植物生态学报 ›› 2019, Vol. 43 ›› Issue (2): 174-184.DOI: 10.17521/cjpe.2018.0245
• 研究论文 • 上一篇
李阳1,2,徐小惠1,2,孙伟3,申颜1,4,任婷婷1,2,黄建辉1,2,王常慧1,*()
收稿日期:
2018-10-05
接受日期:
2019-01-31
出版日期:
2019-02-20
发布日期:
2019-06-04
通讯作者:
王常慧
基金资助:
LI Yang1,2,XU Xiao-Hui1,2,SUN Wei3,SHEN Yan1,4,REN Ting-Ting1,2,HUANG Jian-Hui1,2,WANG Chang-Hui1,*()
Received:
2018-10-05
Accepted:
2019-01-31
Online:
2019-02-20
Published:
2019-06-04
Contact:
WANG Chang-Hui
Supported by:
摘要:
由全球变化和工农业生产引发的大气氮沉降增加已经对生态系统结构和功能产生了不可忽视的影响, 但是氮沉降的组成成分存在多种形态, 不同形态的氮对生态系统的结构与功能的影响是否有差异目前还不清楚。因此, 该研究选择内蒙古草甸草原开展不同形态和不同水平的外源氮添加试验, 每年添加5种不同形态的氮肥, 包括: 尿素、碳酸氢铵、硝酸铵、硫酸铵、缓释尿素, 添加量分别为: 0 (N0)、2 (N2)、5 (N5)、10 (N10)、20 (N20)及50 (N50) g·m -2·a -1, 均为纯氮添加量。通过野外原位取土、室内控制温度和水分(25 ℃和60%田间持水量)的培养试验测定土壤净氮矿化(mg·kg -1·h -1)潜力、土壤微生物呼吸(μg·g -1·h -1)潜力、土壤微生物生物量碳(氮)(mg·kg -1)的潜力以及土壤碳(g·kg -1)、氮(g·kg -1)、磷(g·kg -1)含量等指标, 研究添加不同形态和不同水平的氮对土壤净氮矿化潜力的影响。试验结果表明: (1)短期内不同形态、不同水平的氮添加改变了土壤中无机氮的含量、铵态氮和硝态氮的累积量, 并且表现出铵态氮肥的促进作用比硝态氮肥更加显著, 铵态氮的累积显著提高了土壤净氮矿化潜力, 短期铵态氮和硝态氮的累积可增加微生物和植物对有效氮的快速固持; (2)不同形态、不同水平氮添加导致土壤微生物活性发生改变, 包括土壤微生物生物量碳(MBC)含量、微生物生物量氮(MBN)含量及其碳氮比(MBC:MBN), 并且在低水平氮添加下显著增强土壤微生物的呼吸速率, 高水平氮添加显著降低微生物呼吸速率和呼吸熵; (3)不同形态、不同水平氮添加短期内对土壤含水量、土壤有机碳含量、土壤全磷含量、土壤全氮含量无显著影响, 但是高水平氮添加不仅提高了速效磷的含量, 而且导致土壤迅速酸化。室内培养净氮矿化潜力的结果进一步验证了内蒙古草甸草原受氮限制, 添加中低水平的氮可以通过提高土壤微生物的活性而增加该地区草原土壤的净氮矿化潜力, 从而提高草地生产力。
李阳, 徐小惠, 孙伟, 申颜, 任婷婷, 黄建辉, 王常慧. 不同形态和水平的氮添加对内蒙古草甸草原土壤净氮矿化潜力的影响. 植物生态学报, 2019, 43(2): 174-184. DOI: 10.17521/cjpe.2018.0245
LI Yang, XU Xiao-Hui, SUN Wei, SHEN Yan, REN Ting-Ting, HUANG Jian-Hui, WANG Chang-Hui. Effects of different forms and levels of N additions on soil potential net N mineralization rate in meadow steppe, Nei Mongol, China. Chinese Journal of Plant Ecology, 2019, 43(2): 174-184. DOI: 10.17521/cjpe.2018.0245
图1 氮添加形态和添加量对内蒙古草甸草原土壤理化性质的影响(平均值±标准偏差, n = 3)。只进行同一氮添加量不同氮形态的多重比较, 不同小写字母表示处理间差异显著(p < 0.05)。
Fig. 1 Effects of nitrogen (N) addition forms and levels on soil physicochemical properties in the meadow steppe in Nei Mongol (mean ± SD, n = 3). Comparison was performed with different N forms within the same N level. Different lowercase letters are significantly different (p < 0.05).
