植物生态学报 ›› 2014, Vol. 38 ›› Issue (4): 396-404.DOI: 10.3724/SP.J.1258.2014.00036
所属专题: 土壤呼吸
• 研究论文 • 上一篇
王铭1,2(), 刘兴土1, 张继涛1, 李秀军1,**(
), 王国栋1,2, 鲁新蕊1, 李晓宇1
收稿日期:
2013-10-28
接受日期:
2013-12-02
出版日期:
2014-10-28
发布日期:
2014-04-08
通讯作者:
李秀军
作者简介:
**(E-mail:lixiujun@neigae.ac.cn)基金资助:
WANG Ming1,2(), LIU Xing-Tu1, ZHANG Ji-Tao1, LI Xiu-Jun1,**(
), WANG Guo-Dong1,2, LU Xin-Rui1, LI Xiao-Yu1
Received:
2013-10-28
Accepted:
2013-12-02
Online:
2014-10-28
Published:
2014-04-08
Contact:
LI Xiu-Jun
摘要:
土壤呼吸是陆地生态系统碳循环的重要组分, 由于受到生物因子与非生物因子的共同作用, 土壤碳排放量在时间和空间尺度上都具有一定的变异性。为弄清松嫩平原西部草甸草原植物群落土壤呼吸作用的时空动态变化及其影响因子, 以典型植被碱蓬(Suaeda glauca)、虎尾草(Chloris virgata)、碱茅(Puccinellia distans)、芦苇(Phragmites australis)、羊草(Leymus chinensis)群落为研究对象, 采用LI-6400土壤呼吸测定系统对该生态系统2011-2012年植物生长季内土壤呼吸作用进行了监测。结果表明: 土壤温度可以解释土壤呼吸作用变异的53%-82%, 是影响该生态系统土壤碳排放时间变异的主要因素。土壤水分并未对土壤呼吸作用时间变异产生明显的影响。不同植物群落的土壤呼吸的温度敏感性(Q10)有所差异, Q10为2.0-6.7。生长季内, 5种植物群落的土壤累积碳排放量的平均值为316.6 g C·m-2。生长季内土壤碳累积排放量与植被地上生物量、土壤有机碳含量、平均土壤温度显著正相关, 与平均土壤含水量、pH值、土壤电导率及交换性钠百分比呈负相关关系。土壤的微气候、植被的地上生物量及土壤性质的差异是土壤碳排放空间变异的主要影响因素。
王铭, 刘兴土, 张继涛, 李秀军, 王国栋, 鲁新蕊, 李晓宇. 松嫩平原西部草甸草原5种典型植物群落土壤呼吸的时空动态. 植物生态学报, 2014, 38(4): 396-404. DOI: 10.3724/SP.J.1258.2014.00036
WANG Ming, LIU Xing-Tu, ZHANG Ji-Tao, LI Xiu-Jun, WANG Guo-Dong, LU Xin-Rui, LI Xiao-Yu. Spatio-temporal variations of soil respiration in five typical plant communities in the meadow steppe of the western Songnen Plain, China. Chinese Journal of Plant Ecology, 2014, 38(4): 396-404. DOI: 10.3724/SP.J.1258.2014.00036
样地编号 Plot code | 植物群落 Plant community | 土壤温度 Soil temperature (oC) | 土壤含 水量 Soil water content (%, v/v) | 土壤容重 Soil bulk density (g·m-3) | pH | 电导率 Electrical conductivity (mS·cm-1) | 土壤交换性钠 百分比 Percentage of soil exchangeable sodium (%) | 生物量 Biomass (g·m-2) | 土壤有机碳 含量 Soil organic carbon content (g·kg-1) | 总氮 Total N (g·kg-1) |
---|---|---|---|---|---|---|---|---|---|---|
SG | 碱蓬 Suaeda glauca | 18.7 ± 0.6 | 19.7 ± 1.8 | 1.4 ± 0.005 | 10.2 ± 0.11 | 1.92 ± 0.09 | 85.0 ± 9.0 | 75.5 ± 5.5 | 8.7 ± 1.6 | 0.70 ± 0.03 |
CV | 虎尾草 Chloris virgata | 17.9 ± 0.5 | 22.4 ± 3.2 | 1.4 ± 0.010 | 9.7 ± 0.32 | 0.60 ± 0.07 | 74.1 ± 10.2 | 306.8 ± 17.3 | 11.9 ± 0.5 | 0.70 ± 0.04 |
