植物生态学报 ›› 2016, Vol. 40 ›› Issue (11): 1111-1123.DOI: 10.17521/cjpe.2015.0414
• 研究论文 • 下一篇
孙宝玉1,2, 韩广轩1,*(), 陈亮3, 初小静1,2, 邢庆会1,2, 吴立新4, 朱书玉4
收稿日期:
2015-11-21
接受日期:
2016-07-23
出版日期:
2016-11-10
发布日期:
2016-11-25
通讯作者:
韩广轩
基金资助:
Bao-Yu SUN1,2, Guang-Xuan HAN1,*(), Liang CHEN3, Xiao-Jing CHU1,2, Qing-Hui XING1,2, Li-Xin WU4, Shu-Yu ZHU4
Received:
2015-11-21
Accepted:
2016-07-23
Online:
2016-11-10
Published:
2016-11-25
Contact:
Guang-Xuan HAN
摘要:
冬季土壤呼吸能释放生长季所固存的碳, 因而在陆地碳循环中占有重要地位。随着全球气候变暖, 平均地表温度将升高0.3-4.8 ℃, 且冬季增温更加明显, 而温度的升高会促进更多CO2的释放。另外, 滨海湿地地下水位浅, 淡咸水交互作用明显, 增温能引起土壤表层盐分升高, 从而影响土壤呼吸。该研究以黄河三角洲滨海湿地为研究对象, 采用红外辐射加热器模拟增温, 研究了该地区非生长季土壤呼吸的日动态及季节动态, 同时探讨了土壤呼吸对环境因子的响应机制。结果显示: 日动态中, 增温与对照的土壤呼吸速率变化趋势一致, 为单峰曲线; 在平均日变化中, 整个非生长季不同处理的土壤呼吸速率无显著差异, 而土壤温度和土壤盐分均为增温大于对照, 并且土壤呼吸峰值时间均比土壤温度提前。季节动态中, 整个研究期分为非盐分限制阶段(2014年11月-2015年2月中旬)和盐分限制阶段(2015年2月中旬-2015年4月)。在整个非生长季, 土壤呼吸速率无显著差异; 在非盐分限制阶段, 当10 cm土壤温度升高4.0 ℃时, 土壤呼吸速率显著提高22.9%, 而土壤呼吸温度敏感性系数(Q10)与对照相比有所降低; 在盐分限制阶段, 尽管土壤温度升高3.3 ℃, 土壤呼吸速率却降低了20.7%, 这可能是由于增温引起了土壤盐分的升高, 同时由增温引起的土壤含水量的升高在一定程度上也限制了土壤呼吸, 而此阶段增温对Q10无显著影响。因此, 在滨海湿地中, 增温除了直接影响土壤温度, 还可通过影响土壤水盐状况来影响土壤呼吸, 进而影响滨海湿地土壤碳库。
孙宝玉, 韩广轩, 陈亮, 初小静, 邢庆会, 吴立新, 朱书玉. 模拟增温对黄河三角洲滨海湿地非生长季土壤呼吸的影响. 植物生态学报, 2016, 40(11): 1111-1123. DOI: 10.17521/cjpe.2015.0414
Bao-Yu SUN, Guang-Xuan HAN, Liang CHEN, Xiao-Jing CHU, Qing-Hui XING, Li-Xin WU, Shu-Yu ZHU. Effects of elevated temperature on soil respiration in a coastal wetland during the non- growing season in the Yellow River Delta, China. Chinese Journal of Plant Ecology, 2016, 40(11): 1111-1123. DOI: 10.17521/cjpe.2015.0414
图2 增温和对照处理土壤呼吸速率(A)、10 cm土壤温度(B)、土壤水分含量(C)、土壤电导率(D)的日动态(平均值±标准误差)。
Fig. 2 Average diurnal variation of soil respiration rate (A), soil temperature (B), soil water content (C), and soil salt content (D) at 10 cm depth under warming and control treatments (mean ± SE).
图3 增温和对照处理下土壤呼吸速率(A)、10 cm土壤温度(B)、土壤水分含量(C)、土壤电导率(D)的季节动态(白色区域表示非盐分限制阶段, 灰色区域表示盐分限制阶段)。
Fig. 3 Seasonal variation of soil respiration rate (A), soil temperature (B), soil water content (C), and soil electric conductivity (D) at 10 cm depth under warming and control treatments (White expresses non-salt restriction period, gray expresses salt restriction period).
图4 增温对非盐分限制阶段、盐分限制阶段和整个非生长季土壤呼吸速率(A)、10 cm土壤温度(B)、土壤含水量(C)、土壤电导率(D)的影响(平均值±标准误差)。*, p < 0.05; **, p < 0.01。
Fig. 4 Soil respiration rate (A), soil temperature (B), soil water content (C), and soil electric conductivity (D) at 10 cm depth of non- salt restriction period, salt restriction period and non-growing season under warming and control treatments (mean ± SE).