pH | 速效磷含量 Available P content | 全磷含量 Total P content | 全氮含量 Total N content | 有机碳含量 Organic carbon content | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
d.f. | F | p | d.f. | F | p | d.f. | F | p | d.f. | F | p | d.f. | F | p | |
氮形态 N form (F) | 4 | 14.87 | <0.001 | 4 | 1.93 | 0.12 | 4 | 1.43 | 0.24 | 4 | 0.28 | 0.89 | 4 | 0.72 | 0.59 |
氮水平 N level (L) | 5 | 32.21 | <0.001 | 5 | 14.82 | <0.001 | 5 | 1.40 | 0.24 | 5 | 3.59 | 0.007 | 5 | 4.23 | 0.002 |
F × L | 20 | 2.84 | 0.001 | 20 | 5.13 | <0.001 | 20 | 0.94 | 0.54 | 20 | 0.80 | 0.71 | 20 | 3.35 | <0.001 |
表1 不同形态、不同水平氮添加双因素对内蒙古草甸草原土壤理化性质的主效应及其交互效应的方差分析(p值)
Table 1 Results (p-values) of two-way ANOVA on the effects of addition nitrogen forms, nitrogen levels and their interactions on soil physicochemical properties in the meadow steppe in Nei Mongol
pH | 速效磷含量 Available P content | 全磷含量 Total P content | 全氮含量 Total N content | 有机碳含量 Organic carbon content | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
d.f. | F | p | d.f. | F | p | d.f. | F | p | d.f. | F | p | d.f. | F | p | |
氮形态 N form (F) | 4 | 14.87 | <0.001 | 4 | 1.93 | 0.12 | 4 | 1.43 | 0.24 | 4 | 0.28 | 0.89 | 4 | 0.72 | 0.59 |
氮水平 N level (L) | 5 | 32.21 | <0.001 | 5 | 14.82 | <0.001 | 5 | 1.40 | 0.24 | 5 | 3.59 | 0.007 | 5 | 4.23 | 0.002 |
F × L | 20 | 2.84 | 0.001 | 20 | 5.13 | <0.001 | 20 | 0.94 | 0.54 | 20 | 0.80 | 0.71 | 20 | 3.35 | <0.001 |
图2 氮添加形态和添加量对内蒙古草甸草原土壤微生物碳(MBC)含量(A)、微生物氮(MBN)含量(B)和微生物碳氮比(MBC:MBN)(C)的影响(平均值±标准偏差, n = 3)。AU, 尿素(CO(NH2)2); AS, 硫酸铵((NH4)2SO4); AN, 硝酸铵(NH4NO3); AC, 碳酸氢铵(NH4HCO3); AR, 缓释尿素。只进行同一氮添加量不同氮形态的多重比较, 不同小写字母表示处理间差异显著(p < 0.05)。
Fig. 2 Effects of nitrogen (N) addition forms and levels on soil microbial carbon (MBC) content (A), microbial nitrogen (MBN) content (B) and their ratio (MBC:MBN)(C)(means ± SD, n = 3). AU, CO(NH2)2; AS, (NH4)2SO4; AN, NH4NO3; AC, NH4HCO3; AR, slow-release urea. Comparison was performed with different N forms within the same N level. Different lowercase letters are significantly different (p < 0.05).