PD | 碱茅 Puccinellia distans | 18.3 ± 0.7 | 23.9 ± 4.1 | 1.4 ± 0.007 | 9.9 ± 0.02 | 0.70 ± 0.03 | 71.3 ± 10.1 | 190.9 ± 16.7 | 10.2 ± 2.1 | 0.62 ± 0.05 |
LC | 羊草 Leymus chinensis | 17.8 ± 0.5 | 22.4 ± 3.2 | 1.4 ± 0.005 | 9.4 ± 0.31 | 0.53 ± 0.03 | 52.8 ± 9.9 | 419.3 ± 17.5 | 15.2 ± 0.1 | 0.69 ± 0.03 |
PA | 芦苇 Phragmites australis | 16.5 ± 0.4 | 27.7 ± 3.3 | 1.3 ± 0.195 | 8.4 ± 0.18 | 0.27 ± 0.03 | 24.8 ± 10.2 | 548.8 ± 48.8 | 18.9 ± 1.4 | 1.01 ± 0.08 |
表1 5种植物群落样地概况(平均值±标准误差)
Table 1 Summary of plot survey in five plant communities (mean ± SE)
样地编号 Plot code | 植物群落 Plant community | 土壤温度 Soil temperature (oC) | 土壤含 水量 Soil water content (%, v/v) | 土壤容重 Soil bulk density (g·m-3) | pH | 电导率 Electrical conductivity (mS·cm-1) | 土壤交换性钠 百分比 Percentage of soil exchangeable sodium (%) | 生物量 Biomass (g·m-2) | 土壤有机碳 含量 Soil organic carbon content (g·kg-1) | 总氮 Total N (g·kg-1) |
---|---|---|---|---|---|---|---|---|---|---|
SG | 碱蓬 Suaeda glauca | 18.7 ± 0.6 | 19.7 ± 1.8 | 1.4 ± 0.005 | 10.2 ± 0.11 | 1.92 ± 0.09 | 85.0 ± 9.0 | 75.5 ± 5.5 | 8.7 ± 1.6 | 0.70 ± 0.03 |
CV | 虎尾草 Chloris virgata | 17.9 ± 0.5 | 22.4 ± 3.2 | 1.4 ± 0.010 | 9.7 ± 0.32 | 0.60 ± 0.07 | 74.1 ± 10.2 | 306.8 ± 17.3 | 11.9 ± 0.5 | 0.70 ± 0.04 |
PD | 碱茅 Puccinellia distans | 18.3 ± 0.7 | 23.9 ± 4.1 | 1.4 ± 0.007 | 9.9 ± 0.02 | 0.70 ± 0.03 | 71.3 ± 10.1 | 190.9 ± 16.7 | 10.2 ± 2.1 | 0.62 ± 0.05 |
LC | 羊草 Leymus chinensis | 17.8 ± 0.5 | 22.4 ± 3.2 | 1.4 ± 0.005 | 9.4 ± 0.31 | 0.53 ± 0.03 | 52.8 ± 9.9 | 419.3 ± 17.5 | 15.2 ± 0.1 | 0.69 ± 0.03 |
PA | 芦苇 Phragmites australis | 16.5 ± 0.4 | 27.7 ± 3.3 | 1.3 ± 0.195 | 8.4 ± 0.18 | 0.27 ± 0.03 | 24.8 ± 10.2 | 548.8 ± 48.8 | 18.9 ± 1.4 | 1.01 ± 0.08 |
图1 5种植物群落土壤温度、土壤含水量、土壤呼吸速率的季节动态(平均值±标准误差)。 CV, 虎尾草; PA, 芦苇; PD, 碱茅; LC, 羊草; SG, 碱蓬。
Fig. 1 Seasonal variations of soil temperature (Ts), soil water content (Ws), and soil respiration rate (Rs) in five plant communities (mean ± SE). CV, Chloris virgata; PA, Phragmites australis; PD, Puccinellia distans; LC, Leymus chinensis; SG, Suaeda glauca.
