植物生态学报 ›› 2014, Vol. 38 ›› Issue (5): 440-451.DOI: 10.3724/SP.J.1258.2014.00040
所属专题: 植物功能性状
李西良1,2,侯向阳1,*(),吴新宏1,萨茹拉1,纪磊1,陈海军1,刘志英1,2,丁勇1,*(
)
收稿日期:
2013-12-26
接受日期:
2014-02-17
出版日期:
2014-12-26
发布日期:
2014-05-13
通讯作者:
侯向阳,丁勇
基金资助:
LI Xi-Liang1,2,HOU Xiang-Yang1,*(),WU Xin-Hong1,null null1,JI Lei1,CHEN Hai-Jun1,LIU Zhi-Ying1,2,DING Yong1,*(
)
Received:
2013-12-26
Accepted:
2014-02-17
Online:
2014-12-26
Published:
2014-05-13
Contact:
HOU Xiang-Yang,DING Yong
摘要:
植物对不同功能性状进行权衡, 通过表型可塑性达到对异质生境的适应是植物的一种生态对策。羊草(Leymus chinensis)是欧亚温带草原东缘的主要优势植物, 研究其对放牧的表型反应对揭示草原生态系统的放牧响应机制具有代表意义。该文以内蒙古呼伦贝尔草甸草原为例, 通过设置不同放牧压力与围封的长期试验, 研究了羊草茎叶功能性状对放牧的可塑性响应模式。结果表明: 1)与长期围封相比, 长期放牧导致羊草茎叶性状显著小型化, 其中, 株高和个体地上生物量分别降低76.82%和89.88%, 但3年短期围封对茎性状影响不显著, 说明羊草表型矮小化现象具有一定的保守性; 2)通过排序构建羊草性状可塑性变化谱, 发现茎质量、总质量、茎高、株高、叶面积等为对放牧响应的敏感性状, 而叶片数、茎粗、叶宽等较为稳定, 为惰性性状; 3)放牧干扰下, 羊草性状可塑性程度与其变异性之间符合y = y0 + aebx拟合关系, 随着植物性状的响应强度增大, 其变异性增强; 4)偏最小二乘法分析发现茎长、株高、叶面积、叶长等性状的投影重要性指标大于1, 对地上生物量变化的解释率为68.6%, 是导致长期放牧下羊草个体生物量降低的主要因子。研究认为, 矮化型变是羊草的避牧适应对策, 在亚稳态下, 通过不同性状的权衡, 充分利用环境资源完成其生活史。
李西良,侯向阳,吴新宏,萨茹拉,纪磊,陈海军,刘志英,丁勇. 草甸草原羊草茎叶功能性状对长期过度放牧的可塑性响应. 植物生态学报, 2014, 38(5): 440-451. DOI: 10.3724/SP.J.1258.2014.00040
LI Xi-Liang,HOU Xiang-Yang,WU Xin-Hong,null null,JI Lei,CHEN Hai-Jun,LIU Zhi-Ying,DING Yong. Plastic responses of stem and leaf functional traits in Leymus chinensis to long-term grazing in a meadow steppe. Chinese Journal of Plant Ecology, 2014, 38(5): 440-451. DOI: 10.3724/SP.J.1258.2014.00040
图2 围封与放牧对羊草叶片表型性状的影响(平均值±标准误差)。LA, 单叶面积; LL, 平均叶长; LLW, 叶平均长宽比; LMA, 比叶质量; LN, 叶片数; LW, 平均叶宽; LWE, 单叶质量; TLA, 总叶面积; TLW, 总叶质量。样地同图1。不同小写字母表示差异显著(p < 0.05)。
Fig. 2 Effects of enclosure and grazing to leaf phenotypic trait of Leymus chinensis (mean ± SE). LA, leaf area; LL, leaf length; LLW, leaf length/width ratio; LMA, leaf mass per area; LN, leaf number; LW, mean leaf width; LWE, leaf mass; TLA, total leaf area; TLW, total leaf mass. Plots see Fig. 1. Different small letters indicate significant differences (p < 0.05).
图3 围封与放牧对羊草茎表型性状的影响(平均值±标准误差)。SD, 茎粗; SL, 茎长; SLD, 茎长/茎粗; SW, 茎质量。样地同 图1。不同小写字母表示差异显著(p < 0.05)。
Fig. 3 Effects of enclosure and grazing to stem phenotypic trait of Leymus chinensis (mean ± SE). SD, stem diameter; SL, stem length; SLD, stem length/stem diameter; SW, stem mass. Plots see Fig. 1. Different small letters indicate significant differences (p < 0.05).
