植物生态学报 ›› 2021, Vol. 45 ›› Issue (7): 728-737.DOI: 10.17521/cjpe.2021.0155
马炬峰1,2, 辛敏1,2, 徐陈超1,2, 祝琬莹1,2, 毛传澡2, 陈欣2, 程磊1,2,*()
收稿日期:
2021-04-22
接受日期:
2021-05-20
出版日期:
2021-07-20
发布日期:
2021-10-22
通讯作者:
程磊
作者简介:
* lcheng@zju.edu.cn基金资助:
MA Ju-Feng1,2, XIN Min1,2, XU Chen-Chao1,2, ZHU Wan-Ying1,2, MAO Chuan-Zao2, CHEN Xin2, CHENG Lei1,2,*()
Received:
2021-04-22
Accepted:
2021-05-20
Online:
2021-07-20
Published:
2021-10-22
Contact:
CHENG Lei
Supported by:
摘要:
植物主要依赖自身根系从土壤中获取矿质养分; 具有不同根形态的植物对于养分的吸收能力存在差异。丛枝菌根真菌(AMF)能与陆地植物根系形成共生关系, 帮助植物吸收矿质养分。但是, AMF对于植物根系养分吸收的促进效应是否会受根形态的影响还鲜有研究。该研究选取4种不同根形态基因型水稻(根毛缺陷突变体rhl1、侧根缺陷突变体iaa11、不定根缺失突变体arl1和野生型Kas)为研究对象, 设置2种施氮水平处理(低氮: 20 mg·kg-1氨氮; 高氮: 100 mg·kg-1氨氮), 利用稳定同位素15N示踪标记技术, 探究AMF和氮添加对不同根形态植物氮吸收的影响。研究结果发现, 相比低氮处理, 高氮处理下, rhl1、Kas、iaa11与arl1的茎叶15N浓度分别提高了60%、72%、128%与118%, 说明氮添加显著促进了水稻氮吸收, 且iaa11与arl1对氮添加的响应更强烈。在低氮水平下, AMF对rhl1、Kas、iaa11与arl1氮吸收的平均效应值分别为17%、31%、42%、51%, 表明AMF对于植物氮吸收的促进效应受根形态影响, iaa11与arl1对AMF的响应明显高于Kas与rhl1; 相较于低氮水平, 高氮水平下AMF对于不同根形态水稻氮吸收的促进效应都会显著降低, 表明氮添加削弱了AMF对植物氮吸收的促进效应。该研究阐明了4种不同根形态基因型水稻氮养分吸收存在显著差异, 其中氮吸收能力较弱的基因型水稻对AMF的响应更强, 该结果补充了植物与AMF在养分吸收上存在功能互补的控制实验证据。
马炬峰, 辛敏, 徐陈超, 祝琬莹, 毛传澡, 陈欣, 程磊. 丛枝菌根真菌与氮添加对不同根形态基因型水稻氮吸收的影响. 植物生态学报, 2021, 45(7): 728-737. DOI: 10.17521/cjpe.2021.0155
MA Ju-Feng, XIN Min, XU Chen-Chao, ZHU Wan-Ying, MAO Chuan-Zao, CHEN Xin, CHENG Lei. Effects of arbuscular mycorrhizal fungi and nitrogen addition on nitrogen uptake of rice genotypes with different root morphologies. Chinese Journal of Plant Ecology, 2021, 45(7): 728-737. DOI: 10.17521/cjpe.2021.0155
图1 不同根形态基因型水稻根系扫描图。材料来自种植7周的水稻。arl1, 不定根缺失突变体水稻; iaa11, 侧根缺陷型突变体水稻; Kas, 野生型水稻; rhl1, 根毛缺陷型突变体水稻。
Fig. 1 Root scanning images of rice with different genotypes. The material was obtained from rice was planted for 7 weeks. arl1, adventitious rootless mutant; iaa11, lateral rootless mutant; Kas, wild type; rhl1, root hairless mutant.
