.50a | 80.17 ± 5.10a | 7.67 ± 1.93a | 87.47 ± 29.59a | 8.80 ± 2.28a | |
AR | 4.79 ± 0.10a | 35.02 ± 0.56a | 45.82 ± 5.64a | 2.89 ± 0.16a | 15.80 ± 1.03a | 92.40 ± 3.76a | 4.83 ± 2.80a | 76.98 ± 12.55a | 6.68 ± 2.28a | |
PM | 4.63 ± 0.06a | 28.79 ± 2.49b | 25.16 ± 0.52b | 1.83 ± 0.04c | 13.73 ± 0.59b | 54.47 ± 11.28b | 6.50 ± 0.24a | 26.55 ± 6.44b | 5.84 ± 1.46a |
表2 不同林分类型的主要土壤理化性质和有效养分(平均值±标准偏差, n = 3)
Table 2 Main soil physical and chemical properties and soil available nutrients in different forest types (mean ± SD, n = 3)
林分类型 Forest type | pH | 含水率 Moisture (%) | 土壤总有机碳 Total soil organic carbon (g·kg-1) | 全氮 Total nitrogen (g·kg-1) | C:N | NH4+-N (mg·kg-1) | NO3--N (mg·kg-1) | 可溶性有机碳 Dissolved organic carbon (mg·kg-1) | 可溶性有机氮 Dissolved organic nitrogen (mg·kg-1) | |
---|---|---|---|---|---|---|---|---|---|---|
SF | 4.72 ± 0.18a | 27.24 ± 1.42b | 41.69 ± 1.46a | 2.43 ± 0.11b | 17.20 ± 0.50a | 80.17 ± 5.10a | 7.67 ± 1.93a | 87.47 ± 29.59a | 8.80 ± 2.28a | |
AR | 4.79 ± 0.10a | 35.02 ± 0.56a | 45.82 ± 5.64a | 2.89 ± 0.16a | 15.80 ± 1.03a | 92.40 ± 3.76a | 4.83 ± 2.80a | 76.98 ± 12.55a | 6.68 ± 2.28a | |
PM | 4.63 ± 0.06a | 28.79 ± 2.49b | 25.16 ± 0.52b | 1.83 ± 0.04c | 13.73 ± 0.59b | 54.47 ± 11.28b | 6.50 ± 0.24a | 26.55 ± 6.44b | 5.84 ± 1.46a |
图1 不同林分土壤的芳香化指数(AI)和荧光发射光谱腐殖化指数(HIXem)(平均值±标准偏差, n = 3)。SF, 米槠天然次生林; AR, 米槠人工促进天然更新林; PM, 马尾松人工林。不同小写字母表示不同林分间差异显著(p < 0.05)。
Fig. 1 Aromatic index (AI) and humification index emission mode (HIXem) in different forests (mean ± SD, n = 3). SF, natural secondary forest of Castanopsis carlesii; AR, artificial-assisted natural regeneration forest of Castanopsis carlesii; PM, plantation of Pinus massoniana. Different lowercase letters indicate significant difference among different stands (p < 0.05).