阶段 Period | 日期 Date | a | b | Q10 | R2 | p | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
增温 Warming | 对照 Control | 增温 Warming | 对照 Control | 增温 Warming | 对照 Control | 增温 Warming | 对照 Control | 增温 Warming | 对照 Control | ||||||
非盐分限制阶段 Non-salt restriction period | 11-1 | 0.316 | 0.117 | 0.059 | 0.137 | 1.06* | 1.15 | 0.79 | 0.63 | <0.01 | <0.01 | ||||
11-21 | 0.040 | 0.151 | 0.097 | 0.102 | 1.10 | 1.11 | 0.66 | 0.63 | 0.06 | 0.04 | |||||
12-6 | 0.147 | 0.082 | 0.146 | 0.775 | 1.16** | 2.17** | 0.66 | 0.54 | <0.01 | <0.01 | |||||
12-19 | 0.044 | 0.139 | 0.435 | 0.674 | 1.54* | 1.96* | 0.85 | 0.74 | <0.01 | <0.01 | |||||
1-3 | 0.044 | 0.908 | 0.453 | 0.305 | 1.57 | 1.36 | 0.71 | 0.74 | <0.01 | 0.03 | |||||
1-24 | 0.040 | 0.138 | 0.293 | 0.219 | 1.34 | 1.24 | 0.72 | 0.74 | <0.01 | 0.02 | |||||
2-3 | 0.074 | 0.042 | 0.144 | 0.122 | 1.15 | 1.13 | 0.71 | 0.68 | <0.01 | 0.06 | |||||
盐分限制阶段 Salt restriction period | 2-26 | 0.055 | 0.094 | 0.168 | 0.205 | 1.18 | 1.23 | 0.50 | 0.52 | 0.02 | 0.02 | ||||
3-14 | 0.028 | 0.102 | 0.206 | 0.203 | 1.23 | 1.23 | 0.55 | 0.66 | 0.03 | 0.02 | |||||
3-28 | 0.071 | 0.045 | 0.117 | 0.169 | 1.12 | 1.18 | 0.74 | 0.95 | <0.01 | <0.01 | |||||
4-10 | 0.065 | 0.133 | 0.106 | 0.099 | 1.11 | 1.10 | 0.88 | 0.52 | <0.01 | <0.01 | |||||
4-28 | 0.176 | 0.316 | 0.065 | 0.062 | 1.07 | 1.06 | 0.75 | 0.62 | <0.01 | 0.01 |
表1 不同日期土壤呼吸速率与土壤温度间关系模型SR =a × exp (b × t)的参数及Q10值
Table 1 Parameter of relational model (SR = a × exp (b × t)) between soil respiration rate and soil temperature and the Q10 value on different dates
阶段 Period | 日期 Date | a | b | Q10 | R2 | p | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
增温 Warming | 对照 Control | 增温 Warming | 对照 Control | 增温 Warming | 对照 Control | 增温 Warming | 对照 Control | 增温 Warming | 对照 Control | ||||||
非盐分限制阶段 Non-salt restriction period | 11-1 | 0.316 | 0.117 | 0.059 | 0.137 | 1.06* | 1.15 | 0.79 | 0.63 | <0.01 | <0.01 | ||||
11-21 | 0.040 | 0.151 | 0.097 | 0.102 | 1.10 | 1.11 | 0.66 | 0.63 | 0.06 | 0.04 | |||||
12-6 | 0.147 | 0.082 | 0.146 | 0.775 | 1.16** | 2.17** | 0.66 | 0.54 | <0.01 | <0.01 | |||||
12-19 | 0.044 | 0.139 | 0.435 | 0.674 | 1.54* | 1.96* | 0.85 | 0.74 | <0.01 | <0.01 | |||||
1-3 | 0.044 | 0.908 | 0.453 | 0.305 | 1.57 | 1.36 | 0.71 | 0.74 | <0.01 | 0.03 | |||||
1-24 | 0.040 | 0.138 | 0.293 | 0.219 | 1.34 | 1.24 | 0.72 | 0.74 | <0.01 | 0.02 | |||||
2-3 | 0.074 | 0.042 | 0.144 | 0.122 | 1.15 | 1.13 | 0.71 | 0.68 | <0.01 | 0.06 | |||||
盐分限制阶段 Salt restriction period | 2-26 | 0.055 | 0.094 | 0.168 | 0.205 | 1.18 | 1.23 | 0.50 | 0.52 | 0.02 | 0.02 | ||||
3-14 | 0.028 | 0.102 | 0.206 | 0.203 | 1.23 | 1.23 | 0.55 | 0.66 | 0.03 | 0.02 | |||||
3-28 | 0.071 | 0.045 | 0.117 | 0.169 | 1.12 | 1.18 | 0.74 | 0.95 | <0.01 | <0.01 | |||||
4-10 | 0.065 | 0.133 | 0.106 | 0.099 | 1.11 | 1.10 | 0.88 | 0.52 | <0.01 | <0.01 | |||||
4-28 | 0.176 | 0.316 | 0.065 | 0.062 | 1.07 | 1.06 | 0.75 | 0.62 | <0.01 | 0.01 |
[1] | Atkin OK, Tjoelker MG (2003). Thermal acclimation and the dynamic response of plant respiration to temperature.Trends in Plant Science, 8, 343-351. |
[2] | Baldwin DS, Rees GN, Mitchell AM, Watson G, Williams J (2006). The short-term effects of salinization on anaerobic nutrient cycling and microbial community structure in sediment from a freshwater wetland.Wetlands, 26, 455-464. |
[3] | Berger B, Johnstone J, Treseder KK (2004). Experimental warming and burn severity alter soil CO2 flux and soil functional groups in a recently burned boreal forest.Global Change Biology, 10, 1996-2004. |