MBC | MBN | MBC:MBN | MR | qCO2 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
d.f. | F | p | d.f. | F | p | d.f. | F | p | d.f. | F | p | d.f. | F | p | |
氮形态 N form (F) | 4 | 34.24 | <0.001 | 4 | 0.85 | 0.50 | 4 | 16.09 | <0.001 | 4 | 1.33 | 0.27 | 4 | 4.27 | 0.004 |
氮水平 N level (L) | 5 | 52.82 | <0.001 | 5 | 14.50 | <0.001 | 5 | 34.98 | <0.001 | 5 | 8.68 | <0.001 | 5 | 7.43 | <0.001 |
F × L | 20 | 20.17 | <0.001 | 20 | 3.95 | <0.001 | 20 | 8.24 | <0.001 | 20 | 1.54 | 0.10 | 20 | 3.15 | <0.001 |
表2 不同形态、不同水平氮添加双因素对内蒙古草甸草原土壤微生物活性的主效应及其交互效应的方差分析(p值)
Table 2 Results (p-values) of two-way ANOVA on the effects of addition nitrogen forms, nitrogen levels and their interactions on soil microbial activity in the meadow steppe in Nei Mongol
MBC | MBN | MBC:MBN | MR | qCO2 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
d.f. | F | p | d.f. | F | p | d.f. | F | p | d.f. | F | p | d.f. | F | p | |
氮形态 N form (F) | 4 | 34.24 | <0.001 | 4 | 0.85 | 0.50 | 4 | 16.09 | <0.001 | 4 | 1.33 | 0.27 | 4 | 4.27 | 0.004 |
氮水平 N level (L) | 5 | 52.82 | <0.001 | 5 | 14.50 | <0.001 | 5 | 34.98 | <0.001 | 5 | 8.68 | <0.001 | 5 | 7.43 | <0.001 |
F × L | 20 | 20.17 | <0.001 | 20 | 3.95 | <0.001 | 20 | 8.24 | <0.001 | 20 | 1.54 | 0.10 | 20 | 3.15 | <0.001 |
图3 氮添加形态和数量对培养24 h期间内蒙古草甸草原土壤微生物呼吸的影响(平均值±标准偏差, n = 3)。AU, 尿素(CO(NH2)2); AS, 硫酸铵((NH4)2SO4); AN, 硝酸铵(NH4NO3); AC, 碳酸氢铵(NH4HCO3); AR, 缓释尿素。只进行同一氮添加量不同氮形态的多重比较。不同小写字母表示处理之间差异显著(p < 0.05)。
Fig. 3 Effects of nitrogen (N) addition forms and levels on soil microbial respiration in the meadow steppe in Nei Mongol during 24 hours incubation (means ± SD, n = 3). AU, CO(NH2)2; AS, (NH4)2SO4; AN, NH4NO3; AC, NH4HCO3; AR, slow-release urea. Comparison was performed with different N forms within the same N level. Different lowercase letters are significantly different (p < 0.05).
氮添加水平 N addition level (g·m-2) | AU | AS | AN | AC | AR |
---|---|---|---|---|---|
0 | 1.58 ± 0.40b | 2.70 ± 0.33ab | 7.43 ± 4.31a | 1.72 ± 0.37b | 3.80 ± 3.48ab |
2 | 1.21 ± 2.11b | 1.79 ± 0.08c | 3.72 ± 1.06ab | 1.28 ± 0.43c | 4.87 ± 0.87a |
5 | 1.69 ± 0.30a | 2.93 ± 2.60a | 2.14 ± 1.01a | 2.65 ± 2.26a | 3.29 ± 1.24a |
10 | 1.26 ± 0.74ab | 0.58 ± 0.15b | 0.62 ± 0.47b | 1.71 ± 0.42ab | 3.53 ± 2.87a |
20 | 2.98 ± 0.51a | 0.26 ± 0.04c | 0.09 ± 0.03c | 0.94 ± 0.87b | 0.18 ± 0.15c |
50 | 0.16 ± 0.14b | 0.06 ± 0.04b | 0.13 ± 0.01b | 1.31 ± 0.57ab | 4.28 ± 3.91a |
表4 氮添加形态和数量对内蒙古草甸草原土壤微生物呼吸熵的影响(平均值±标准偏差, n = 3)
Table 4 Effects of nitrogen (N) addition forms and levels on soil microbial metabolic quotient in the meadow steppe in Nei Mongol (mean ± SD, n = 3)
氮添加水平 N addition level (g·m-2) | AU | AS | AN | AC | AR |
---|---|---|---|---|---|
0 | 1.58 ± 0.40b | 2.70 ± 0.33ab | 7.43 ± 4.31a | 1.72 ± 0.37b | 3.80 ± 3.48ab |
2 | 1.21 ± 2.11b | 1.79 ± 0.08c | 3.72 ± 1.06ab | 1.28 ± 0.43c | 4.87 ± 0.87a |
5 | 1.69 ± 0.30a | 2.93 ± 2.60a | 2.14 ± 1.01a | 2.65 ± 2.26a | 3.29 ± 1.24a |
10 | 1.26 ± 0.74ab | 0.58 ± 0.15b | 0.62 ± 0.47b | 1.71 ± 0.42ab | 3.53 ± 2.87a |
20 | 2.98 ± 0.51a | 0.26 ± 0.04c | 0.09 ± 0.03c | 0.94 ± 0.87b | 0.18 ± 0.15c |
50 | 0.16 ± 0.14b | 0.06 ± 0.04b | 0.13 ± 0.01b | 1.31 ± 0.57ab | 4.28 ± 3.91a |
图4 氮添加形态和数量对内蒙古草甸草原土壤硝态氮(A)、铵态氮(B)和总无机氮库(C)的影响(平均值±标准偏差, n = 3)。AU, 尿素(CO(NH2)2); AS, 硫酸铵((NH4)2SO4); AN, 硝酸铵(NH4NO3); AC, 碳酸氢铵(NH4HCO3); AR, 缓释尿素。只进行同一氮添加量不同氮形态的多重比较。不同小写字母表示处理之间差异显著(p < 0.05)。
Fig. 4 Effects of nitrogen (N) addition forms and levels on soil nitrate (A), ammonium (B) and total inorganic N (C) pools in the meadow steppe in Nei Mongol (mean ± SD, n = 3). AU, CO(NH2)2; AS, (NH4)2SO4; AN, NH4NO3; AC, NH4HCO3; AR, slow-release urea. Aamm, accumulation of ammonium nitrogen; Anit, accumulation of nitrate nitrogen; Amin, accumulation of nitrogen mineralization. Comparison was performed with different N forms within the same N level. Different lowercase letters are significantly different (p < 0.05).