图4 围封与放牧对羊草全株功能性状的影响(平均值±标准误差)。AB, 总质量; PH, 株高; SLW, 茎质量/叶质量。样地同图1。不同小写字母表示差异显著(p < 0.05)。
Fig. 4 Effects of enclosure and grazing to functional traits of Leymus chinensis (mean ± SE). AB, aboveground biomass; PH, plant height; SLW, stem mass/leaf mass. Plots see Fig. 1. Different small letters indicate significant differences (p < 0.05).
图5 短期围封(SE)、中度放牧(MG)与重度放牧(HG)下羊草茎叶性状可塑性指数(PI)变化程度排序。AB, 总质量; LA, 单叶面积; LL, 平均叶长; LLW, 平均长宽比; LMA, 比叶质量; LN, 叶片数; LW, 平均叶宽; LWE, 单叶质量; PH, 株高; SD, 茎粗; SL, 茎长; SLD, 茎长/茎粗; SLW, 茎质量/叶质量; SW, 茎质量; TLA, 总叶面积; TLW, 叶质量。
Fig. 5 Sorting of Leymus chinensis leaf and stem trait plasticity index (PI) change in short-term enclosure (SE), moderate grazing (MG) and heavy degree grazing (HG). AB, aboveground biomass; LA, leaf area; LL, leaf length; LLW, leaf length/width ratio; LMA, leaf mass per area; LN, leaf number; LW, leaf width; LWE, leaf mass; PH, plant height; SD, stem diameter; SL, stem length; SLD, stem length/stem diameter; SLW, stem mass/leaf mass; SW, stem mass; TLA, total leaf area; TLW, total leaf mass.
图6 羊草不同茎叶功能性状变异性比较。AB, 总质量; LA, 单叶面积; LL, 平均叶长; LLW, 平均长宽比; LMA, 比叶质量; LN, 叶片数; LW, 平均叶宽; LWE, 单叶质量; PH, 株高; SD, 茎粗; SL, 茎长; SLD, 茎长/茎粗; SLW, 茎质量/叶质量; SW, 茎质量; TLA, 总叶面积; TLW, 叶质量。
Fig. 6 Comparisons of variation in leaf and stem functional traits in Leymus chinensis. AB, aboveground biomass; LA, leaf area; LL, leaf length; LLW, leaf length/width ratio; LMA, leaf mass per area; LN, leaf number; LW, leaf width; LWE, leaf mass; PH, plant height; SD, stem diameter; SL, stem length; SLD, stem length/stem diameter; SLW, stem mass/leaf mass; SW, stem mass; TLA, total leaf area; TLW, total leaf mass.
图7 羊草不同茎叶功能性状变异系数(CV)与可塑性指数(PI)的关系。
Fig. 7 Relationships between variation of coefficient (CV) and plasticity index (PI) of functional traits in Leymus chinensis.
PH | LN | LL | LW | LLW | TLA | LA | SL | SD | SLD | |
---|---|---|---|---|---|---|---|---|---|---|
PH | 1.00 | |||||||||
LN | 0.20 | 1.00 | ||||||||
LL | 0.94** | 0.12 | 1.00 | |||||||
LW | 0.70** | 0.11 | 0.75** | 1.00 | ||||||
LLW | 0.84** | 0.08 | 0.88** | 0.37** | 1.00 | |||||
TLA | 0.92** | 0.32* | 0.94** | 0.81** | 0.75** | 1.00 | ||||
LA | 0.91** | 0.08 | 0.97** | 0.84** | 0.77** | 0.96** | 1.00 | |||
SL | 0.98** | 0.24 | 0.92** | 0.68** | 0.81** | 0.91** | 0.89** | 1.00 | ||
SD | 0.64** | 0.01 | 0.66** | 0.76** | 0.37** | 0.70** | 0.73** | 0.63** | 1.00 | |
SLD | 0.95** | 0.28* | 0.87** | 0.57** | 0.83** | 0.85** | 0.82** | 0.96** | 0.44** | 1.00 |
表1 羊草茎叶表型性状之间的协同变化关系
Table 1 The coordinated variation of Leymus chinensis leaf and stem phenotypic traits
PH | LN | LL | LW | LLW | TLA | LA | SL | SD | SLD | |
---|---|---|---|---|---|---|---|---|---|---|
PH | 1.00 | |||||||||
LN | 0.20 | 1.00 | ||||||||
LL | 0.94** | 0.12 | 1.00 | |||||||
LW | 0.70** | 0.11 | 0.75** | 1.00 | ||||||