[4] | Bokhorst S, Bjerke JW, Melillo J, Callaghan TV, Phoenix GK (2010). Impacts of extreme winter warming events on litter decomposition in a sub-Arctic heathland.Soil Biology & Biochemistry, 42, 611-617. |
[5] | Bradford MA, Fierer N, Reynolds JF (2008). Soil carbon stocks in experimental mesocosms are dependent on the rate of labile carbon, nitrogen and phosphorus inputs to soils.Functional Ecology, 22, 964-974. |
[6] | Brooks PD, McKnight D, Elder K (2004). Carbon limitation of soil respiration under winter snow packs: Potential feedbacks between growing season and winter carbon fluxes.Global Change Biology, 11, 231-238. |
[7] | Cai F, Zhang SJ, Yu GR, Zhu QL, Liu XA (2006). Research of spatial-temporal evolvement characters of mean air temperature in China in recent 50 years based on spatialization technique.Plateau Meteorology, 25, 1168-1175. (in Chinese with English abstract)[蔡福, 张淑杰, 于贵瑞, 祝青林, 刘新安 (2006). 基于空间化技术对中国近50年平均气温时空演变特征的研究. 高原气象, 25, 1168-1175.] |
[8] | Carney KM, Hungate BA, Drake BG, Megonigal JP (2007). Altered soil microbial community at elevated CO2 leads to loss of soil carbon.Proceedings of the National Academy of Sciences of the United States of America, 104, 4990-4995. |
[9] | Chen GC, Tam NF, Ye Y (2010). Summer fluxes of atmospheric greenhouse gases N2O, CH4 and CO2 from mangrove soil in South China.Science of the Total Environment, 408, 2761-2767. |
[10] | Chen QS, Li LH, Han XG, Yan ZD (2003). Effect of soil moisture on soil respiration.Acta Ecologica Sinica, 25, 972-978. (in Chinese with English abstract)[陈全胜, 李凌浩, 韩兴国, 阎志丹 (2003). 水分对土壤呼吸的影响及机理. 生态学报, 25, 972-978.] |
[11] | Cox PM, Betts RA, Jones CD, Spall SA, Totterdell IJ (2000). Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model.Nature, 408, 184-187. |
[12] | Cui YW, Wang SY, Song XQ, Wang HD, Zhu GB, Peng YZ (2004). Effects of NaCl salinity on activated sludge treatment system.Environmental Engineering, 22, 19-21. (in Chinese with English abstract)[崔有为, 王淑莹, 宋学起, 王海东, 祝贵兵, 彭永臻 (2004). NaCl盐度对活性污泥处理系统的影响. 环境工程, 22, 19-21.] |
[13] | Davidson EA, Trumbore SE, Amundson R (2000). Soil warming and organic carbon content.Nature, 408, 789-790. |
[14] | Davidson EA, Richardson AD, Savage KE, Hollinger DY (2006). A distinct seasonal pattern of the ratio of soil respiration to total ecosystem respiration in a spruce- dominated forest.Global Change Biology, 12, 230-239. |
[15] | Eliasson PE, McMurtrie RE, Pepper DA, Strömgren M, Linder S, Ågren GI (2005). The response of heterotrophic CO2 flux to soil warming.Global Change Biology, 11, 167-181. |
[16] | Fan XM, Pedroli B, Liu GH, Liu HG, Song CY, Shu LC (2011). Potential plant species distribution in the Yellow River Delta under the influence of groundwater level and soil salinity.Ecohydrology, 4, 744-756. |
[17] | Fang C, Moncrieff JB (2001). The dependence of soil CO2 efflux on temperature.Soil Biology & Biochemistry, 33, 155-165. |
[18] | Fouche J, Keller C, Allard M, Ambrosi JP (2014). Increased CO2 fluxes under warming tests and soil solution chemistry in Histic and Turbic Cryosols, Salluit, Nunavik, Canada.Soil Biology & Biochemistry, 68, 185-199. |
[19] | Garcia C, Hernandez T (1996). Influence of salinity on the biological and biochemical activity of a calciorthird soil.Plant and Soil, 178, 255-263. |
[20] | Gaumont-Guay D, Black TA, Griffis TJ, Barr AG, Jassal RS, Nesic Z (2006). Interpreting the dependence of soil respiration on soil temperature and water content in a boreal aspen stand.Agricultural and Forest Meteorology, 140, 220-235. |