图2 生长季内5种植物群落土壤呼吸速率(Rs)与土壤温度(Ts)的相关关系。 CV, 虎尾草; PA, 芦苇; PD, 碱茅; LC, 羊草; SG, 碱蓬。Q10, 土壤呼吸温度敏感性; R10, 10 ℃时的土壤呼吸速率。
Fig. 2 Correlations between soil respiration rate (Rs) and soil temperature (Ts) in five plant communities during growing season. CV, Chloris virgata; PA, Phragmites australis; PD, Puccinellia distans; LC, Leymus chinensis; SG, Suaeda glauca. Q10, temperature sensitivity of soil respiration; R10, soil respiration rate at 10 oC.
样地编号 Plot code | Rs = a + bWs + cWs2 | Rs = a + bTs + cWs + dTs2 + eWs2 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
a | b | c | R2 | p | a | b | c | d | e | R2 | p | ||
SG | 0.04 | 0.05 | -0.001 | 0.14 | < 0.05 | 0.72 | -0.07 | 0.003 | 0.003 | -0.000 7 | 0.72 | < 0.01 | |
CV | -1.06 | 0.26 | -0.005 | 0.21 | < 0.01 | 1.62 | -0.36 | 0.070 | 0.015 | -0.001 0 | 0.81 | < 0.01 | |
PD | -0.03 | 0.13 | -0.002 | 0.15 | < 0.05 | -0.13 | 0.01 | -0.004 | 0.003 | 0.000 5 | 0.66 | < 0.01 | |
LC | 0.35 | 0.19 | -0.004 | 0.09 | > 0.05 | -1.37 | 0.10 | 0.075 | 0.002 | -0.001 0 | 0.67 | < 0.01 | |
PA | 0.39 | 0.18 | -0.003 | 0.07 | > 0.05 | -0.76 | 0.09 | 0.055 | 0.004 | 0.000 7 | 0.54 | < 0.01 |
表2 生长季内5种植物群落土壤呼吸速率与土壤温度及土壤含水量的相关关系
Table 2 Relationships of soil respiration rate with soil temperature and soil water content in five plant communities during growing season
样地编号 Plot code | Rs = a + bWs + cWs2 | Rs = a + bTs + cWs + dTs2 + eWs2 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
a | b | c | R2 | p | a | b | c | d | e | R2 | p | ||
SG | 0.04 | 0.05 | -0.001 | 0.14 | < 0.05 | 0.72 | -0.07 | 0.003 | 0.003 | -0.000 7 | 0.72 | < 0.01 | |
CV | -1.06 | 0.26 | -0.005 | 0.21 | < 0.01 | 1.62 | -0.36 | 0.070 | 0.015 | -0.001 0 | 0.81 | < 0.01 | |
PD | -0.03 | 0.13 | -0.002 | 0.15 | < 0.05 | -0.13 | 0.01 | -0.004 | 0.003 | 0.000 5 | 0.66 | < 0.01 | |
LC | 0.35 | 0.19 | -0.004 | 0.09 | > 0.05 | -1.37 | 0.10 | 0.075 | 0.002 | -0.001 0 | 0.67 | < 0.01 | |
PA | 0.39 | 0.18 | -0.003 | 0.07 | > 0.05 | -0.76 | 0.09 | 0.055 | 0.004 | 0.000 7 | 0.54 | < 0.01 |
图3 5种植物群落生长季内土壤累积碳排放量(平均值±标准误差)。不同小写字母表示差异显著(p < 0.05)。 CV, 虎尾草; PA, 芦苇; PD, 碱茅; LC, 羊草; SG, 碱蓬。
Fig. 3 Cumulative soil CO2-C efflux during growing season in five plant communities (mean ± SE). Different lowercase letters indicate significant differences (p < 0.05). CV, Chloris virgata; PA, Phragmites australis; PD, Puccinellia distans; LC, Leymus chinensis; SG, Suaeda glauca.