LLW | 0.84** | 0.08 | 0.88** | 0.37** | 1.00 | |||||
TLA | 0.92** | 0.32* | 0.94** | 0.81** | 0.75** | 1.00 | ||||
LA | 0.91** | 0.08 | 0.97** | 0.84** | 0.77** | 0.96** | 1.00 | |||
SL | 0.98** | 0.24 | 0.92** | 0.68** | 0.81** | 0.91** | 0.89** | 1.00 | ||
SD | 0.64** | 0.01 | 0.66** | 0.76** | 0.37** | 0.70** | 0.73** | 0.63** | 1.00 | |
SLD | 0.95** | 0.28* | 0.87** | 0.57** | 0.83** | 0.85** | 0.82** | 0.96** | 0.44** | 1.00 |
图8 羊草个体地上生物量与茎叶性状之间的回归关系。AB, 总质量; LA, 单叶面积; LL, 平均叶长; LLW, 平均长宽比; LMA, 比叶质量; LN, 叶片数; LW, 平均叶宽; LWE, 单叶质量; PH, 株高; SD, 茎粗; SL, 茎长; SLD, 茎长/茎粗; SLW, 茎质量/叶质量; SW, 茎质量; TLA, 总叶面积; TLW, 叶质量。
Fig. 8 Regression fitting of Leymus chinensis individual aboveground biomass and functional traits. AB, aboveground biomass; LA, leaf area; LL, leaf length; LLW, leaf length/width ratio; LMA, leaf mass per area; LN, leaf number; LW, leaf width; LWE, leaf mass; PH, plant height; SD, stem diameter; SL, stem length; SLD, stem length/stem diameter; SLW, stem mass/leaf mass; SW, stem mass; TLA, total leaf area; TLW, total leaf mass.
图9 羊草个体地上生物量与生物量组分(A)、功能性状(B)的投影重要性指标(VIP)(平均值±标准误差)(柱状图)影响要素权重(饼图)。LA, 单叶面积; LL, 平均叶长; LLW, 平均长宽比; LMA, 比叶质量; LN, 叶片数; LW, 平均叶宽; LWE, 单叶质量; PH, 株高; SD, 茎粗; SL, 茎长; SLD, 茎长/茎粗; SLW, 茎质量/叶质量; SW, 茎质量; TLA, 总叶面积; TLW, 叶质量。
Fig. 9 The variable importance in projection values (VIP) (mean ± SE) (bar charts) and weights of influential factors (pie charts) of individual aboveground biomass by the biomass components (A) and functional traits (B). LA, leaf area; LL, leaf length; LLW, leaf length/width ratio; LMA, leaf mass per area; LN, leaf number; LW, leaf width; LWE, leaf mass; PH, plant height; SD, stem diameter; SL, stem length; SLD, stem length/stem diameter; SLW, stem mass/leaf mass; SW, stem mass; TLA, total leaf area; TLW, total leaf mass.
[1] | Akiyama T, Kawamura K (2007). Grassland degradation in China: methods of monitoring, management and restoration. Grassland Science, 53, 1-17. |
[2] | Bernard-Verdier M, Navas ML, Vellend M, Violle C, Fayolle A, Garnier E (2012). Community assembly along a soil depth gradient: contrasting patterns of plant trait convergence and divergence in a Mediterranean rangeland. Journal of Ecology, 100, 1422-1433. |
[3] |
Bullock JM, Franklin J, Stevenson MJ, Silvertown J, Coulson SJ, Gregory SJ, Tofts R (2001). A plant trait analysis of responses to grazing in a long-term experiment. Journal of Applied Ecology, 38, 253-267.
DOI URL |
[4] |
Conti G, Díaz S (2013). Plant functional diversity and carbon storage―an empirical test in semi-arid forest ecosystems. Journal of Ecology, 101, 18-28.
DOI URL |
[5] | Corner EJH (1949). The durian theory or the origin of the modern tree. Annals of Botany, 13, 367-414. |
[6] |
de Kroon H, Huber H, Stuefer JF, van Groenendael JM (2005). A modular concept of phenotypic plasticity in plants. The New Phytologist, 166, 73-82.