Aamm | Anit | Amin | Rmin | Rnit | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
d.f. | F | p | d.f. | F | p | d.f. | F | p | d.f. | F | p | d.f. | F | p | |
氮形态 N form (F) | 4 | 4.49 | 0.003 | 4 | 4.08 | 0.005 | 4 | 4.00 | 0.006 | 4 | 4.00 | 0.006 | 4 | 4.08 | 0.005 |
氮水平 N level (L) | 5 | 77.23 | <0.001 | 5 | 16.13 | <0.001 | 5 | 64.80 | <0.001 | 5 | 64.80 | <0.001 | 5 | 16.13 | <0.001 |
F × L | 20 | 7.10 | <0.001 | 20 | 2.46 | 0.004 | 20 | 6.89 | <0.001 | 20 | 6.89 | <0.001 | 20 | 2.46 | 0.004 |
表3 不同形态、不同水平氮添加双因素对内蒙古草甸草原土壤氮矿化的主效应及其交互效应的方差分析(p值)
Table 3 Results (p-values) of two-way ANOVA on the effects of addition nitrogen forms, nitrogen levels and their interactions on soil nitrogen mineralization in the meadow steppe in Nei Mongol
Aamm | Anit | Amin | Rmin | Rnit | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
d.f. | F | p | d.f. | F | p | d.f. | F | p | d.f. | F | p | d.f. | F | p | |
氮形态 N form (F) | 4 | 4.49 | 0.003 | 4 | 4.08 | 0.005 | 4 | 4.00 | 0.006 | 4 | 4.00 | 0.006 | 4 | 4.08 | 0.005 |
氮水平 N level (L) | 5 | 77.23 | <0.001 | 5 | 16.13 | <0.001 | 5 | 64.80 | <0.001 | 5 | 64.80 | <0.001 | 5 | 16.13 | <0.001 |
F × L | 20 | 7.10 | <0.001 | 20 | 2.46 | 0.004 | 20 | 6.89 | <0.001 | 20 | 6.89 | <0.001 | 20 | 2.46 | 0.004 |
图5 氮添加形态和两对内蒙古草甸草原土壤净氮矿化(A)和净硝化速率(B)潜力的影响(平均值±标准偏差, n = 3)。AU, 尿素(CO(NH2)2); AS, 硫酸铵((NH4)2SO4); AN, 硝酸铵(NH4NO3); AC, 碳酸氢铵(NH4HCO3); AR, 缓释尿素。只进行同一氮添加量不同氮形态的多重比较。不同小写字母表示处理之间差异显著(p < 0.05)。
Fig. 5 Effects of nitrogen (N) addition on soil potential net N mineralization (Rmin)(A) and nitrification (Rnit)(B) rates in the meadow steppe in Nei Mongol (mean ± SD, n = 3). AU, CO(NH2)2; AS, (NH4)2SO4; AN, NH4NO3; AC, NH4HCO3; AR, slow-release urea. Comparison was performed with different N forms within the same N level. Different lowercase letters are significantly different (p < 0.05).
[1] |
Aber JD, Magill AH ( 2004). Chronic nitrogen additions at the Harvard Forest (USA): The first 15 years of a nitrogen saturation experiment. Forest Ecology and Management, 196, 1-5.