图2 不同根形态基因型水稻根系不定根数目、平均根径、总根长和根尖数(平均值±标准误, n = 10)。arl1, 不定根缺失突变体水稻; iaa11, 侧根缺陷型突变体水稻; Kas, 野生型水稻; rhl1, 根毛缺陷型突变体水稻。柱形图上方不同小写字母表示处理间差异显著(p < 0.05)。
Fig. 2 Number of adventitious roots, root diameter, root length and root tips of rice with different genotypes (mean ± SE, n = 10). arl1, adventitious rootless mutant; iaa11, lateral rootless mutant; Kas, wild type; rhl1, root hairless mutant. Different lowercase letters above the columns represent significant differences between treatments according to least significant difference test (p < 0.05).
图3 不同氮处理对不同根形态基因型水稻地上部分15N浓度的影响(平均值±标准误, n = 5)。arl1, 不定根缺失突变体水稻; iaa11, 侧根缺陷型突变体水稻; Kas, 野生型水稻; rhl1, 根毛缺陷型突变体水稻。柱形图上方不同小写字母表示处理间差异显著( p < 0.05)。neu, 氮处理效应; st, 基因型效应; neu × st, 氮处理与基因型交互效应。ns, 没有显著差异; *, p < 0.05; ***, p < 0.001。
Fig. 3 Effect of different nitrogen treatments on 15N concentrations of rice shoots with different genotypes (mean ± SE, n = 10). arl1, adventitious rootless mutant; iaa11, lateral rootless mutant; Kas, wild type; rhl1, root hairless mutant. Different lowercase letters above the columns represent significant differences between treatments according to least significant difference test (p < 0.05). neu, nitrogen treatment effect; st, genotype effect; neu × st, interaction effect between nitrogen treatment and genotype. ns, not significant; *, p < 0.05; ***, p < 0.001.
氮处理 Nitrogen treatment | AMF处理 AMF treatment | 菌根侵染率 Mycorrhizal colonization rate (%) | |||
---|---|---|---|---|---|
Kas | rhl1 | iaa11 | arl1 | ||
低氮 Low nitrogen | Non-AMF | 0 | 0 | 0 | 0 |
AMF | 40 ± 4b | 50 ± 2ab | 62 ± 4a | 43 ± 1b | |
高氮 High nitrogen | Non-AMF | 0 | 0 | 0 | 0 |
AMF | 45 ± 3ab | 49 ± 3ab | 55 ± 4a | 40 ± 3b |
表1 不同氮养分条件下不同基因型水稻菌根侵染率(平均值±标准误, n = 5)
Table 1 Mycorrhizal colonization rate of rice with different genotypes under different nitrogen nutrient conditions (mean ± SE, n = 5)
氮处理 Nitrogen treatment | AMF处理 AMF treatment | 菌根侵染率 Mycorrhizal colonization rate (%) | |||
---|---|---|---|---|---|
Kas | rhl1 | iaa11 | arl1 | ||
低氮 Low nitrogen | Non-AMF | 0 | 0 | 0 | 0 |
AMF | 40 ± 4b | 50 ± 2ab | 62 ± 4a | 43 ± 1b | |
高氮 High nitrogen | Non-AMF | 0 | 0 | 0 | 0 |
AMF | 45 ± 3ab | 49 ± 3ab | 55 ± 4a | 40 ± 3b |
图4 不同氮处理下菌根真菌(AMF)处理对不同基因型水稻氮吸收的影响(平均值±标准误, n = 5)。柱形图上方不同小写字母表示处理间差异显著(p < 0.05)。amf, AMF处理效应; st, 基因型效应; amf × st, AMF处理与基因型交互效应。ns, 没有显著差异; *, p < 0.05, ***, p < 0.001。
Fig. 4 Effect of arbuscular mycorrhizal fungi (AMF) on nitrogen uptake in rice with different genotypes under different nitrogen treatments (mean ± SE, n = 5). Different lowercase letters above the columns represent significant differences between treatments according to least significant difference test (p < 0.05). amf, AMF treatment effect; st, genotype effect; amf × st, interaction effect between AMF treatment and genotype, there was no significant difference. ns, not significant; *, p < 0.05; ***, p < 0.001.