土壤因子 Soil factor | 方程 Equation y = ax + b | |||
---|---|---|---|---|
a | b | R2 | p | |
10 cm深处土壤温度 Soil temperature at 10 cm depth | -187 | 3 630 | 0.81 | p < 0.05 |
0-10 cm深处土壤含水量 Soil water content at 0-10 cm depth | 5 351 | -937 | 0.80 | p < 0.05 |
pH | -226 | 2 473 | 0.80 | p < 0.05 |
电导率 Electric conductivity | -0.003 | 1.9 | 0.81 | p < 0.05 |
土壤交换性钠百分比 Percentage of soil exchangeable sodium | -7 | 732 | 0.87 | p < 0.05 |
地上生物量 Aboveground biomass | 0.9 | 42 | 0.93 | p < 0.01 |
土壤有机碳 Soil organic carbon | 39 | -195 | 0.89 | p < 0.01 |
土壤总氮 Soil total N | 627 | -153 | 0.37 | p > 0.05 |
土壤容重 Soil bulk density | -3 641 | 5 371 | 0.48 | p > 0.05 |
表3 土壤累积碳排放量与平均土壤温度、含水量、土壤性质及植被地上生物量的相关关系
Table 3 Relationships of cumulative CO2-C efflux with mean soil temperature, mean soil water content, soil properties, and aboveground biomass, respectively
土壤因子 Soil factor | 方程 Equation y = ax + b | |||
---|---|---|---|---|
a | b | R2 | p | |
10 cm深处土壤温度 Soil temperature at 10 cm depth | -187 | 3 630 | 0.81 | p < 0.05 |
0-10 cm深处土壤含水量 Soil water content at 0-10 cm depth | 5 351 | -937 | 0.80 | p < 0.05 |
pH | -226 | 2 473 | 0.80 | p < 0.05 |
电导率 Electric conductivity | -0.003 | 1.9 | 0.81 | p < 0.05 |
土壤交换性钠百分比 Percentage of soil exchangeable sodium | -7 | 732 | 0.87 | p < 0.05 |
地上生物量 Aboveground biomass | 0.9 | 42 | 0.93 | p < 0.01 |
土壤有机碳 Soil organic carbon | 39 | -195 | 0.89 | p < 0.01 |
土壤总氮 Soil total N | 627 | -153 | 0.37 | p > 0.05 |
土壤容重 Soil bulk density | -3 641 | 5 371 | 0.48 | p > 0.05 |
[1] |
Bouwmann A, Germon J (1998). Special issue: soils and climate change: introduction. Biology and Fertility of Soils, 27, 219.