DOI URL |
[2] | Arens SJT, Sullivan PF, Welker JM ( 2008). Nonlinear responses to nitrogen and strong interactions with nitrogen and phosphorus additions drastically alter the structure and function of a high arctic ecosystem. Journal of Geophysical Research, 113, G03S09. DOI: 10.1029/2007JG000508. |
[3] | Bao SD (2000). Analysis of Soil Agrochemical. 3rd edn. China Agriculture Press, Beijing. |
[ 鲍士旦 (2000). 土壤农化分析. 第三版. 中国农业出版社, 北京.] | |
[4] |
Bowden RD, Davidson E, Savage K, Arabia C, Steudler P ( 2004). Chronic nitrogen additions reduce total soil respiration and microbial respiration in temperate forest soils at the Harvard Forest. Forest Ecology and Management, 196, 43-56.
DOI URL |
[5] | Bradley K, Drijber RA, Knops J ( 2006). Increased N availability in grassland soils modifies their microbial communities and decreases the abundance of arbuscular mycorrhizal fungi. Soil Biology & Biochemistry, 38, 1583-1595. |
[6] |
Galloway JN, Townsend AR, Erisman JW, Bekunda M, Cai ZC, Freney JR, Martinelli LA, Seitzinger SP, Sutton MA ( 2008). Transformation of the nitrogen cycle recent trends: Questions, and potential solutions. Science, 320, 889-892.
DOI URL |
[7] | He YT, Qi YC, Dong YS, Peng Q, Xiao SS, Liu XC ( 2010). Advances in the influence of external nitrogen input on soil microbiological characteristics of grassland ecosystem. Advances in Earth Science , 25, 877-885. |
[ 何亚婷, 齐玉春, 董云社, 彭琴, 肖胜生, 刘欣超 ( 2010). 外源氮输入对草地土壤微生物特性影响的研究进展. 地球科学进展, 25, 877-885.] | |
[8] |
Huang S, Zhang W, Yu X, Huang Q ( 2010). Effects of long-term fertilization on corn productivity and its sustainability in an ultisol of southern China. Agriculture, Ecosystems and Environment, 138, 44-50.
DOI URL |
[9] |
Li LJ, Zeng DH, Yu ZA, Fan ZP, Mao R ( 2010). Soil microbial properties under N and P additions in a semi-arid, sandy grassland. Biology and Fertility of Soils, 46, 653-658.
DOI URL |
[10] | Liu BR, Wang CH, Zhang LH, Dong KH ( 2015). Effect of nitrogen addition and mowing on soil nitrogen mineralization in abandoned grasslands in Inner Mongolia. Acta Ecologica Sinica, 35, 6335-6343. |
[ 刘碧荣, 王常慧, 张丽华, 董宽虎 ( 2015). 氮素添加和刈割对内蒙古弃耕草地土壤氮矿化的影响. 生态学报, 35, 6335-6343.] | |
[11] |
Liu XR, Ren JQ, Li SG, Zhang QW ( 2015). Effects of simulated nitrogen deposition on soil net nitrogen mineralization in the meadow steppe of Inner Mongolia, China. PLOS ONE, 10, e0134039. DOI: 10.1371/journal.pone.0134039.
DOI URL |
[12] | Lovell RD, Hatch DJ ( 1998). Stimulation of microbial activity following spring application of nitrogen. Soil Biology & Biochemistry, 26, 28-30. |
[13] | Lü CQ, Tian HQ, Huang Y ( 2007). Ecological effects of increased nitrogen deposition in terrestrial ecosystems. Journal of Plant Ecology (Chinese Version), 31, 205-218. |
[ 吕超群, 田汉勤, 黄耀 ( 2007). 陆地生态系统氮沉降增加的生态效应. 植物生态学报, 31, 205-218.] | |
[14] | Luo QP, Gong JR, Xu S, Baoyin T, Wang YH, Zhai ZW, Pan Y, Liu M, Yang LL ( 2016). Effects of N and P additions on net nitrogen mineralization in temperate typical grasslands in Nei Mongol, China. Chinese Journal of Plant Ecology , 40, 480-492. |
[ 罗亲普, 龚吉蕊, 徐沙, 宝音陶格涛, 王忆慧, 翟占伟, 潘琰, 刘敏, 杨丽丽 ( 2016). 氮磷添加对内蒙古温带典型草原净氮矿化的影响. 植物生态学报, 40, 480-492.] | |
[15] |
McCrackin ML, Harms TK, Grimm NB, Hall SJ, Kaye JP ( 2008). Responses of soil microorganisms to resource availability in urban, desert soils. Biogeochemistry, 87, 143-155.