图5 不同氮处理下菌根真菌(AMF)处理对不同基因型水稻氮吸收的平均效应值(平均值±标准误, n = 5)。平均效应值: AMF处理下地上部分15N浓度变化百分量。柱形图上方不同小写字母表示处理间差异显著(p < 0.05)。neu, 氮处理效应; st, 基因型效应; neu × st, 氮处理与基因型交互效应。ns, 没有显著差异; **, p < 0.01, ***, p < 0.001。
Fig. 5 Effect size of arbuscular mycorrhizal fungi (AMF) treatment on nitrogen uptake in rice with different genotypes under different nitrogen treatments (mean ± SE, n = 5). Effect size: proportion of change of 15N concentration of rice shoots by AMF treatment. Different lowercase letters above the columns represent significant differences between treatments according to least significant difference test (p < 0.05). neu, nitrogen treatment effect; st, genotype effect; neu × st, interaction effect between nitrogen treatment and genotype, there was no significant difference. ns, not significant; **, p < 0.01; ***, p < 0.001.
[1] |
Addo-Danso SD, Defrenne CE, McCormack ML, Ostonen I, Addo-Danso A, Foli EG, Borden KA, Isaac ME, Prescott CE (2020). Fine-root morphological trait variation in tropical forest ecosystems: an evidence synthesis. Plant Ecology, 221, 1-13.
DOI URL |
[2] |
Awaydul A, Zhu WY, Yuan YG, Xiao J, Hu H, Chen X, Koide RT, Cheng L (2019). Common mycorrhizal networks influence the distribution of mineral nutrients between an invasive plant, Solidago canadensis, and a native plant, Kummerowa striata. Mycorrhiza, 29, 29-38.
DOI PMID |
[3] | Bai JJ, Piao ZZ, Zeng W, Li GX, Yang RF (2019). Effects of different lateral root densities on growth, development and main agronomic characters of rice. Molecular Plant Breeding, 17, 1624-1630. |
[ 白建江, 朴钟泽, 曾威, 李刚燮, 杨瑞芳 (2019). 不同侧根密度对水稻生长发育及主要农艺性状的影响. 分子植物育种, 17, 1624-1630.] | |
[4] |
Bakhshandeh S, Corneo PE, Mariotte P, Kertesz MA, Dijkstra FA (2017). Effect of crop rotation on mycorrhizal colonization and wheat yield under different fertilizer treatments. Agriculture, Ecosystems & Environment, 247, 130-136.
DOI URL |
[5] |
Bates TR, Lynch JP (2001). Root hairs confer a competitive advantage under low phosphorus availability. Plant and Soil, 236, 243-250.
DOI URL |
[6] |
Bonneau L, Huguet S, Wipf D, Pauly N, Truong HN (2013). Combined phosphate and nitrogen limitation generates a nutrient stress transcriptome favorable for arbuscular mycorrhizal symbiosis in Medicago truncatula. New Phytologist, 199, 188-202.
DOI URL |
[7] |
Brundrett MC (2002). Coevolution of roots and mycorrhizas of land plants. New Phytologist, 154, 275-304.
DOI PMID |
[8] | Chen C, Gong HQ, Zhang JZ, Xu YJ, Gao HJ (2016). Evaluation of nitrogen nutrition characteristics of different rice cultivars at seedling stage. Chinese Journal of Eco- Agriculture, 24, 1347-1355. |
[ 陈晨, 龚海青, 张敬智, 徐寓军, 郜红建 (2016). 不同基因型水稻苗期氮营养特性差异及综合评价. 中国生态农业学报, 24, 1347-1355.] | |
[9] | Chen WL, Koide RT, Adams TS, DeForest JL, Cheng L, Eissenstat DM (2016). Root morphology and mycorrhizal symbioses together shape nutrient foraging strategies of temperate trees. Proceedings of the National Academy of Sciences of the United States of America, 113, 8741-8746. |
[10] |
Cheng L, Booker FL, Tu C, Burkey KO, Zhou LS, Shew HD, Rufty TW, Hu SJ (2012). Arbuscular mycorrhizal fungi increase organic carbon decomposition under elevated CO2. Science, 337, 1084-1087.