DOI URL |
[2] | Chen QS, Li LH, Han XG, Yan ZD (2003). Effects of water content on soil respiration and the mechanisms. Acta Ecologica Sinica, 23, 972-978. (in Chinese with English abstract) |
[ 陈全胜, 李凌浩, 韩兴国, 阎志丹 (2003). 水分对土壤呼吸的影响及机理. 生态学报, 23, 972-978.] | |
[3] | Chen QS, Wang QB, Han XG, Wan SQ, Li LH (2010). Temporal and spatial variability and controls of soil respiration in a temperate steppe in northern China. Global Biogeochemical Cycles, 24, doi: 10.1029/2009GB003538. |
[4] | Conant RT, Klopatek JM, Malin RC, Klopatek CC (1998). Carbon pools and fluxes along an environmental gradient in northern Arizona. Biogeochemistry, 43, 43-61. |
[5] | Davidson EA, Belk E, Boone RD (1998). Soil water content and temperature as independent or confounded factors controlling soil respiration in a temperate mixed hardwood forest. Global Change Biology, 4, 217-227. |
[6] | Deng W, Qiu SW, Liang ZW (2006). Background of Regional Eco-environment in Da’an Sodic Land Experiment Station of China. Science Press, Beijing. 1-10. (in Chinese) |
[ 邓伟, 裘善文, 梁正伟 (2006). 中国大安碱地生态试验站区域生态环境背景. 科学出版社, 北京. 1-10.] | |
[7] | Eswaran H, van Den Berg E, Reich P (1993). Organic carbon in soils of the world. Soil Science Society of America Journal, 57, 192-194. |
[8] |
Fitter AH (1986). Spatial and temporal patterns of root activity in a species-rich alluvial grassland. Oecologia, 69, 594-599.
DOI URL PMID |
[9] | Fu Y, Zheng Z, Yu G, Hu Z, Sun X, Shi P, Wang Y, Zhao X (2009). Environmental influences on carbon dioxide fluxes over three grassland ecosystems in China. Biogeosciences, 6, 2879-2893. |
[10] | Gu S, Tang YH, Du MY, Kato T, Li YN, Cui XY, Zhao XA (2003). Short-term variation of CO2 flux in relation to environmental controls in an alpine meadow on the Qinghai- Tibetan Plateau. Journal of Geophysical Research: Atmospheres, 108, 4670. |
[11] | Han GX, Zhou GS (2009). Review of spatial and temporal variations of soil respiration and driving mechanisms. Chinese Journal of Plant Ecology, 33, 197-205. (in Chinese with English abstract) |
[ 韩广轩, 周广胜 (2009). 土壤呼吸作用时空动态变化及其影响机制研究与展望. 植物生态学报, 33, 197-205.] | |
[12] | Herrick JE, Wander MM (1998). Relationships between soil organic carbon and soil quality in cropped and rangeland soils: the importance of distribution, composition, and soil biological activity. In: Lal R, Kimble JM, Follett RF, Stewart BA eds. Advances in Soil Science: Soil Processes and the Carbon Cycle. CRC Press, Boca Raton, USA. 405-425. |
[13] | Jenkison DS, Adams DE, Wild A (1991). Model estimates of CO2 emissions from soil in response to global warming. Nature, 351, 304-306. |
[14] | Jia B, Zhou G, Wang Y, Wang F, Wang X (2006). Effects of temperature and soil water-content on soil respiration of grazed and ungrazed Leymus chinensis steppes, Inner Mongolia. Journal of Arid Environments, 67, 60-76. |
[15] | Kucera CL, Kirkham DR (1971). Soil respiration studies in tallgrass prairie in Missouri. Ecology, 52, 912-915. |
[16] | Liu XT (2001). Management on Degraded Land and Agriculture Development in the Songnen Plain. Science Press, Beijing. (in Chinese) |
[ 刘兴土 (2001). 松嫩平原退化土地整治与农业发展. 科学出版社, 北京.] | |