DOI URL PMID |
[7] | Díaz S, Lavorel S, McIntyre S, Falczuk V, Casanoves F, Milchunas DG, Skerpe C, Rusch G, Sternberg M, Noy-Meir I, Landsberg J, Zhang W, Clark H, Campbell BD (2007). Plant trait responses to grazing—A global synthesis. Global Change Biology, 13, 313-341. |
[8] | Gao LX, Chen JK, Yang J (2008). Phenotypic plasticity: Eco-Devo and evolution. Journal of Systematics and Evolution, 46, 441-451. (in Chinese with English abstract) |
[ 高乐旋, 陈家宽, 杨继 (2008). 表型可塑性变异的生态-发育机制及其进化意义. 植物分类学报, 46, 441-451.] | |
[9] | Giese M, Gao YZ, Lin S, Brueck H (2011). Nitrogen availability in a grazed semi-arid grassland is dominated by seasonal rainfall. Plant and Soil, 340, 157-167. |
[10] | Han B, Zhao ML, Shan D (2011). Stipa Molecular Ecology. Science Press, Beijing. 1-32. |
[ 韩冰, 赵萌莉, 珊丹 (2011). 针茅属植物分子生态学. 科学出版社, 北京. 1-32.] | |
[11] |
He JS, Wang L, Flynn DF, Wang X, Ma W, Fang J (2008). Leaf nitrogen: phosphorus stoichiometry across Chinese grassland biomes. Oecologia, 155, 301-310.
DOI URL PMID |
[12] | Hodge A (2004). The plastic plant: root responses to heterogeneous supplies of nutrients. New Phytologist, 162, 9-24. |
[13] | Hou XY (2013). Chinese Grassland Science. Science Press, Beijing. 424-470. |
[ 侯向阳 (2013). 中国草原科学. 科学出版社, 北京. 424-470.] | |
[14] | Klimkowska A, Bekker RM, van Diggelen R, Kotowski W (2010). Species trait shifts in vegetation and soil seed bank during fen degradation. Plant Ecology, 206, 59-82. |
[15] |
Knapp AK, Smith MD (2001). Variation among biomes in temporal dynamics of aboveground primary production. Science, 291, 481-484.
DOI URL PMID |
[16] | Li B (1997). The rangeland degradation in north China and its preventive strategy. Scientia Agricutura Sinica, 30(6), 1-9. (in Chinese with English abstract) |
[ 李博 (1997). 中国北方草地退化及其防治对策. 中国农业科学, 30(6), 1-9.] | |
[17] |
Li SY, Verburg PH, Lü SH, Wu JL, Li XB (2012). Spatial analysis of the driving factors of grassland degradation under conditions of climate change and intensive use in Inner Mongolia, China. Regional Environmental Change, 12, 461-474.
DOI URL |
[18] |
Li WJ, Ali SH, Zhang Q (2007). Property rights and grassland degradation: a study of the Xilingol Pasture, Inner Mongolia, China. Journal of Environmental Management, 85, 461-470.
DOI URL |
[19] |
Lindborg R, Helm A, Bommarco R, Heikkinen RK, Kühn I, Pykälä J, Pärtel M (2012). Effect of habitat area and isolation on plant trait distribution in European forests and grasslands. Ecography, 35, 356-363.
DOI URL |
[20] | Liu ZL, Wang W, Hao DY, Liang CZ (2002). Probes on the degeneration and recovery succession mechanisms of Inner Mongolia steppe. Journal of Arid Land Resources and Environment, 16, 84-91. (in Chinese with English abstract) |
[ 刘钟龄, 王炜, 郝敦元, 梁存柱 (2002). 内蒙古草原退化与恢复演替机理的探讨. 干旱区资源与环境, 16, 84-91.] | |
[21] | Louault F, Pillar VD, Aufrère J, Garnier E, Soussana JF (2005). Plant traits and functional types in response to reduced disturbance in a semi-natural grassland. Journal of Vegetation Science, 16, 151-160. |
[22] | Ma WJ, Zhang Q, Niu JM, Kang S, Liu PT, He X, Yang Y, Zhang YN, Wu JG (2013). Relationship of ecosystem primary productivity to species diversity and functional group diversity: evidence from Stipa breviflora grassland in Inner Mongolia. Chinese Journal of Plant Ecology, 37, 620-630. (in Chinese with English abstract) |
[ 马文静, 张庆, 牛建明, 康萨如拉, 刘朋涛, 何欣, 杨艳, 张艳楠, 邬建国 (2013). 物种多样性和功能群多样性与生态系统生产力的关系——以内蒙古短花针茅草原为例. 植物生态学报, 37, 620-630.] | |
[23] |
Milton SJ, Dean WRJ, du Plessis MA, Siegfried WR (1994). A conceptual model of arid rangeland degradation. BioScience, 44, 70-76.