林分类型 Forest type | βG (nmol·g-1·h-1) | CBH (nmol·g-1·h-1) | NAG (nmol·g-1·h-1) | PHO (μmol·g-1·h-1) | PEO (μmol·g-1·h-1) |
---|---|---|---|---|---|
SF | 38.93 ± 7.44a | 1.41 ± 0.29b | 36.42 ± 7.68b | 0.53 ± 0.37b | 14.61 ± 3.86a |
AR | 36.93 ± 6.72a | 3.49 ± 0.59a | 76.98 ± 20.43a | 0.25 ± 0.11b | 13.48 ± 3.74a |
PM | 23.86 ± 5.12b | 0.48 ± 0.16c | 38.94 ± 8.09b | 3.92 ± 0.52a | 20.70 ± 3.83a |
表3 不同林分类型的土壤酶活性(平均值±标准偏差, n = 3)
Table 3 Soil enzyme activities in different forest types (mean ± SD, n = 3)
林分类型 Forest type | βG (nmol·g-1·h-1) | CBH (nmol·g-1·h-1) | NAG (nmol·g-1·h-1) | PHO (μmol·g-1·h-1) | PEO (μmol·g-1·h-1) |
---|---|---|---|---|---|
SF | 38.93 ± 7.44a | 1.41 ± 0.29b | 36.42 ± 7.68b | 0.53 ± 0.37b | 14.61 ± 3.86a |
AR | 36.93 ± 6.72a | 3.49 ± 0.59a | 76.98 ± 20.43a | 0.25 ± 0.11b | 13.48 ± 3.74a |
PM | 23.86 ± 5.12b | 0.48 ± 0.16c | 38.94 ± 8.09b | 3.92 ± 0.52a | 20.70 ± 3.83a |
图2 不同林分土壤环境因子对土壤酶活性影响的冗余分析(RDA)。SF1、SF2、SF3表示米槠次生林样地的3个平行重复; AR1、AR2、AR3表示米槠人工促进天然更新林样地的3个平行重复; PM1、PM2、PM3表示马尾松人工林样地的3个平行重复; DON,可溶性有机氮; DOC,可溶性有机碳; SOC, 土壤有机碳; TN, 总氮。图右下角变量注释表示对土壤酶变化有显著影响作用的环境因子的相应解释比例。
Fig. 2 Redundancy analysis (RDA) of the effect of soil environmental factors on soil enzyme activity in different forest types. SF1, SF2, SF3 represent three parallel replicates of the secondary broadleaved forests of Castanopsis carlesii plot; AR1, AR2, AR3 represent three parallel replicates of the Human-assisted naturally regenerated forests of Castanopsis carlesii plot; PM1, PM2, PM3 represent three parallel replicates representing the Human-assisted naturally regenerated forests of Pinus massoniana plots of Pinus massoniana plantation. DON, dissolved organic nitrogen; DOC, dissolved organic carbon; SOC, soil organic carbon; TN, total nitrogen. The notes of variables in lower right corner of the plot represents the corresponding proportion of environmental factors that have a significant effect on soil enzyme changes.
1 |
A’Bear AD , Jones TH , Kandeler E ( 2014). Interactive effects of temperature and soil moisture on fungal-mediated wood decomposition and extracellular enzyme activity. Soil Biology and Biochemistry, 70, 151- 158.
DOI URL |
2 |
Akagi J , ádám Z , Bastida F ( 2007). Quantity and spectroscopic properties of soil dissolved organic matter (DOM) as a function of soil sample treatments: Air-drying and pre-incubation. Chemosphere, 69, 1040- 1046.
DOI URL PMID |
3 |
Allison SD , Vitousek PM ( 2005). Responses of extracellular enzymes to simple and complex nutrient inputs. Soil Biology and Biochemistry, 37, 937- 944.
DOI URL |
4 |
Allison VJ , Condron LM , Peltzer DA ( 2007). Changes in enzyme activities and soil microbial community composition along carbon and nutrient gradients at the Franz Josef chronosequence, New Zealand. Soil Biology and Biochemistry, 39, 1770- 1781.
DOI URL |
5 |
Bending GD , Turner MK , Jones JE ( 2002). Interactions between crop residue and soil organic matter quality and the functional diversity of soil microbial communities. Soil Biology and Biochemistry, 34, 1073- 1082.
DOI URL |
6 |
Bu XL , Wang LM , Ma WB ( 2010). Spectroscopic characterization of hot-water extractable organic matter from soils under four different vegetation types along an elevation gradient in the Wuyi Mountains. Geoderma, 159, 139- 146.
DOI URL |
7 |
Burns RG ( 1982). Enzyme activity in soil-location and a possible role in microbial ecology. Soil Biology and Biochemistry, 14, 423- 427.
DOI URL |
8 |
Burns RG , Deforest JL , Marxsen J ( 2013). Soil enzymes in a changing environment: Current knowledge and future directions. Soil Biology and Biochemistry, 58, 216- 234.
DOI URL |
9 |
Camino-Serrano M , Gielen B , Luyssaert S ( 2014). Linking variability in soil solution dissolved organic carbon to climate, soil type, and vegetation type. Global Biogeochemical Cycles, 28, 497- 509.
DOI URL |
10 |
Condron LM , Tiessen H , Turner BL ( 2005). Interactions of organic phosphorus in terrestrial ecosystems. Uspekhi Mat Nauk, 38, 205- 206.