[17] | Lin XW, Zhang ZH, Wang SP, Hu YG, Xu GP, Luo CY, Chang XF, Duan JC, Lin QY, Xu B, Wang YF, Zhao XQ, Xie ZB (2011). Response of ecosystem respiration to warming and grazing during the growing seasons in the alpine meadow on the Tibetan Plateau. Agricultural and Forest Meteorology, 151, 792-802. |
[18] | Lu RK (1999). Methods of Soil Agricultural Chemistry Analysis . Chinese Agriculture Science and Technology Press, Beijing. (in Chinese) |
[ 鲁如坤 (1999). 土壤农业化学分析方法. 中国农业科技出版社, 北京.] | |
[19] | Luo L, Shen GZ, Xie ZQ, Zhou LG (2011). Components of soil respiration and its temperature sensitivity in four types of forests along an elevational gradient in Shennongjia, China. Chinese Journal of Plant Ecology, 35, 722-730. (in Chinese with English abstract) |
[ 罗璐, 申国珍, 谢宗强, 周利光 (2011). 神农架海拔梯度上4种典型森林的土壤呼吸组分及其对温度的敏感性. 植物生态学报, 35, 722-730.] | |
[20] | Ma J, Tang HP (2011). Variations of soil respiration rate and its temperature sensitivity among different land use types in the agro-pastoral ecotone of Inner Mongolia. Chinese Journal of Plant Ecology, 35, 167-175. (in Chinese with English abstract) |
[ 马骏, 唐海萍 (2011). 内蒙古农牧交错区不同土地利用方式下土壤呼吸速率及其温度敏感性变化. 植物生态学报, 35, 167-175.] | |
[21] | Maestre FT, Cortina J (2003). Small-scale spatial variation in soil CO2 efflux in a Mediterranean semiarid steppe. Applied Soil Ecology, 23, 199-209. |
[22] | Mavi MS, Marschner P, Chittleborough DJ, Cox JW, Sanderman J (2012). Salinity and sodicity affect soil respiration and dissolved organic matter dynamics differentially in soils varying in texture. Soil Biology and Biochemistry, 45, 8-13. |
[23] | Pidwirny M (2006). Plant Succession. Fundamentals of Physical Geography, 2nd edn. Date Viewed. http://www. physicalgeography.net/fundamentals/9i.html |
[24] | Qu GH, Guo JX (2003). The relationship between different plant communities and soil characteristics in Songnen grassland. Acta Prataculturae Sinica, 12, 18-22. (in Chinese with English abstract) |
[ 曲国辉, 郭继勋 (2003). 松嫩平原不同演替阶段植物群落和土壤特性的关系. 草业学报, 12, 18-22.] | |
[25] | Raich JW, Potter CS (1995). Global patterns of carbon dioxide emissions from soils. Global Biogeochemical Cycles, 9, 23-36. |
[26] | Raich JW, Tufekcioglu A (2000). Vegetation and soil respiration: correlations and controls. Biogeochemistry, 48, 71-90. |
[27] | Reichstein M, Rey A, Freibauer A, Tenhunen J, Valentini R, Banza J, Casals P, Cheng Y, Grünzweig JM, Irvine J, Irvine J, Joffre R, Law BE, Loustau D, Miglietta F, Oeche W, Ourcival JM, Pereira JS, Peressotti A, Ponti F, Ye Q, Rambal S, Rayment M, Romanya J, Rossi F, Tedeschi V, Tirone G, Xu M, Yakir D (2003). Modeling temporal and large-scale spatial variability of soil respiration from soil water availability, temperature and vegetation productivity indices. Global Biogeochemical Cycles, 17, doi: 10.1029/2003GB002035. |
[28] | Rietz D, Haynes R (2003). Effects of irrigation-induced salinity and sodicity on soil microbial activity. Soil Biology and Biochemistry, 35, 845-854. |
[29] |
Schimel DS, House J, Hibbard K, Bousquet P, Ciais P, Peylin P, Braswell BH, Apps MJ, Baker D, Bondeau A, Canadell J, Churkina G, Cramer W, Denning AS, Field CB, Friedlingstein P, Goodale C, Heimann M, Houghton RA, Melillo JM, Moore B, Murdiyarso D, Noble I, Pacala SW, Prentice IC, Raupach MR, Rayner PJ, Scholes RJ, Steffen WL, Wirth C (2001). Recent patterns and mechanisms of carbon exchange by terrestrial ecosystems. Nature, 414, 169-172.