[21] | Giardina CP, Ryan MG (2000). Evidence that decomposition rates of organic carbon in mineral soil do not vary with temperature.Nature, 404, 858-861. |
[22] | Gorham E (1991). Northern peatlands: Role in the carbon cycle and probable responses to climatic warming. Ecological Applications, 1, 182-195. |
[23] | Grogan P, Jonasson S (2005). Temperature and substrate controls on intra-annual variation in ecosystem respiration in two subarctic vegetation types.Global Change Biology, 11, 465-475. |
[24] | Grogan P, Jonasson S (2006). Ecosystem CO2 production during winter in a Swedish subarctic region: The relative importance of climate and vegetation type.Global Change Biology, 12, 1479-1495. |
[25] | Han GX, Yu JB, Li HB, Yang LQ, Wang GM, Mao PL, Gao YG (2012). Winter soil respiration from different vegetation patches in the Yellow River Delta, China.Environmental Management, 50, 39-49. |
[26] | Han GX, Yang LQ, Yu JB, Wang GM, Mao PL, Gao YJ (2013). Environmental controls on net ecosystem CO2 exchange over a reed (Phragmites australis) wetland in the Yellow River Delta, China. Estuaries and Coasts, 36, 401-413. |
[27] | Han GX, Luo YQ, Li DJ, Xia JY, Xing QH, Yu JB (2014). Ecosystem photosynthesis regulates soil respiration on a diurnal scale with a short-term time lag in a coastal wetland.Soil Biology & Biochemistry, 68, 85-94. |
[28] | Hartley IP, Hopkins DW, Garnett MH, Sommerkorn M, Wookey PA (2008). Soil microbial respiration in arctic soil does not acclimate to temperature.Ecology Letters, 11, 1092-1100. |
[29] | Hartley IP, Ineson P (2008). Substrate quality and the temperature sensitivity of soil organic matter decomposition.Soil Biology & Biochemistry, 40, 1567-1574. |
[30] | Hasbullah H, Petra M (2015). Residue properties influence the impact of salinity on soil respirationBiology and Fertility of Soils, 51, 99-111. |
[31] | Heinsch FA, Heilman JL, McInnes KJ, Cobos DR, Zuberer DA, Roelke DL (2004). Carbon dioxide exchange in a high marsh on the Texas Gulf Coast: Effects of freshwater availability.Agricultural and Forest Meteorology, 125, 159-172. |
[32] | Hoeppner SS, Dukes JS (2012). Interactive responses of old- field plant growth and composition to warming and precipitation.Global Change Biology, 18, 1754-1768. |
[33] | Hou YH, Zhou GS, Xu ZZ, Liu T, Zhang XS (2013). Interactive effects of warming and increased precipitation on community structure and composition in an annual forb dominated desert steppe.PLOS ONE, 8, e70114. doi: 10.1371/journal.pone.0070114. |
[34] | Hubbard RM, Ryan MG, Elder K, Rhoades CC (2005). Seasonal patterns in soil surface CO2 flux under snow cover in 50 and 300 year old subalpine forest.Biogeochemistry, 73, 93-107. |
[35] | Hugler M, Sievert SM (2011). Beyond the Calvin cycle: Autotrophic carbon fixation in the ocean.Annual Review of Marine Science, 3, 261-289. |
[36] | Huntingford C, Lowe JA, Booth BBB, Jones CD, Harris GR, Gohar LK, Meir P (2009). Contributions of carbon cycle uncertainty to future climate projection spread.Tellus, 61, 355-360. |
[37] | IPCC (Intergovernmental Panel on Climate Change) (2013). Contribution of working group 1 to the fifth assessment report of the intergovernmental panel on climate change. In: Stocker TF, Qin DH, Plattner GK, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM eds. Climate Change in 2013: The Physical Science Basis. Cambridge University Press, Cambridge, UK. |
[38] | Iwai CB, Oo AN, Topark-Ngarm B (2012). Soil property and microbial activity in natural salt affected soils in an alternating wet-dry tropical climate. Geoderma, s189-190, 144-152. |