DOI URL |
11 |
Currie WS , Aber JD , Mcdowell WH , Boone RD , Magill AH ( 1996). Vertical transport of dissolved organic C and N under long-term N amendments in pine and hardwood forests. Biogeochemistry, 35, 471- 505.
DOI URL |
12 |
Debosz K , Rasmussen PH , Pedersen AR ( 1999). Temporal variations in microbial biomass C and cellulolytic enzyme activity in arable soils: Effects of organic matter input. Applied Soil Ecology, 13, 209- 218.
DOI URL |
13 |
Frankenberger WT , Dick WA ( 1983). Relationships between enzyme activities and microbial growth and activity indices in soil. Soil Science Society of America Journal, 47, 945- 951.
DOI URL |
14 | Ge XG , Xiao WF , Zeng LX ( 2012). Relationships between soil nutrient contents and soil enzyme activities in Pinus massoniana stands with different ages in Three Gorges Reservoir Area. Chinese Journal of Applied Ecology, 23, 445- 451. |
[ 葛晓改, 肖文发, 曾立雄 ( 2012). 三峡库区不同林龄马尾松土壤养分与酶活性的关系. 应用生态学报, 23, 445- 451.] | |
15 | Hogberg M , Hogberg P , Myrold D ( 2007). Is microbial community composition in boreal forest soils determined by pH, C-to-N ratio, the trees, or all three? Oecologia, 150, 590- 601. |
16 | Houghton RA ( 2007). Balancing the global carbon budget. Annual Review of Earth & Planetary Sciences, 35, 313- 347. |
17 |
Jian S , Li J , Chen J ( 2016). Soil extracellular enzyme activities, soil carbon and nitrogen storage under nitrogen fertilization: A meta-analysis. Soil Biology and Biochemistry, 101, 32- 43.
DOI URL |
18 |
Jobbágy EG , Jackson RB ( 2000). The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecological Applications, 10, 423- 436.
DOI URL |
19 |
Kalbitz K , Geyer W , Geyer S ( 1999). Spectroscopic properties of dissolved humic substances—A reflection of land use history in a fen area. Biogeochemistry, 47, 219- 238.
DOI URL |
20 |
Kang GL , Yang YS , Si YT ( 2014a). Soluble and spectral characteristics of DOM in leaching solution from leaves and litter-fall of Pinus massoniana and Dicranopteris dichotoma. Journal of Tropical and Subtropical Botany, 22, 357- 366.
DOI URL |
[ 康根丽, 杨玉盛, 司友涛 ( 2014a). 马尾松与芒萁鲜叶及凋落物水溶性有机物的溶解特征和光谱学特征. 热带亚热带植物学报, 22, 357- 366.]
DOI URL |
|
21 | Kang GL , Yang YS , Si YT ( 2014b). Quantities and spectral characteristics of DOM released from leaf and litterfall in Castanopsis carlesii forest and Cunninghamia lanceolata plantation. Acta Ecologica Sinica, 34, 1946- 1955. |
[ 康根丽, 杨玉盛, 司友涛 ( 2014b). 米槠人促更新林与杉木人工林叶片及凋落物溶解性有机物的数量和光谱学特征. 生态学报, 34, 1946- 1955.] | |
22 |
Keeney DR ( 1980). Prediction of soil nitrogen availability in forest ecosystems: A literature review. Forest Science, 26, 159- 171.
DOI URL |
23 |
Knicker H , Lüdemann HD , Haider K ( 1981). Incorporation studies of NH4 + during incubation of organic residues by l5N-CPMAS-NMR-spectroscopy. European Journal of Soil Science, 48, 431- 441.
DOI URL |
24 |
Kuzyakov Y , Xu X ( 2013). Competition between roots and microorganisms for nitrogen: Mechanisms and ecological relevance. New Phytologist, 198, 656- 669.
DOI URL PMID |
25 |
Liu JB , Chen GS , Guo JF , Yang ZJ , Li YQ , Lin CF , Yang YS ( 2017). Advances in research on the responses of forest soil enzymes to environmental change. Acta Ecologica Sinica, 37, 110- 117.
DOI URL |
[ 刘捷豹, 陈光水, 郭剑芬, 杨智杰, 李一清, 林成芳, 杨玉盛 ( 2017). 森林土壤酶对环境变化的响应研究进展. 生态学报, 37, 110- 117.]