DOI PMID |
[11] |
Cheng L, Chen WL, Adams TS, Wei X, Li L, McCormack ML, DeForest JL, Koide RT, Eissenstat DM (2016). Mycorrhizal fungi and roots are complementary in foraging within nutrient patches. Ecology, 97, 2815-2823.
DOI PMID |
[12] | Corkidi L, Rowland DL, Johnson NC, Allen EB (2002). Nitrogen fertilization alters the functioning of arbuscular mycorrhizas at two semiarid grasslands. Plant and Soil, 240, 299-310. |
[13] | Coutinho BG, Mevers E, Schaefer AL, Pelletier DA, Harwood CS, Clardy J, Greenberg EP (2018). A plant-responsive bacterial-signaling system senses an ethanolamine derivative. Proceedings of the National Academy of Sciences of the United States of America, 115, 9785-9790. |
[14] | Ding WN (2009). Cloning and Functional Analysis of OsRHL1 Controlling Root Hair Development in Rice (Orzya sativa). PhD dissertation, Zhejiang University, Hangzhou. 10-15. |
[ 丁沃娜 (2009). 水稻根毛发育调控基因OsRHL1的克隆及功能研究. 博士学位论文, 浙江大学, 杭州. 10-15.] | |
[15] |
Eissenstat DM, Kucharski JM, Zadworny M, Adams TS, Koide RT (2015). Linking root traits to nutrient foraging in arbuscular mycorrhizal trees in a temperate forest. New Phytologist, 208, 114-124.
DOI PMID |
[16] |
Geneva MP, Stancheva IV, Boychinova MM, Mincheva NH, Yonova PA (2010). Effects of foliar fertilization and arbuscular mycorrhizal colonization on Salvia officinalis L. growth, antioxidant capacity, and essential oil composition. Journal of the Science of Food and Agriculture, 90, 696-702.
DOI PMID |
[17] |
Giehl RFH, Gruber BD, von Wirén N (2014). It’s time to make changes: modulation of root system architecture by nutrient signals. Journal of Experimental Botany, 65, 769-778.
DOI URL |
[18] |
Govindarajulu M, Pfeffer PE, Jin HR, Abubaker J, Douds DD, Allen JW, Bücking H, Lammers PJ, Shachar-Hill Y (2005). Nitrogen transfer in the arbuscular mycorrhizal symbiosis. Nature, 435, 819-823.
DOI URL |
[19] |
Hawkins HJ, Johansen A, George E (2000). Uptake and transport of organic and inorganic nitrogen by arbuscular mycorrhizal fungi. Plant and Soil, 226, 275-285.
DOI URL |
[20] |
Hetrick BAD (1991). Mycorrhizas and root architecture. Experientia, 47, 355-362.
DOI URL |
[21] |
Hodge A, Storer K (2015). Arbuscular mycorrhiza and nitrogen: implications for individual plants through to ecosystems. Plant and Soil, 386, 1-19.
DOI URL |
[22] |
Jansa J, Mozafar A, Frossard E (2003). Long-distance transport of P and Zn through the hyphae of an arbuscular mycorrhizal fungus in symbiosis with maize. Agronomie, 23, 481-488.
DOI URL |
[23] |
Jin H, Pfeffer PE, Douds DD, Piotrowski E, Lammers PJ, Shachar-Hill Y (2005). The uptake, metabolism, transport and transfer of nitrogen in an arbuscular mycorrhizal symbiosis. New Phytologist, 168, 687-696.
PMID |
[24] |
Johnson NC (2010). Resource stoichiometry elucidates the structure and function of arbuscular mycorrhizas across scales. New Phytologist, 185, 631-647.