[39] | Janssens IA, Pilegaard K (2003). Large seasonal changes in Q10 of soil respiration in a beech forest. Global Change Biology, 9, 911-918. |
[40] | Jarvis P, Linder S (2000). Constraints to growth of boreal forests.Nature, 405, 904-905. |
[41] | Jones HG (1999). The ecology of snow-covered systems: A brief overview of nutrient cycling and life in the cold.Hydrological Processes, 13, 2135-2147. |
[42] | Kiehn WM, Mendelssohn IA, White JR (2013). Biogeochemical recovery of oligohaline wetland soils experiencing a salinity pulse.Soil Science Society of America Journal, 77, 2205-2215. |
[43] | Kirschbaum M (1995). The temperature dependence of soil organic matter decomposition, and the effect of global warming on soil organic C storage.Soil Biology and Biochemistry, 27, 753-760. |
[44] | Kong YG, Zhang JC, Wang YH, Zhang DH, Chu DS, Tao BX (2009). Soil Respiration and its sensitivity to temperature in the typical shelter forests in a silting coastal area of Northern Jiangsu Province.Acta Ecologica Sinica, 29, 4084-4092. (in Chinese with English abstract)[孔雨光, 张金池, 王因花, 张东海, 储冬生, 陶宝先 (2009).苏北淤泥质海岸典型防护林地土壤呼吸及其温度敏感性. 生态学报, 29, 4084-4092.] |
[45] | Konnerup D, Betancourt-Portela JM, Villamil C, Parra JP (2014). Nitrous oxide and methane emissions from the restored mangrove ecosystem of the Ciénaga Grande de Santa Marta, Colombia.Estuarine, Coastal and Shelf Science, 140, 43-51. |
[46] | Li FX, Wang XQ, Guo YZ, Xu X, Yang JG, Ji YQ (2012). Microbial flora and diversity in different types of saline- alkali soil in Ningxia.Journal of Soil and Water Conservation, 25, 107-111. (in Chinese with English abstract)[李凤霞, 王学琴, 郭永忠, 许兴, 杨建国, 季艳清 (2012). 宁夏不同类型盐渍化土壤微生物区系及多样性. 水土保持学报, 25, 107-111.] |
[47] | Lin GH, Rygiewicz PT, Ehleringer JR, Johnson MJ, Tingey DT (2001). Time-dependent responses of soil CO2 efflux components to elevated atmospheric CO2 and temperature in experimental forest mesocosms.Plant and Soil, 229, 259-270. |
[48] | Liu YC (2013). Response of Soil Respiration and Microbial Community Structure to Soil Warming and Throughfall Exclusion in Warm-temperature Oak (Quercus aliena var. acuteserrata) Forest. PhD dissertation, Chinese Academy of Forestry Sciences, Beijing. (in Chinese with English abstract)[刘彦春 (2013). 暖温带锐齿林土壤呼吸及微生物群落结构对土壤增温和降雨减少的响应. 博士学位论文, 中国林业科学研究院, 北京.] |
[49] | Liu Z, Lee C (2007). The role of organic matter in the sorption capacity of marine sediments.Marine Chemistry, 105, 240-257. |
[50] | Luo YQ, Wan SQ, Hui DF, Wallace LL (2001). Acclimatization of soil respiration to warming in a tall grass prairie.Nature, 413, 622-625. |
[51] | Ma ZG, Wei HL, Fu ZB (2000). Relationship between regional soil moisture variation and climatic variability over East China.Acta Meteorologica Sinica, 58, 278-287. (in Chinese with English abstract)[马柱国, 魏和林, 符淙斌 (2000). 中国东部区域土壤湿度的变化与其气候变率的关系. 气象学报, 58, 278-287.] |
[52] | Marton JM, Herbert ER, Craft CB (2012). Effects of salinity on denitrification and greenhouse gas production from laboratory-incubated tidal forest soils.Wetlands, 32, 347-357. |
[53] | Melillo JM, Steudler PA, Aber JD, Newkirk K, Lux H, Bowles FP, Catricala C, Magill A, Ahrens T, Morrisseau S (2002). Soil warming and carbon-cycle feedbacks to the climate systems.Science, 298, 2173-2176. |
[54] | Monson RK (2005). Climatic influences on net ecosystem CO2 exchange during the transition from wintertime carbon source to springtime carbon sink in a high elevation, subalpine forest.Oecologia, 146, 130-147. |