DOI URL |
[16] | Min JK (2010). Prospect of Agroecological Biochemistry and Environmental Health. Modern Education Press, Beijing. |
[ 闵九康 (2010). 农业生态生物化学和环境健康展望. 现代教育出版社, 北京.] | |
[17] | Pei GY, Ma HL, Gao R, Yin YF, Chen SD ( 2013). Effects of simulated nitrogen deposition on available P and K in soils of subtropical forest. Soil and Fertilizer Sciences in China,(4), 16-20, 87. |
[ 裴广廷, 马红亮, 高人, 尹云锋, 陈仕东 ( 2013). 模拟氮沉降对森林土壤速效磷和速效钾的影响. 中国土壤与肥料,(4), 16-20, 87.] | |
[18] |
Sirulnik AG, Allen EB, Meixner T, Fenn ME, Allen MF ( 2007). Changes in N cycling and microbial N with elevated N in exotic annual grasslands of southern California. Applied Soil Ecology, 36, 1-9.
DOI URL |
[19] | Vance E, Brookes PC, Jenkinson DS ( 1987). Microbial biomass measurements in forest soils: Determination of kC values and tests of hypotheses to explain the failure of the chloroform fumigation-incubation method in acid soils. Soil Biology & Biochemistry, 19, 689-696. |
[20] |
Vourlitis GL, Zorba G, Pasquini SC, Mustard R ( 2007). Chronic nitrogen deposition enhances nitrogen mineralization potential of semiarid shrubland soils. Soil Science Society of America Journal, 71, 836-842.
DOI URL |
[21] | Wang CH, Xing XR, Han XG ( 2004). The effects of temperature and moisture on the soil net nitrogen mineralization in an Aneulolepidium chinensis grassland, Inner Mongolia, China. Acta Ecologica Sinica, 24, 2472-2476. |
[ 王常慧, 邢雪荣, 韩兴国 ( 2004). 温度和湿度对我国内蒙古羊草草原土壤净氮矿化的影响. 生态学报, 24, 2472-2476.] | |
[22] | Wang W, Chalk PM, Chen D, Smith CJ ( 2001). Nitrogen mineralisation, immobilisation and loss, and their role in determining differences in net nitrogen production during waterlogged and aerobic incubation of soils. Soil Biology & Biochemistry, 33, 1305-1315. |
[23] | Wang WY, Zhou HK, Yang L, Li JP, Wang XC ( 2014). The uptake strategy of soil nitrogen nutrients by different plant species in alpine Kobresia tibetica meadow on the Qinghai-Tibet Plateau. Journal of Natural Resources, 29, 249-255. |
[ 王文颖, 周华坤, 杨莉, 李锦萍, 汪新川 ( 2014). 高寒藏嵩草(Kobresia tibetica)草甸植物对土壤氮素利用的多元化特征. 自然资源学报, 29, 249-255.] | |
[24] | Wardle DA, Ghani A ( 1995). A critique of the microbial metabolic quotient (qCO2) as a bioindicator of disturbance and ecosystem development. Soil Biology & Biochemistry, 27, 1601-1610. |
[25] |
Wei CZ, Yu Q, Bai E, Lv XT, Li Q, Xia JY, Kardol P, Liang WJ, Wang ZW, Han XG ( 2013). Nitrogen deposition weakens plant-microbe interactions in grassland ecosystems. Global Change Biology, 19, 3688-3697.