DOI URL |
[25] |
Koide RT (2000). Functional complementarity in the arbuscular mycorrhizal symbiosis. New Phytologist, 147, 233-235.
DOI URL |
[26] |
Li HB, Liu BT, McCormack ML, Ma ZQ, Guo DL (2017). Diverse belowground resource strategies underlie plant species coexistence and spatial distribution in three grasslands along a precipitation gradient. New Phytologist, 216, 1140-1150.
DOI URL |
[27] |
Liu BT, Li HB, Zhu B, Koide RT, Eissenstat DM, Guo DL (2015). Complementarity in nutrient foraging strategies of absorptive fine roots and arbuscular mycorrhizal fungi across 14 coexisting subtropical tree species. New Phytologist, 208, 125-136.
DOI URL |
[28] | Liu HJ (2005). Cloning and Functional Analysis of ARL1 Gene Required for Adventitious Root Formation in Rice. PhD dissertation, Zhejiang University, Hangzhou. 12-16. |
[ 刘洪家 (2005). 水稻不定根发生基因ARL1的克隆与功能分析. 博士学位论文, 浙江大学, 杭州. 12-16.] | |
[29] | Liu MM, Li YS, Sun J, He CX (2018). Comparison of propagation of two arbuscular mycorrhizal fungi and their effects on maize growth. Bulletin of Agricultural Science and Technology, 556(4), 65-69. |
[ 刘铭铭, 李衍素, 孙锦, 贺超兴 (2018). 两种丛枝菌根真菌扩繁比较及其对玉米促生的研究. 农业科技通讯, 556(4), 65-69.] | |
[30] |
Lu YW, Liu X, Chen F, Zhou SR (2020). Shifts in plant community composition weaken the negative effect of nitrogen addition on community-level arbuscular mycorrhizal fungi colonization. Proceedings of the Royal Society B: Biological Sciences, 287, 20200483. DOI: 10.1098/rspb.2020.0483.
DOI URL |
[31] |
Luck McCormack M, Adams TS, Smithwick EAH, Eissenstat DM (2012). Predicting fine root lifespan from plant functional traits in temperate trees. New Phytologist, 195, 823-831.
DOI PMID |
[32] |
Ma XC, Geng QH, Zhang HG, Bian CY, Chen HYH, Jiang DL, Xu X (2021). Global negative effects of nutrient enrichment on arbuscular mycorrhizal fungi, plant diversity and ecosystem multifunctionality. New Phytologist, 229, 2957-2969.
DOI URL |
[33] |
Ma ZQ, Guo DL, Xu XL, Lu MZ, Bardgett RD, Eissenstat DM, McCormack ML, Hedin LO (2018). Evolutionary history resolves global organization of root functional traits. Nature, 555, 94-97.
DOI URL |
[34] |
Mergemann H, Sauter M (2000). Ethylene induces epidermal cell death at the site of adventitious root emergence in rice. Plant Physiology, 124, 609-614.
PMID |
[35] |
Ohtomo R, Kobae Y, Morimoto S, Oka N (2018). Infection unit density as an index of infection potential of arbuscular mycorrhizal fungi. Microbes and Environments, 33, 34-39.
DOI PMID |
[36] |
Parniske M (2008). Arbuscular mycorrhiza: the mother of plant root endosymbioses. Nature Reviews Microbiology, 6, 763-775.
DOI PMID |
[37] |
Paszkowski U, Boller T (2002). The growth defect of lrt1, a maize mutant lacking lateral roots, can be complemented by symbiotic fungi or high phosphate nutrition. Planta, 214, 584-590.
PMID |
[38] |
Reinhardt DR, Miller RM (1990). Size classes of root diameter and mycorrhizal fungal colonization in two temperate grassland communities. New Phytologist, 116, 129-136.