[55] | Nagato Y, Tanakab HL (2012). Global warming trend without the contributions from decadal variability of the Arctic Oscillation.Polar Science, 1, 15-22. |
[56] | Nie M, Wang M, Li B (2009). Effects of salt marsh invasion by Spartina alterniflora on sulfate-reducing bacteria in the Yangtze River estuary, China. Ecological Engineering, 35, 1804-1808. |
[57] | Nie MH, Liu M, Hou LJ, Lin X, Li Y, Yan CX, Yang Y (2011). Seasonal variation of soil respiration and its influence factors in tidal flat of Yangtze Estuary.Acta Scientiae Circumstantiae, 31, 824-831. (in Chinese with English abstract)[聂明华, 刘敏, 侯立军, 林啸, 李勇, 晏彩霞, 杨毅 (2011). 长江口潮滩土壤呼吸季节变化及其影响因素. 环境科学学报, 31, 824-831.] |
[58] | Niinisto SM, Silvola J, Kellomaki S (2004). Soil CO2 efflux in a boreal pine forest under atmospheric CO2 enrichment and air warming.Global Change Biology, 10, 1363-1376. |
[59] | Niu SL, Han XG, Ma KP, Wan SQ (2007). Field facilities in global warming and terrestrial ecosystem research.Journal of Plant Ecology (Chinese Version), 31, 262-271. (in Chinese with English abstract)[牛书丽, 韩兴国, 马克平, 万师强 (2007). 全球变暖与陆地生态系统研究中的野外增温装置. 植物生态学报, 31, 262-271.] |
[60] | Oechel WC, Vourlitis GL, Hastings SJ, Zulueta1 RC, Hinzman L, Kane D (2000). Acclimation of ecosystem CO2 exchange in the Alaskan Artic in response to decadal climate warming.Nature, 406, 978-981. |
[61] | Pajari B (1995). Soil respiration in a poor upland site of Scots pine stand subjected to elevated temperatures and atmospheric carbon concentration.Plant and Soil, 169, 563-570. |
[62] | Pattnaik P, Mishra SR, Bharati K, Mohanty SR, Sethunathan N, Adhya TK (2000). Influence of salinity on methanogenesis and associated microflora in tropical rice soils.Microbiological Research, 155, 215-220. |
[63] | Peterjohn WT, Melillo JM, Steudler PA, Newkirk KM, Bowles FP, Aber JD (1994). Responses of trace gas fluxes and N availability to experimentally elevated soil temperatures.Ecological Applications, 4, 617-625. |
[64] | Pivnickova B, Rejmankova E, Snyder JM, Santruckova H (2010). Heterotrophic microbial activities and nutritional status of microbial communities in tropical marsh sediments of different salinities: The effects of phosphorus addition and plant species.Plant and Soil, 336, 49-63. |
[65] | Pankhurst CE, Yu S, Hawke BG, Harch BD (2001). Capacity of fatty acid profiles and substrate utilization patterns to describe differences in soil microbial communities associated with increased salinity or alkalinity at three locations in South Australia.Biology and Fertility of Soils, 33, 204-217. |
[66] | Raich JW, Schlesinger WH (1992). The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate.Tellus, 44, 81-99. |
[67] | Rietz DN, Haynes RJ (2003). Effects of irrigation-induced salinity and sodicity on soil microbial activity.Soil Biology & Biochemistry, 35, 845-854. |
[68] | Ruehr NK, Buchmann N (2010). Soil respiration fluxes in a temperate mixed forest: Seasonality and temperature sensitivities differ among microbial and root-rhizosphere respiration.Tree Physiology, 30, 165-176. |
[69] | Rustad LE, Campbell JL, Marion GM, Norby RJ, Mitchell MJ, Hartley AE, Cornelissen JHC, Gurevitch J (2001). A meta-analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming.Oecologia, 126, 543-562. |
[70] | Saleska SR, Harte JN, Torn MS (1999). The effect of experimental ecosystem warming on CO2 fluxes in a montane meadow. Global Change Biology, 5, 125-141. |
[71] | Schimel JP, Fahnestock J, Michaelson G, Mikan C, Ping CL, Romanovsky VE, Welker J (2006). Cold-season production of CO2 in arctic soils: Can laboratory and field estimates be reconciled through a simple modeling approach?Arctic, Antarctic, and Alpine Research, 38, 249-256. |