DOI URL |
[26] | Wu DM, Guo JF, Zhang Z, Li SJ, Yang YS ( 2018). Effects of dissolved organic matter addition on soil microbial respiration and quotient values in a secondary Castanopsis carlesii forest. Acta Ecologica Sinica, 38, 1-10. |
[ 吴东梅, 郭剑芬, 张政, 李帅军, 杨玉盛 ( 2018). DOM对米槠次生林不同土层土壤微生物呼吸及其熵值的影响. 生态学报, 38, 1-10.] | |
[27] | Yang H, Hu ZM, Guo Q, Li SG, Li LH, Bai WM ( 2017). Influences of precipitation increase and N addition on soil potential N mineralization in Inner Mongolia grassland. Journal of Natural Resources , 32, 2034-2042. |
[ 杨浩, 胡中民, 郭群, 李胜功, 李凌浩, 白文明 ( 2017). 增雨和氮添加对内蒙古草原土壤氮矿化潜力的影响. 自然资源学报, 32, 2034-2042.] | |
[28] | Yu ZY, Zeng DH, Ai GY, Jiang FQ ( 2007). Effects of nitrogen addition on soil nitrogen availability in sandy grassland. Chinese Journal of Ecology, 26, 1894-1897. |
[ 于占源, 曾德慧, 艾桂艳, 姜凤岐 ( 2007). 添加氮素对沙质草地土壤氮素有效性的影响. 生态学杂志, 26, 1894-1897.] | |
[29] | Zhang CB, Jin ZX, Shi SD ( 2003). Microflora and microbial quotient (qMB, qCO2) values of soils in different forest types on Tiantai Mountain in Zhejiang. Chinese Journal of Ecology, 22(2), 28-31. |
[ 张崇邦, 金则新, 施时迪 ( 2003). 天台山不同林型土壤微生物区系及其商值(qMB, qCO2). 生态学杂志, 22(2), 28-31.] | |
[30] | Zhang L, Huang JH, Bai YF, Han XG ( 2009). Effects of nitrogen addition on net nitrogen mineralization in Leymus chinesis grassland, Inner Mongolia, China. Chinese Journal of Plant Ecology, 33, 563-569. |
[ 张璐, 黄建辉, 白永飞, 韩兴国 ( 2009). 氮素添加对内蒙古羊草草原净氮矿化的影响. 植物生态学报, 33, 563-569.] | |
[31] |
Zhang NL, Wan SQ, Li LH, Bi J, Zhao MM, Ma KP ( 2008 a). Impacts of urea N addition on soil microbial community in a semi-arid temperate steppe in northern China. Plant and Soil, 311, 19-28.
DOI URL |
[32] | Zhang QS, Zak JC ( 1998). Effects of water and nitrogen amendment on soil microbial biomass and fine root production in a semi-arid environment in west Texas. Soil Biology & Biochemistry, 30, 39-45. |
[33] |
Zhang Y, Feng J, Isbell F, Lü X, Han X ( 2015). Productivity depends more on the rate than the frequency of N addition in a temperate grassland. Scientific Reports, 5, 12558. DOI: 10.1038/srep12558.
DOI |
[34] |
Zhang Y, Lü X, Isbell F, Stevens C, Han X, He NP, Zhang GM, Yu Q, Huang JH, Han XG ( 2014). Rapid plant species loss at high rates and at low frequency of N addition in temperate steppe. Global Change Biology, 20, 3520-3529.
DOI URL |
[35] |
Zhang Y, Zheng LX, Liu XJ, Jickells T, Cape JN, Goulding K, Fangmeier A, Zhang FS ( 2008 b). Evidence for organic N deposition and its anthropogenic sources in China. Atmospheric Environment, 42, 1035-1041.
DOI URL |
[36] | Zhang YD, Sun ZH, Shen YX ( 2005). Effect of fertilization on soil microorganism of deteriorated grassland in dry-hot valley region of Jinsha River. Journal of Soil and Water Conservation , 19(2), 88-91. |
[ 张彦东, 孙志虎, 沈有信 ( 2005). 施肥对金沙江干热河谷退化草地土壤微生物的影响. 水土保持学报, 19(2), 88-91.] | |