DOI URL |
[39] |
Schalamuk S, Cabello MN, Chidichimo H, Golik S (2011). Effects of inoculation with Glomus mosseae in conventionally tilled and nontilled soils with different levels of nitrogen fertilization on wheat growth, arbuscular mycorrhizal colonization, and nitrogen nutrition. Communications in Soil Science and Plant Analysis, 42, 586-598.
DOI URL |
[40] |
Smith SE, Smith FA (2011). Roles of arbuscular mycorrhizas in plant nutrition and growth: new paradigms from cellular to ecosystem scales. Annual Review of Plant Biology, 62, 227-250.
DOI URL |
[41] | Song ZY, Lü K, Luo F, Lian XM (2012). Effect of nitrogen application on nitrogen uptaking and utilization in ten different rice varieties. Journal of Huazhong Agricultural University, 31, 165-170. |
[ 宋智勇, 吕凯, 罗凤, 练兴明 (2012). 施氮量对不同基因型水稻品种氮素吸收利用的影响. 华中农业大学学报, 31, 165-170.] | |
[42] |
Tateno R, Nakayama M, Yano M, Fukuzawa K, Inagaki Y, Koba K, Ugawa S (2020). Nitrogen source utilization in co-existing canopy tree and dwarf bamboo in a northern hardwood forest in Japan. Trees, 34, 1047-1057.
DOI URL |
[43] |
Valenzuela-Estrada LR, Vera-Caraballo V, Ruth LE, Eissenstat DM (2008). Root anatomy, morphology, and longevity among root orders in Vaccinium corymbosum (Ericaceae). American Journal of Botany, 95, 1506-1514.
DOI PMID |
[44] | Wang QC, Cheng YH (2004). Response of fine roots to soil nutrient spatial heterogeneity. Chinese Journal of Applied Ecology, 15, 1063-1068. |
[ 王庆成, 程云环 (2004). 土壤养分空间异质性与植物根系的觅食反应. 应用生态学报, 15, 1063-1068.] | |
[45] |
Wang XX, Wang XJ, Sun Y, Cheng Y, Liu ST, Chen XP, Feng G, Kuyper TW (2018a). Arbuscular mycorrhizal fungi negatively affect nitrogen acquisition and grain yield of maize in a N deficient soil. Frontiers in Microbiology, 9, 418. DOI: 10.3389/fmicb.2018.00418.
DOI URL |
[46] |
Wang YH, Wang MQ, Li Y, Wu AP, Huang JY (2018b). Effects of arbuscular mycorrhizal fungi on growth and nitrogen uptake of Chrysanthemum morifolium under salt stress. PLOS ONE, 13, e0196408. DOI: 10.1371/journal.pone. 0196408.
DOI URL |
[47] |
Weemstra M, Mommer L, Visser EJW, van Ruijven J, Kuyper TW, Mohren GMJ, Sterck FJ (2016). Towards a multidimensional root trait framework: a tree root review. New Phytologist, 211, 1159-1169.
DOI PMID |
[48] |
Wen ZH, Li HB, Shen Q, Tang XM, Xiong CY, Li HG, Pang JY, Ryan MH, Lambers H, Shen JB (2019). Tradeoffs among root morphology, exudation and mycorrhizal symbioses for phosphorus-acquisition strategies of 16 crop species. New Phytologist, 223, 882-895.
DOI URL |
[49] |
Yahara H, Tanikawa N, Okamoto M, Makita N (2019). Characterizing fine-root traits by species phylogeny and microbial symbiosis in 11 co-existing woody species. Oecologia, 191, 983-993.