DOI URL |
|
26 |
Lu X , Gilliam FS , Yu G , Li L ( 2013). Long-term nitrogen addition decreases carbon leaching in nitrogen-rich forest ecosystems. Biogeosciences Discussions, 10, 3931- 3941.
DOI URL |
27 | Liu Z , Yang YS , Zhu JM , Si YT , Xie JS , Yang ZJ ( 2014). Comparative study on quantities and spectroscopic characteristics of soil dissolved organic matter between two economic forests in subtropical China. Journal of Soil & Water Conservation, 28( 5), 170- 175. |
[ 刘翥, 杨玉盛, 朱锦懋, 司友涛, 谢锦升, 杨智杰 ( 2014). 中亚热带2种经济林土壤可溶性有机质数量与光谱学特征比较. 水土保持学报, 28( 5), 170- 175.] | |
28 |
Meng Y , Xue JY , Sha LQ , Tang JW ( 2001). Variations of soil NH4 +-N, NO3 --N and N mineralization under different forests in Xishuangbanna, Southwest China. Acta Phytoecologica Sinica, 25, 99- 104.
DOI URL |
[ 孟盈, 薛敬意, 沙丽清, 唐建维 ( 2001). 西双版纳不同热带森林下土壤铵态氮和硝态氮动态研究. 植物生态学报, 25, 99- 104.]
DOI URL |
|
29 | Mo JM , Xue JH , Fang YT ( 2004). Litter decomposition and its responses to simulated N deposition for the major plants of Dinghushan forests in subtropical China. Acta Ecologica Sinica, 24, 1413- 1420. |
[ 莫江明, 薛璟花, 方运霆 ( 2004). 鼎湖山主要森林植物凋落物分解及其对N沉降的响应. 生态学报, 24, 1413- 1420.] | |
30 |
Parfitt RL , Ross DJ , Coomes DA ( 2005). N and P in New Zealand soil chronosequences and relationships with foliar N and P. Biogeochemistry, 75, 305- 328.
DOI URL |
31 |
Saadi I , Borisover M , Armon R , Laor Y ( 2006). Monitoring of effluent DOM biodegradation using fluorescence, UV and DOC measurements. Chemosphere, 63, 530- 539.
DOI URL PMID |
32 |
Saiya-Cork KR , Sinsabaugh RL , Zak DR ( 2002). The effects of long term nitrogen deposition on extracellular enzyme activity in an Acer saccharum forest soil. Soil Biology and Biochemistry, 34, 1309- 1315.
DOI URL |
33 |
Sardans J , Pe?uelas J ( 2005). Drought decreases soil enzyme activity in a Mediterranean Quercus ilex L. forest. Soil Biology and Biochemistry, 37, 455- 461.
DOI URL |
34 |
Sedjo RA ( 1992). Temperate forest ecosystems in the global carbon cycle. AMBIO, 21( 4), 274- 277.
DOI URL |
35 |
Sinsabaugh RL ( 2010). Phenol oxidase, peroxidase and organic matter dynamics of soil. Soil Biology and Biochemistry, 42, 391- 404.
DOI URL |
36 |
Su T , Si MR , Wang CH ( 2005). Effects of pretreatment, shaking and conserving method and extracting solution on results for soil mineral nitrogen. Journal of Agro-Environment Science, 24, 1238- 1242.
DOI URL |
[ 苏涛, 司美茹, 王朝辉 ( 2005). 土壤矿质氮分析方法的影响因素研究. 农业环境科学学报, 24, 1238- 1242.]
DOI URL |
|
37 |
Taylor JP , Wilson B , Mills MS ( 2002). Comparison of microbial numbers and enzymatic activities in surface soils and subsoils using various techniques. Soil Biology and Biochemistry, 34, 387- 401.
DOI URL |
38 |
Waldrop MP , Firestone MK ( 2004). Microbial community utilization of recalcitrant and simple carbon compounds: Impact of oak-woodland plant communities. Oecologia, 138, 275- 284.
DOI URL PMID |
39 |
Wan JJ , Guo JF , Ji SR ( 2016). Effects of dissolved organic matter input on soil CO2 emission and microbial community composition in a subtropical forest. Scientia Silvae Sinicae, 52( 2), 106- 113.
