植物生态学报 ›› 2018, Vol. 42 ›› Issue (3): 372-381.DOI: 10.17521/cjpe.2016.0049

• 研究论文 • 上一篇    下一篇

围栏封育对天山北坡草甸草原生态系统碳交换的影响

胡毅1,2,朱新萍1,2,贾宏涛1,2,*(),韩东亮1,2,胡保安1,2,李典鹏1   

  1. 1 新疆农业大学草业与环境科学学院, 乌鲁木齐 830052
    2 新疆土壤与植物生态过程实验室, 乌鲁木齐 830052
  • 出版日期:2018-03-20 发布日期:2017-06-16
  • 通讯作者: 贾宏涛 ORCID:0000-0002-8527-0581
  • 基金资助:
    中国科学院战略性先导科技专项(XDA05050405);国家自然科学基金(31560171);新疆维吾尔自治区研究生教育创新计(XJGRI2014084)

Effects of fencing on ecosystem carbon exchange at meadow steppe in the northern slope of the Tianshan Mountains

HU Yi1,2,ZHU Xin-Ping1,2,JIA Hong-Tao1,2,*(),HAN Dong-Liang1,2,HU Bao-An1,2,LI Dian-Peng1   

  1. 1 College of Grassland and Environmental Sciences, Xinjiang Agricultural University, ürümqi 830052, China;
    2 Xinjiang Key Laboratory of Soil and Plant Ecological Processes, ürümqi 830052, China;
  • Online:2018-03-20 Published:2017-06-16
  • Contact: Hong-Tao JIA ORCID:0000-0002-8527-0581
  • Supported by:
    Supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(XDA05050405);the National Natural Science Foundation of China(31560171);Innovation Plan of Postgraduate Education in Xinjiang Uygur Autonomous region of China.(XJGRI2014084)

摘要:

草本层和大气间的碳交换及其对环境因子的响应是目前研究的热点。该研究通过静态箱法, 采用LI-840 CO2/H2O红外分析仪, 对新疆天山北坡草甸草原围封9年的样地和围栏外自然放牧生态系统碳交换进行监测, 分析了围栏内外生态系统碳交换的差异性、日变化、季节变化及其与环境因子的关系。结果表明: 围栏内生态系统碳交换高于围栏外, 围栏内外表现出明显的差异性; 围栏内外生态系统碳交换均存在明显的日变化和季节变化规律, 呈单峰曲线, 且在植物生长季峰形比较明显。在整个监测期间, 围栏内外生态系统CO2净交换最小值分别为-7.62和-6.63 μmol·m -2·s -1, 生态系统呼吸最大值分别为8.55和7.04 μmol·m -2·s -1, 生态系统总初级生产力最大值分别为-14.66和-13.89 μmol·m -2·s -1。因围栏内植被得到保护, 草本植物生长茂盛, 光合作用强, 生态系统CO2净交换较小, 同时有机碳的输入增强了生态系统呼吸。分析发现生态系统碳交换与气温和0-10 cm土壤温度显著相关, 与气温的相关性高于与0-10 cm土壤温度的相关性, 且围栏内禁牧处理相关性高于围栏外自然放牧草地; 土壤含水量与生态系统碳交换存在一定的相关性, 但其相关性略低于温度与生态系统碳交换的相关性。

关键词: 围栏封育, 草甸草原, 生态系统碳交换

Abstract:

Aims The carbon exchange between ecosystems and the atmosphere and its response to environmental factors is the focus of current research. The aim of this study was to examine the effects of fencing on ecosystem carbon exchange at meadow steppe in the northern slope of Tianshan Mountains.

Methods The static box method with a LI-840 CO2/H2O infrared analyzer was used to evaluate daily and seasonal changes of ecosystem carbon exchange and their relationship with environmental factors in the inside fence and outside fence after 9 years fencing.

Important findings We found the ecosystem carbon exchange inside the fence was significantly (p < 0.05) higher than that in outside the fence. The ecosystem carbon exchange had obvious daily and seasonal variation both in inside and outside the fence, which showed a unimodal curve during the plant growing season. The minimum net ecosystem CO2 exchange (NEE) in the inside and outside of the fences were -7.62 and -6.63 μmol·m-2·s-1, respectively; the maximum ecosystem respiration (ER) were 8.55 and 7.04 μmol·m-2·s-1, respectively; and the maximum gross ecosystem productivity (GEP) were -14.66 and -13.89 μmol·m-2·s-1, respectively. Due to the protection of fence, the vegetation in the fence was flourished with higher photosynthesis, and thus resulted in lower NEE. Meanwhile, organic carbon input enhanced ecosystem respiration. Besides, the ecosystem carbon exchange significantly correlated with the air temperature and soil temperature of 0 to 10 cm depth, and the correlation with the air temperature was higher than soil temperature of 0 to 10 cm depth. Also, the correlation in the inside of the fence was higher than that in the outside of the fence. Ecosystem carbon exchange had correlation with soil water content, but the correlation was slightly lower than that with soil temperature.

Key words: fencing, meadow steppe, ecosystem carbon exchange