DOI URL |
[50] | Zhu ZX (2011). OsIAA11-Mediated Auxin Signaling Controls Lateral Root Initiation in Rice. PhD dissertation, Zhejiang University, Hangzhou. 11-22. |
[ 朱振兴 (2011). OsIAAll介导的生长素信号调控水稻侧根的起始. 博士学位论文, 浙江大学, 杭州. 11-22.] |
[1] | 陈科宇 邢森 唐玉 孙佳慧 任世杰 张静 纪宝明. 不同草地型土壤丛枝菌根真菌群落特征及其驱动因素[J]. 植物生态学报, 2024, 48(5): 660-674. |
[2] | 胡蝶 蒋欣琪 戴志聪 陈戴一 张雨 祁珊珊 杜道林. 丛枝菌根真菌提高入侵杂草南美蟛蜞菊对除草剂的耐受性[J]. 植物生态学报, 2024, 48(5): 651-659. |
[3] | 曲泽坤, 朱丽琴, 姜琦, 王小红, 姚晓东, 蔡世锋, 罗素珍, 陈光水. 亚热带常绿阔叶林丛枝菌根树种养分觅食策略及其与细根形态间的关系[J]. 植物生态学报, 2024, 48(4): 416-427. |
[4] | 黄玲, 王榛, 马泽, 杨发林, 李岚, SEREKPAYEV Nurlan, NOGAYEV Adilbek, 侯扶江. 长期放牧和氮添加对黄土高原典型草原长芒草种群生长的影响[J]. 植物生态学报, 2024, 48(3): 317-330. |
[5] | 颜辰亦, 龚吉蕊, 张斯琦, 张魏圆, 董学德, 胡宇霞, 杨贵森. 氮添加对内蒙古温带草原土壤活性有机碳的影响[J]. 植物生态学报, 2024, 48(2): 229-241. |
[6] | 耿雪琪, 唐亚坤, 王丽娜, 邓旭, 张泽凌, 周莹. 氮添加增加中国陆生植物生物量并降低其氮利用效率[J]. 植物生态学报, 2024, 48(2): 147-157. |
[7] | 舒韦维, 杨坤, 马俊旭, 闵惠琳, 陈琳, 刘士玲, 黄日逸, 明安刚, 明财道, 田祖为. 氮添加对红锥不同序级细根形态和化学性状的影响[J]. 植物生态学报, 2024, 48(1): 103-112. |
[8] | 陈保冬, 付伟, 伍松林, 朱永官. 菌根真菌在陆地生态系统碳循环中的作用[J]. 植物生态学报, 2024, 48(1): 1-20. |
[9] | 赵艳超, 陈立同. 土壤养分对青藏高原高寒草地生物量响应增温的调节作用[J]. 植物生态学报, 2023, 47(8): 1071-1081. |
[10] | 苏炜, 陈平, 吴婷, 刘岳, 宋雨婷, 刘旭军, 刘菊秀. 氮添加与干季延长对降香黄檀幼苗非结构性碳水化合物、养分与生物量的影响[J]. 植物生态学报, 2023, 47(8): 1094-1104. |
[11] | 李红琴, 张法伟, 仪律北. 高寒草甸表层土壤和优势植物叶片的化学计量特征对降水改变和氮添加的响应[J]. 植物生态学报, 2023, 47(7): 922-931. |
[12] | 何斐, 李川, Faisal SHAH, 卢谢敏, 王莹, 王梦, 阮佳, 魏梦琳, 马星光, 王卓, 姜浩. 丛枝菌根菌丝桥介导刺槐-魔芋间碳转运和磷吸收[J]. 植物生态学报, 2023, 47(6): 782-791. |
[13] | 杨佳绒, 戴冬, 陈俊芳, 吴宪, 刘啸林, 刘宇. 丛枝菌根真菌多样性对植物群落构建和稀有种维持的研究进展[J]. 植物生态学报, 2023, 47(6): 745-755. |
[14] | 张雅琪, 庞丹波, 陈林, 曹萌豪, 何文强, 李学斌. 荒漠草原土壤氨氧化细菌群落结构对氮添加和枯落物输入的响应[J]. 植物生态学报, 2023, 47(5): 699-712. |
[15] | 罗来聪, 赖晓琴, 白健, 李爱新, 方海富, Nasir SHAD, 唐明, 胡冬南, 张令. 氮添加背景下土壤真菌和细菌对不同种源入侵植物乌桕生长特征的影响[J]. 植物生态学报, 2023, 47(2): 206-215. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19