DOI URL PMID |
[30] |
Schlesinger WH, Andrews JA (2000). Soil respiration and the global carbon cycle. Biogeochemistry, 48, 7-20.
DOI URL |
[31] |
Tang JW, Baldocchi DD (2005). Spatial-temporal variation in soil respiration in an oak-grass savanna ecosystem in California and its partitioning into autotrophic and heterotrophic components. Biogeochemistry, 73, 183-207.
DOI URL |
[32] | Verburg PS, Arnone JA, Obrist D, Schorran DE, Evans RD, Leroux-Swarthout D, Johnson DW, Luo YQ, Coleman JS (2004). Net ecosystem carbon exchange in two experimental grassland ecosystems. Global Change Biology, 10, 498-508. |
[33] | Wan SQ, Luo YQ (2003). Substrate regulation of soil respiration in a tallgrass prairie: results of a clipping and shading experiment. Global Biogeochemical Cycles, 17, doi: 10.1029/2002GB001971. |
[34] | Wan SQ, Norby RJ, Ledford J, Weltzin JF (2007). Responses of soil respiration to elevated CO2, air warming, and changing soil water availability in a model old-field grassland. Global Change Biology, 13, 2411-2424. |
[35] | Wang FY, Zhou GS, Jia BR, Wang YH (2003). Effects of heat and water factors on soil respiration of restoring Leymus chinensis Steppe in degraded land. Acta Phytoecologica Sinica, 27, 644-649. (in Chinese with English abstract) |
[ 王风玉, 周广胜, 贾丙瑞, 王玉辉 (2003). 水热因子对退化草原羊草恢复演替群落土壤呼吸的影响. 植物生态学报, 27, 644-649. ] | |
[36] | Wang W, Fang JY (2009). Soil respiration and human effects on global grasslands. Global and Planetary Change, 67, 20-28. |
[37] | Wang W, Guo J (2006). The contribution of root respiration to soil CO2 efflux in Puccinellia tenuiflora dominanted community in a semiarid meadow steppe. Chinese Science Bulletin, 51, 697-703. |
[38] | Wang YR, Zhao LQ, Shao YH (2005). Comparative analysis of the drought-resistances for turfgrass and main weeds in the temperate semi-arid region. Chinese Journal of Ecology, 24, 1-5. (in Chinese with English abstract) |
[ 王艳荣, 赵利清, 邵元虎 (2005). 温带半干旱地区草坪草与主要杂草抗旱性的比较研究. 生态学杂志, 24, 1-5.] | |
[39] | Wang YS, Hu YQ, Ji BM, Liu GR, Xue M (2003). An investigation on the relationship between emission/uptake of greenhouse gases and environmental factors in semiarid grassland. Advances in Atmospheric Sciences, 20(1), 119-127. |