DOI URL |
[ 万菁娟, 郭剑芬, 纪淑蓉 ( 2016). 可溶性有机物输入对亚热带森林土壤CO2排放及微生物群落的影响. 林业科学, 52( 2), 106- 113.]
DOI URL |
|
40 | Wan XH , Huang ZQ , He ZM ( 2014). Effects of tree species transfer on soil dissolved organic matter pools in a reforested Chinese fir (Cunninghamia lanceolata) woodland. Chinese Journal of Applied Ecology, 25, 12- 18. |
[ 万晓华, 黄志群, 何宗明 ( 2014). 杉木采伐迹地造林树种转变对土壤可溶性有机质的影响. 应用生态学报, 25, 12- 18.] | |
41 | Wang CY , Zhou JB , Xia ZM ( 2011). Effects of mixed plant residues from the loess plateau on microbial biomass carbon and nitrogen in soil. Acta Ecologica Sinica, 31, 2139- 2147. |
[ 王春阳, 周建斌, 夏志敏 ( 2011). 黄土高原区不同植物凋落物搭配对土壤微生物量碳、氮的影响. 生态学报, 31, 2139- 2147.] | |
42 | Wu BB , Guo JF , Wu JJ ( 2014). Effects of logging residues on surface soil biochemical properties and enzymatic activity. Acta Ecologica Sinica, 34, 1645- 1653. |
[ 吴波波, 郭剑芬, 吴君君 ( 2014). 采伐剩余物对林地表层土壤生化特性和酶活性的影响. 生态学报, 34, 1645- 1653.] | |
43 |
Wu JS , Jiang PK , Chang SX ( 2010). Dissolved soil organic carbon and nitrogen were affected by conversion of native forests to plantations in subtropical China. Canadian Journal of Soil Science, 90, 27- 36.
DOI URL |
44 |
Xu C , Lin CF , Liu XF , Xiong DC , Lin WS , Chen SD , Xie JS , Yang YS ( 2017). Effects of forest conversion on concentrations and fluxes of dissolved organic carbon in runoff. Acta Ecologica Sinica, 37, 84- 92.
DOI URL |
[ 胥超, 林成芳, 刘小飞, 熊德成, 林伟盛, 陈仕东, 谢锦升, 杨玉盛 ( 2017). 森林类型更替对地表径流可溶性有机碳输出浓度和通量的影响. 生态学报, 37, 84- 92.]
DOI URL |
|
45 |
Yang WQ , Wang KY ( 2004). Advances in forest soil enzymology. Scientia Silvae Sinicae, 40( 2), 152- 159.
DOI |
[ 杨万勤, 王开运 ( 2004). 森林土壤酶的研究进展. 林业科学, 40( 2), 152- 159.]
DOI |
|
46 |
Zhang WP , Si XL , Wang WY , Gao TP , Xu DH ( 2016). Effects of short-term nitrogen and silicon addition on above-?ground biomass and biodiversity of alpine meadow of the Qinghai-Tibetan Plateau, China. Pratacultural Science, 33, 38- 45.
DOI URL |
[ 张文鹏, 司晓林, 王文银, 高天鹏, 徐当会 ( 2016). 氮硅添加对高寒草甸生物量和多样性的影响——以青藏高原为例. 草业科学, 33, 38- 45.]
DOI URL |
|
47 |
Zhao HK , Ma Z , Zhang CH , Lei ZL , Yao BQ , Zhou HK ( 2016). The reproductive allocation of Avena sativa under different planting densities and nitrogen addition treatments. Pratacultural Science, 33, 249- 258.
DOI URL |
[ 赵宏魁, 马真, 张春辉, 雷占兰, 姚步青, 周华坤 ( 2016). 种植密度和施氮水平对燕麦生物量分配的影响. 草业科学, 33, 249- 258.]
DOI URL |
|
48 |
Zhao JS , Zhang XD , Yuan X ( 2003). Characteristics and environmental significance of soil dissolved organic matter. Chinese Journal of Applied Ecology, 14, 126- 130.
URL PMID |
49 |
Zsolnay A , Baigar E , Jimenez M ( 1999). Differentiating with fluorescence spectroscopy the sources of dissolved organic matter in soils subjected to drying. Chemosphere, 38, 45- 50.