DOI URL |
[24] |
Mooney KA, Halitschke R, Kessler A, Agrawal AA (2010). Evolutionary trade-offs in plants mediate the strength of trophic cascades. Science, 327, 1642-1644.
DOI URL PMID |
[25] |
Nussey DH, Postma E, Gienapp P, Visser ME (2005). Selection on heritable phenotypic plasticity in a wild bird population. Science, 310, 304-306.
DOI URL PMID |
[26] |
Peng SS, Piao SL, Ciais P, Myneni RB, Chen AP, Chevallier F, Dolman AJ, Janssens IA, Penuelas J, Zhang GX, Vicca S, Wan SQ, Wang SP, Zeng H (2013). Asymmetric effects of daytime and night-time warming on Northern Hemisphere vegetation. Nature, 501, 88-92.
DOI URL PMID |
[27] |
Poorter H, Niklas KJ, Reich PB, Oleksyn J, Poot P, Mommer L (2012). Biomass allocation to leaves, stems and roots: meta-analyses of interspecific variation and environmental control. New Phytologist, 193, 30-50.
DOI URL PMID |
[28] | Ren JZ (1998). Research Methods in Prataculturae. China Agriculture Press, Beijing. |
[ 任继周 (1998). 草业科学研究方法. 中国农业出版社, 北京.] | |
[29] | Ren JZ (2004). The General Theory of Agro-pasture Ecosystem. Anhui Education Press, Hefei. 105-320. |
[ 任继周 (2004). 草地农业生态系统通论. 安徽教育出版社, 合肥. 105-320.] | |
[30] | Ren JZ (2012). Grazing, the basic form of grassland ecosystem and its transformation. Journal of Natural Resources, 27, 1259-1275. (in Chinese with English abstract) |
[ 任继周 (2012). 放牧, 草原生态系统存在的基本方式——兼论放牧的转型. 自然资源学报, 27, 1259-1275.] | |
[31] |
Richards CL, Bossdorf O, Muth NZ, Gurevitch J, Pigliucci M (2006). Jack of all trades, master of some? On the role of phenotypic plasticity in plant invasions. Ecology Letters, 9, 981-993.
DOI URL PMID |
[32] |
Rusch GM, Skarpe C, Halley DJ (2009). Plant traits link hypothesis about resource-use and response to herbivory. Basic and Applied Ecology, 10, 466-474.
DOI URL |
[33] |
Sarula, Li JX, Hou XY (2013). Research on soil organic carbon storage distribution in the grassland ecosystem. Scientia Agricultura Sinica, 46, 3604-3614. (in Chinese with English abstract)
DOI URL |
[ 萨茹拉, 李金祥, 侯向阳 (2013). 草地生态系统土壤有机碳储量及其分布特征. 中国农业科学, 46, 3604-3614.]
DOI URL |
|
[34] |
Stahlheber KA, D’Antonio CM (2013). Using livestock to manage plant composition: A meta-analysis of grazing in California Mediterranean grasslands. Biological Conservation, 157, 300-308.
DOI URL |
[35] |
Suzuki RO, Suzuki SN (2011). Facilitative and competitive effects of a large species with defensive traits on a grazing-adapted, small species in a long-term deer grazing habitat. Plant Ecology, 212, 343-351.
DOI URL |
[36] | Valladares F, Wright SJ, Lasso E, Kitajima K, Pearcy RW (2000). Plastic phenotypic response to light of 16 congeneric shrubs from a Panamanian rainforest. Ecology, 81, 1925-1936. |
[37] |
van Kleunen M, Weber E, Fischer M (2010). A meta-analysis of trait differences between invasive and non-invasive plant species. Ecology Letters, 13, 235-245.
DOI URL PMID |
[38] |
von Wehrden H, Hanspach J, Kaczensky P, Fischer J, Wesche K (2012). Global assessment of the non-equilibrium concept in rangelands. Ecological Applications, 22, 393-399.