[40] | White RP, Murray S, Rohweder M (2000). Pilot Analysis of Global Ecosystem: Grassland Ecosystems. World Resource Institute, Washington, DC. |
[41] | Zhang W, Feng YJ (2008). Distribution of soil microorganism and their relations with soil factors of saline-alkaline grasslands in Songnen Plain. Grassland and Turf, 3(3), 7-11. (in Chinese with English abstract) |
[ 张巍, 冯玉杰 (2008). 松嫩平原盐碱化草原土壤微生物的分布及其与土壤因子间的关系. 草原与草坪, 3(3), 7-11.] |
[1] | 沈健, 何宗明, 董强, 郜士垒, 林宇. 轻度火烧对滨海沙地人工林土壤呼吸速率和非生物因子的影响[J]. 植物生态学报, 2023, 47(7): 1032-1042. |
[2] | 李雪, 董杰, 韩广轩, 张奇奇, 谢宝华, 李培广, 赵明亮, 陈克龙, 宋维民. 黄河三角洲典型滨海盐沼湿地土壤CO2和CH4排放对水盐变化的响应[J]. 植物生态学报, 2023, 47(3): 434-446. |
[3] | 葛萍, 李昂, 王银柳, 姜良超, 牛国祥, 哈斯木其尔, 王彦兵, 薛建国, 赵威, 黄建辉. 草甸草原温室气体排放对氮添加量的非线性响应[J]. 植物生态学报, 2023, 47(11): 1483-1492. |
[4] | 杨元合, 张典业, 魏斌, 刘洋, 冯雪徽, 毛超, 徐玮婕, 贺美, 王璐, 郑志虎, 王媛媛, 陈蕾伊, 彭云峰. 草地群落多样性和生态系统碳氮循环对氮输入的非线性响应及其机制[J]. 植物生态学报, 2023, 47(1): 1-24. |
[5] | 郑甲佳, 黄松宇, 贾昕, 田赟, 牟钰, 刘鹏, 查天山. 中国森林生态系统土壤呼吸温度敏感性空间变异特征及影响因素[J]. 植物生态学报, 2020, 44(6): 687-698. |
[6] | 杨泽, 嘎玛达尔基, 谭星儒, 游翠海, 王彦兵, 杨俊杰, 韩兴国, 陈世苹. 氮添加量和施氮频率对温带半干旱草原土壤呼吸及组分的影响[J]. 植物生态学报, 2020, 44(10): 1059-1072. |
[7] | 胡姝娅,刁华杰,王惠玲,薄元超,申颜,孙伟,董宽虎,黄建辉,王常慧. 北方农牧交错带温性盐碱化草地土壤呼吸对不同形态氮添加和刈割的响应[J]. 植物生态学报, 2020, 44(1): 70-79. |
[8] | 温超,单玉梅,晔薷罕,张璞进,木兰,常虹,任婷婷,陈世苹,白永飞,黄建辉,孙海莲. 氮和水分添加对内蒙古荒漠草原放牧生态系统土壤呼吸的影响[J]. 植物生态学报, 2020, 44(1): 80-92. |
[9] | 李建军, 刘恋, 陈迪马, 许丰伟, 程军回, 白永飞. 底座入土深度和面积对典型草原土壤呼吸测定结果的影响[J]. 植物生态学报, 2019, 43(2): 152-164. |
[10] | 李阳, 徐小惠, 孙伟, 申颜, 任婷婷, 黄建辉, 王常慧. 不同形态和水平的氮添加对内蒙古草甸草原土壤净氮矿化潜力的影响[J]. 植物生态学报, 2019, 43(2): 174-184. |
[11] | 王祥, 朱亚琼, 郑伟, 关正翾, 盛建东. 昭苏山地草甸4种典型土地利用方式下的土壤呼吸特征[J]. 植物生态学报, 2018, 42(3): 382-396. |
[12] | 胡毅, 朱新萍, 贾宏涛, 韩东亮, 胡保安, 李典鹏. 围栏封育对天山北坡草甸草原生态系统碳交换的影响[J]. 植物生态学报, 2018, 42(3): 372-381. |
[13] | 柴曦, 李英年, 段呈, 张涛, 宗宁, 石培礼, 何永涛, 张宪洲. 青藏高原高寒灌丛草甸和草原化草甸CO2通量动态及其限制因子[J]. 植物生态学报, 2018, 42(1): 6-19. |
[14] | 朱志成, 黄银, 许丰伟, 邢稳, 郑淑霞, 白永飞. 降雨强度和时间频次对内蒙古典型草原土壤氮矿化的影响[J]. 植物生态学报, 2017, 41(9): 938-952. |
[15] | 杨开军, 杨万勤, 谭羽, 贺若阳, 庄丽燕, 李志杰, 谭波, 徐振锋. 川西亚高山云杉林冬季土壤呼吸对雪被去除的短期响应[J]. 植物生态学报, 2017, 41(9): 964-971. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19