DOI URL PMID |
[1] | 刘瑶 钟全林 徐朝斌 程栋梁 郑跃芳 邹宇星 张雪 郑新杰 周云若. 不同大小刨花楠细根功能性状与根际微环境关系[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 吴君梅, 曾泉鑫, 梅孔灿, 林惠瑛, 谢欢, 刘苑苑, 徐建国, 陈岳民. 土壤磷有效性调控亚热带森林土壤酶活性和酶化学计量对凋落叶输入的响应[J]. 植物生态学报, 2024, 48(2): 242-253. |
[3] | 罗娜娜, 盛茂银, 王霖娇, 石庆龙, 何宇. 长期植被恢复对中国西南喀斯特石漠化土壤活性有机碳组分含量和酶活性的影响[J]. 植物生态学报, 2023, 47(6): 867-881. |
[4] | 郭敏, 罗林, 梁进, 王彦杰, 赵春章. 冻融变化对西南亚高山森林优势种云杉和华西箭竹根区土壤理化性质与酶活性的影响[J]. 植物生态学报, 2023, 47(6): 882-894. |
[5] | 甘子莹, 王浩, 丁驰, 雷梅, 杨晓刚, 蔡敬琰, 丘清燕, 胡亚林. 亚热带森林不同植物及器官来源的可溶性有机质输入对土壤激发效应的影响及其作用机理[J]. 植物生态学报, 2022, 46(7): 797-810. |
[6] | 李东, 田秋香, 赵小祥, 林巧玲, 岳朋芸, 姜庆虎, 刘峰. 贡嘎山树线过渡带土壤胞外酶活性及其化学计量比特征[J]. 植物生态学报, 2022, 46(2): 232-242. |
[7] | 汪子微, 万松泽, 蒋洪毛, 胡扬, 马书琴, 陈有超, 鲁旭阳. 青藏高原不同高寒草地类型土壤酶活性及其影响因子[J]. 植物生态学报, 2021, 45(5): 528-538. |
[8] | 马书琴, 汪子微, 陈有超, 鲁旭阳. 藏北高寒草地土壤有机质化学组成对土壤蛋白酶和脲酶活性的影响[J]. 植物生态学报, 2021, 45(5): 516-527. |
[9] | 胡宗达, 刘世荣, 罗明霞, 胡璟, 刘兴良, 李亚非, 余昊, 欧定华. 川西亚高山不同演替阶段天然次生林土壤碳氮含量及酶活性特征[J]. 植物生态学报, 2020, 44(9): 973-985. |
[10] | 解梦怡, 冯秀秀, 马寰菲, 胡汗, 王洁莹, 郭垚鑫, 任成杰, 王俊, 赵发珠. 秦岭锐齿栎林土壤酶活性与化学计量比变化特征及其影响因素[J]. 植物生态学报, 2020, 44(8): 885-894. |
[11] | 陈思路, 蔡劲松, 林成芳, 宋豪威, 杨玉盛. 亚热带不同树种凋落叶分解对氮添加的响应[J]. 植物生态学报, 2020, 44(3): 214-227. |
[12] | 刘珊杉, 周文君, 况露辉, 刘占锋, 宋清海, 刘运通, 张一平, 鲁志云, 沙丽清. 亚热带常绿阔叶林土壤胞外酶活性对碳输入变化及增温的响应[J]. 植物生态学报, 2020, 44(12): 1262-1272. |
[13] | 梅孔灿, 程蕾, 张秋芳, 林开淼, 周嘉聪, 曾泉鑫, 吴玥, 徐建国, 周锦容, 陈岳民. 不同植物来源可溶性有机质对亚热带森林土壤酶活性的影响[J]. 植物生态学报, 2020, 44(12): 1273-1284. |
[14] | 邹瓒, 陈劲松, 李洋, 宋会兴. 光合产物传输方向对蓉城竹根际微生物过程的影响[J]. 植物生态学报, 2018, 42(8): 863-872. |
[15] | 魏翠翠, 刘小飞, 林成芳, 李先锋, 李艳, 郑裕雄. 凋落物输入改变对亚热带两种米槠次生林土壤酶活性的影响[J]. 植物生态学报, 2018, 42(6): 692-702. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19