[72] | Schindlbacher A, Boltenstern SZ, Glatzel G, Jandl R (2007). Winter soil respiration from an Austrian mountain forest.Agricultural and Forest Meteorology, 146, 205-215. |
[73] | Setia R, Marschner P, Baldock J, Chittleborough D, Verma V (2011). Relationships between carbon dioxide emission and soil properties in salt-affected landscapes.Soil Biology & Biochemistry, 43, 667-674. |
[74] | Setia R, Marschner P, Baldock J (2010). Is CO2 evolution in saline soils affected by an osmotic effect and calcium carbonate?Biology and Fertility of Soils, 46, 781-792. |
[75] | Thottathil SD, Balachandran KK, Jayalakshmy KV, Gupta GVM, Nair S (2008). Tidal switch on metabolic activity: Salinity induced responses on bacterioplankton metabolic capabilities in a tropical estuary. Estuarine,Coastal and Shelf Science, 78, 665-673. |
[76] | Tong C, E Y, Liao J, Yao S, Wang WQ, Huang JF, Zhang LH, Yang HY, Zeng CS (2011). Carbon dioxide emission from tidal marshes in the Min River Estuary,Acta Scientiae Circumstantiae, 31, 2830-2840. (in Chinese with English abstract)[仝川, 鄂焱, 廖稷, 姚顺, 王维奇, 黄佳芳, 张林海, 杨红玉, 曾从盛 (2011). 闽江河口潮汐沼泽湿地CO2排放通量特征. 环境科学学报, 31, 2830-2840.] |
[77] | Wan SQ, Norby RJ, Ledford J, Weltzin J (2007). Responses of soil respiration to elevated CO2, air warming, and changing soil water availability in a model old-field grassland.Global Change Biology, 13, 2411-2424. |
[78] | Wang X, Liu L, Piao SL, Janssens I, Tang JW, Liu WX, Chi YG, Wang J, Xu S (2014). Soil respiration under climate warming: Differential response of heterotrophic and autotrophic respiration.Global Change Biology, 20, 3229-3237. |
[79] | Wichern J, Wichern F, Joergensen RG (2006). Impact of salinity on soil microbial communities and the decomposition of maize in acidic soils.Geoderma, 137, 100-108. |
[80] | Wickland KP, Striegl RG, Mast MA (2001). Carbon gas exchange at a southern Rocky Mountain wetland, 1996- 1998.Global Biogeochemistry, 15, 321-335. |
[81] | Wong V, Greene R, Dalal R, Murphy B (2010). Soil carbon dynamics in saline and sodic soils: A review.Soil Use and Management, 26, 2-11. |
[82] | Wong VNL, Dalal RC, Greene RSB (2008). Salinity and sodi- city effects on respiration and microbial biomass of soil.Biology and Fertility of Soils, 44, 943-953. |
[83] | Xia J, Han Y, Zhang Z, Wan S (2009). Effects of diurnal warming on soil respiration are not equal to the summed effects of day and night warming in a temperate steppe.Biogeosciences, 6, 1361-1370. |
[84] | Xiong P, Xu ZF, Lin B, Liu Q (2010). Short-term response of winter soil respiration to simulated warming in a Pinus armandii plantation in the upper reaches of the Minjiang River, China. Chinese Journal of Plant Ecology, 34, 1369-1376. (in Chinese with English abstract)[熊沛, 徐振峰, 林波, 刘庆 (2010). 岷江上游华山松林冬季土壤呼吸对模拟增温的短期响应. 植物生态学报, 34, 1369-1376.] |
[85] | Xu ZF, Tang Z, Wan C, Xiong P, Cao G, Liu Q (2010). Effects of simulated warming on soil enzyme activities in two subalpine coniferous forests in West Sichuan.Chinese Journal of Applied Ecology, 21, 2727-2733. (in Chinese with English abstract)[徐振锋, 唐正, 万川, 熊沛, 曹刚, 刘庆 (2010). 模拟增温对川西亚高山两类针叶林土壤酶活性的影响. 应用生态学报, 21, 2727-2733.] |
[86] | Yan JX, Chen LF, Li JJ, Li JH (2013). Five year soil respiration reflected soil quality evolution in different forest and grassland vegetation types in the Eastern Loess Plateau of China.Clean Soil, Air, Water, 41, 680-689. |