[37] | Zhou XB, Zhang YM, Downing A ( 2012). Non-linear response of microbial activity across a gradient of nitrogen addition to a soil from the Gurbantunggut Desert, northwestern China. Soil Biology & Biochemistry, 47, 67-77. |
[38] | Zhou Y, Xu XG, Wang F, Ruan HH, Wang JS, Fang YH, Wu YY, Xu ZK ( 2009). Soil microbial biomass, respiration, and metabolic quotient along an altitudinal gradient in Wuyi Mountain of southeastern China. Chinese Journal of Ecology, 28, 265-269. |
[ 周焱, 徐宪根, 王丰, 阮宏华, 汪家社, 方燕鸿, 吴焰玉, 徐自坤 ( 2009). 武夷山不同海拔梯度土壤微生物生物量、微生物呼吸及其商值(gMB, qCO2). 生态学杂志, 28, 265-269.] | |
[39] | Zhu JX, Wang QF, He NP, Wang RM, Dai JZ ( 2013). Soil nitrogen mineralization and associated temperature sensitivity of different Inner Mongolian grasslands. Acta Ecologica Sinica, 33, 6320-6327. |
[ 朱剑兴, 王秋凤, 何念鹏, 王若梦, 代景忠 ( 2013). 内蒙古不同类型草地土壤氮矿化及其温度敏感性. 生态学报, 33, 6320-6327.] | |
[40] | Zong N, Shi PL, Jiang J, Xiong DP, Meng FS, Song MH, Zhang XZ, Shen ZX ( 2013). Interactive effects of short-term nitrogen enrichment and simulated grazing on ecosystem respiration in an alpine meadow on the Tibetan Plateau. Acta Ecologica Sinica, 33, 6191-6201. |
[ 宗宁, 石培礼, 蒋婧, 熊定鹏, 孟丰收, 宋明华, 张宪洲, 沈振西 ( 2013). 短期氮素添加和模拟放牧对青藏高原高寒草甸生态系统呼吸的影响. 生态学报, 33, 6191-6201.] |
[1] | 罗来聪 赖晓琴 白健 李爱新 方海富 唐明 胡冬南 张令. 氮添加背景下土壤真菌和细菌对不同种源入侵植物 乌桕生长特征的影响[J]. 植物生态学报, 2023, 47(预发表): 0-0. |
[2] | 董六文, 任正炜, 张蕊, 谢晨笛, 周小龙. 功能多样性比物种多样性更好解释氮添加对高寒草地生物量的影响[J]. 植物生态学报, 2022, 46(8): 871-881. |
[3] | 谢欢, 张秋芳, 陈廷廷, 曾泉鑫, 周嘉聪, 吴玥, 林惠瑛, 刘苑苑, 尹云锋, 陈岳民. 氮添加促进丛枝菌根真菌和根系协作维持土壤磷有效性[J]. 植物生态学报, 2022, 46(7): 811-822. |
[4] | 杨建强, 刁华杰, 胡姝娅, 王常慧. 不同水平氮添加对盐渍化草地土壤微生物特征的影响[J]. 植物生态学报, 2021, 45(7): 780-789. |
[5] | 武运涛, 杨森, 王欣, 黄俊胜, 王斌, 刘卫星, 刘玲莉. 草地土壤有机质不同组分氮库对长期氮添加的响应[J]. 植物生态学报, 2021, 45(7): 790-798. |
[6] | 马炬峰, 辛敏, 徐陈超, 祝琬莹, 毛传澡, 陈欣, 程磊. 丛枝菌根真菌与氮添加对不同根形态基因型水稻氮吸收的影响[J]. 植物生态学报, 2021, 45(7): 728-737. |
[7] | 王娇, 关欣, 张伟东, 黄苛, 朱睦楠, 杨庆朋. 杉木幼苗生物量分配格局对氮添加的响应[J]. 植物生态学报, 2021, 45(11): 1231-1240. |
[8] | 徐小惠, 刁华杰, 覃楚仪, 郝杰, 申颜, 董宽虎, 王常慧. 华北盐渍化草地土壤净氮矿化速率对不同水平氮添加的响应[J]. 植物生态学报, 2021, 45(1): 85-95. |
[9] | 嘎玛达尔基, 杨泽, 谭星儒, 王珊珊, 李伟晶, 游翠海, 王彦兵, 张兵伟, 任婷婷, 陈世苹. 凋落物输入变化和氮添加对半干旱草原群落生产力及功能群组成的影响[J]. 植物生态学报, 2020, 44(8): 791-806. |
[10] | 李军军, 李萌茹, 齐兴娥, 王立龙, 徐世健. 芨芨草叶片养分特征对氮磷不同添加水平的响应[J]. 植物生态学报, 2020, 44(10): 1050-1058. |
[11] | 杨泽, 嘎玛达尔基, 谭星儒, 游翠海, 王彦兵, 杨俊杰, 韩兴国, 陈世苹. 氮添加量和施氮频率对温带半干旱草原土壤呼吸及组分的影响[J]. 植物生态学报, 2020, 44(10): 1059-1072. |
[12] | 温超,单玉梅,晔薷罕,张璞进,木兰,常虹,任婷婷,陈世苹,白永飞,黄建辉,孙海莲. 氮和水分添加对内蒙古荒漠草原放牧生态系统土壤呼吸的影响[J]. 植物生态学报, 2020, 44(1): 80-92. |
[13] | 冯婵莹, 郑成洋, 田地. 氮添加对森林植物磷含量的影响及其机制[J]. 植物生态学报, 2019, 43(3): 185-196. |
[14] | 冯慧芳, 刘落鱼, 薛立. 氮磷添加及林分密度对大叶相思林土壤化学性质的影响[J]. 植物生态学报, 2019, 43(11): 1010-1020. |
[15] | 刁励玮,李平,刘卫星,徐姗,乔春连,曾辉,刘玲莉. 草地生态系统生物量在不同气候及多时间尺度上对氮添加和增雨处理的响应[J]. 植物生态学报, 2018, 42(8): 818-830. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19