DOI URL PMID |
[39] | Wang SP, Wang YF, Chen ZZ (2003). The Management of Grazing Ecosystem. Science Press, Beijing. 113-132. |
[ 汪诗平, 王艳芬, 陈佐忠 (2003). 放牧生态系统管理. 科学出版社, 北京. 113-132.] | |
[40] | Wang W, Liang CZ, Liu ZL, Hao DY (2000). Analysis of the plant individual behaviour during the degradation and restoring succession in steppe community. Acta Phytoecologica Sinica, 24, 268-274. (in Chinese with English abstract) |
[ 王炜, 梁存柱, 刘钟龄, 郝敦元 (2000). 草原群落退化与恢复演替中的植物个体行为分析. 植物生态学报, 24, 268-274.] | |
[41] | Wu JG (2007). Landscape Ecology: Pattern, Process, Scale and Level. 2nd edn. Higher Education Press, Beijing. 85-87. |
[ 邬建国 (2007). 景观生态学——格局、过程、尺度与等级(第二版). 高等教育出版社, 北京. 85-87.] | |
[42] | Zhu TC (2004). Leymus chinensis Biological Ecology. Jilin Science and Technology Press, Changchun. 177-191. |
[ 祝廷成 (2004). 羊草生物生态学. 吉林科学技术出版社, 长春. 177-191.] |
[1] | 刘瑶 钟全林 徐朝斌 程栋梁 郑跃芳 邹宇星 张雪 郑新杰 周云若. 不同大小刨花楠细根功能性状与根际微环境关系[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 徐子怡 金光泽. 阔叶红松林不同菌根类型幼苗细根功能性状的变异与权衡[J]. 植物生态学报, 2024, 48(5): 612-622. |
[3] | 白皓然 侯盟 刘艳杰. 少花蒺藜草入侵与干旱对羊草草原生产力的影响机制[J]. 植物生态学报, 2024, 48(5): 577-589. |
[4] | 常晨晖 朱彪 朱江玲 吉成均 杨万勤. 森林粗木质残体分解研究进展[J]. 植物生态学报, 2024, 48(5): 541-560. |
[5] | 付粱晨, 丁宗巨, 唐茂, 曾辉, 朱彪. 北京东灵山白桦和蒙古栎的根际效应及其季节动态[J]. 植物生态学报, 2024, 48(4): 508-522. |
[6] | 范宏坤, 曾涛, 金光泽, 刘志理. 小兴安岭不同生长型阔叶植物叶性状变异及权衡[J]. 植物生态学报, 2024, 48(3): 364-376. |
[7] | 刘聪聪, 何念鹏, 李颖, 张佳慧, 闫镤, 王若梦, 王瑞丽. 宏观生态学中的植物功能性状研究: 历史与发展趋势[J]. 植物生态学报, 2024, 48(1): 21-40. |
[8] | 陈昭铨, 王明慧, 胡子涵, 郎学东, 何云琼, 刘万德. 云南普洱季风常绿阔叶林幼苗的群落构建机制[J]. 植物生态学报, 2024, 48(1): 68-79. |
[9] | 袁雅妮, 周哲, 陈彬洲, 郭垚鑫, 岳明. 基于功能性状的锐齿槲栎林共存树种生态策略差异[J]. 植物生态学报, 2023, 47(9): 1270-1277. |
[10] | 马常钦, 黄海龙, 彭政淋, 吴纯泽, 韦庆钰, 贾红涛, 卫星. 水曲柳雌雄株复叶类型及光合功能对不同生境的响应[J]. 植物生态学报, 2023, 47(9): 1287-1297. |
[11] | 孙佳慧, 史海兰, 陈科宇, 纪宝明, 张静. 植物细根功能性状的权衡关系研究进展[J]. 植物生态学报, 2023, 47(8): 1055-1070. |
[12] | 赵孟娟, 金光泽, 刘志理. 阔叶红松林3种典型蕨类叶功能性状的垂直变异[J]. 植物生态学报, 2023, 47(8): 1131-1143. |
[13] | 代景忠, 白玉婷, 卫智军, 张楚, 辛晓平, 闫玉春, 闫瑞瑞. 羊草功能性状对施肥的动态响应[J]. 植物生态学报, 2023, 47(7): 943-953. |
[14] | 周莹莹, 林华. 不同水热梯度下冠层优势树种叶片热力性状及适应策略的变化趋势[J]. 植物生态学报, 2023, 47(5): 733-744. |
[15] | 陈雪纯, 刘虹, 朱少琦, 孙铭遥, 宇振荣, 王庆刚. 漓江流域不同弃耕年限下4种常见草本植物功能性状种内变化及其影响因素[J]. 植物生态学报, 2023, 47(4): 559-570. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19