[87] | Yang Y, Huang M, Liu HS, Liu HJ (2011). The interrelation between temperature sensitivity and adaptability of soil respiration.Journal of Natural Resources, 26, 1811-1820. (in Chinese with English abstract)[杨毅, 黄玫, 刘洪升, 刘华杰 (2011). 土壤呼吸的温度敏感性和适应性研究进展. 自然资源学报, 26, 1811-1820.] |
[88] | Yang YH, Fang JY, Ji CJ, Han WX (2009). Above- and belowground biomass allocation in Tibetan grasslands.Journal of Vegetation Science, 20, 177-184. |
[89] | Yao RJ, Yang JS (2010). Quantitative evaluation of soil salinity and its spatial distribution using electromagnetic induction method.Agricultural Water Management, 97, 1961-1970. |
[90] | Yin HJ, Li YF, Xiao J, Xu ZF, Cheng XY, Liu Q (2013). Enhanced root exudation stimulates soil nitrogen transformations in a subalpine coniferous forest under experimental warming.Global Change Biology, 19, 2158-2167. |
[91] | Yuste JC, Ma S, Baldocchi DD (2010). Plant soil interactions and acclimation to temperature of microbial-mediated soil respiration may affect predictions of soil CO2 efflux.Biogeochemistry, 98, 127-138. |
[92] | Zhang JF, Zhang XD, Zhou JX, Makeschin F (2005). Effects of salinity stress on poplars seedling growth and soil enzyme activity.Chinese Journal of Applied Ecology, 16, 426-430. (in Chinese with English abstract)[张建锋, 张旭东, 周金星, Makeschin F (2005). 盐分胁迫对杨树苗期生长和土壤酶活性的影响. 应用生态学报, 16, 426-430.] |
[93] | Zhang TT, Zeng SL, Gao Y, Ouyang ZT, Li B, Fang CM, Zhao B (2011). Assessing impact of land uses on land salinization in the Yellow River Delta, China using an integrated and spatial statistical model.Land Use Policy, 28, 857-866. |
[94] | Zhong QC, Du Q (2013). Effects of in situ experimental air warming on the soil respiration in a coastal salt marsh reclaimed for agriculture. Plant and Soil, 371, 487-502. |
[95] | Zhou XH, Wan SQ, Luo YQ (2007). Source components and interannual variability of soil CO2 efflux under experimental warming and clipping in a grassland ecosystem.Global Change Biology, 13, 761-775. |
[1] | 索南吉, 李博文, 吕汪汪, 王文颖, 拉本, 陆徐伟, 宋扎磋, 陈程浩, 苗琪, 孙芳慧, 汪诗平. 增温增水情景下钉柱委陵菜物候序列的变化及其抗冻性[J]. 植物生态学报, 2024, 48(2): 158-170. |
[2] | 李伟斌, 张红霞, 张玉书, 陈妮娜. 昼夜不对称增温对长白山阔叶红松林碳汇能力的影响[J]. 植物生态学报, 2023, 47(9): 1225-1233. |
[3] | 赵艳超, 陈立同. 土壤养分对青藏高原高寒草地生物量响应增温的调节作用[J]. 植物生态学报, 2023, 47(8): 1071-1081. |
[4] | 沈健, 何宗明, 董强, 郜士垒, 林宇. 轻度火烧对滨海沙地人工林土壤呼吸速率和非生物因子的影响[J]. 植物生态学报, 2023, 47(7): 1032-1042. |
[5] | 郭敏, 罗林, 梁进, 王彦杰, 赵春章. 冻融变化对西南亚高山森林优势种云杉和华西箭竹根区土壤理化性质与酶活性的影响[J]. 植物生态学报, 2023, 47(6): 882-894. |
[6] | 吴帆, 吴晨, 张宇辉, 余恒, 魏智华, 郑蔚, 刘小飞, 陈仕东, 杨智杰, 熊德成. 增温对成熟杉木人工林不同季节细根生长、形态及生理代谢特征的影响[J]. 植物生态学报, 2023, 47(6): 856-866. |
[7] | 李雪, 董杰, 韩广轩, 张奇奇, 谢宝华, 李培广, 赵明亮, 陈克龙, 宋维民. 黄河三角洲典型滨海盐沼湿地土壤CO2和CH4排放对水盐变化的响应[J]. 植物生态学报, 2023, 47(3): 434-446. |
[8] | 王文伟, 韩伟鹏, 刘文文. 滨海湿地入侵植物互花米草叶片功能性状对潮位的短期响应[J]. 植物生态学报, 2023, 47(2): 216-226. |
[9] | 夏璟钰, 张扬建, 郑周涛, 赵广, 赵然, 朱艺旋, 高洁, 沈若楠, 李文宇, 郑家禾, 张雨雪, 朱军涛, 孙建新. 青藏高原那曲高山嵩草草甸植物物候对增温的异步响应[J]. 植物生态学报, 2023, 47(2): 183-194. |
[10] | 杨元合, 张典业, 魏斌, 刘洋, 冯雪徽, 毛超, 徐玮婕, 贺美, 王璐, 郑志虎, 王媛媛, 陈蕾伊, 彭云峰. 草地群落多样性和生态系统碳氮循环对氮输入的非线性响应及其机制[J]. 植物生态学报, 2023, 47(1): 1-24. |
[11] | 钟楠蝶, 王力, 肖杰, 王琼. 增温条件下花粉来源对红雉凤仙花生殖成功的影响[J]. 植物生态学报, 2022, 46(4): 416-427. |
[12] | 田磊, 朱毅, 李欣, 韩国栋, 任海燕. 不同降水条件下内蒙古荒漠草原主要植物物候对长期增温和氮添加的响应[J]. 植物生态学报, 2022, 46(3): 290-299. |
[13] | 韩聪, 刘鹏, 母艳梅, 原媛, 郝少荣, 田赟, 查天山, 贾昕. 黑沙蒿灌丛生态系统碳平衡对昼夜非对称增温的响应[J]. 植物生态学报, 2022, 46(12): 1473-1485. |
[14] | 毛瑾, 朵莹, 邓军, 程杰, 程积民, 彭长辉, 郭梁. 冬季增温和减雪对黄土高原典型草原土壤养分和细菌群落组成的影响[J]. 植物生态学报, 2021, 45(8): 891-902. |
[15] | 蒋芬, 黄娟, 褚国伟, 程严, 刘旭军, 刘菊秀, 列志旸. 增温对南亚热带森林土壤磷形态的影响及其对有效磷的贡献[J]. 植物生态学报, 2021, 45(2): 197-206. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19