植物生态学报 ›› 2017, Vol. 41 ›› Issue (9): 925-937.DOI: 10.17521/cjpe.2016.0177
所属专题: 全球变化与生态系统; 青藏高原植物生态学:生态系统生态学
• 研究论文 • 下一篇
收稿日期:
2016-05-24
修回日期:
2017-08-26
出版日期:
2017-09-10
发布日期:
2017-10-23
通讯作者:
王亚林
基金资助:
Ya-Lin WANG1,2,*(), Rong GONG2, Feng-Min WU1, Wen-Wu FAN1
Received:
2016-05-24
Revised:
2017-08-26
Online:
2017-09-10
Published:
2017-10-23
Contact:
Ya-Lin WANG
摘要:
植被净初级生产力(NPP)是陆地生态系统碳库的主要来源, NPP的变化反映了生态系统对气候变化及土地利用变化的响应。在我国广泛地分布着相当于国土面积20%的灌木林, 其NPP在中国陆地生态系统碳平衡过程中发挥着重要作用。该文利用CASA (Carnegie-Ames-Stanford Approach)模型估算了中国6类主要灌木生态系统2001-2013年的NPP, 并分析了其季节和年际间的变化趋势及其与气候变化之间的关系。结果显示: 中国灌木生态系统的年平均NPP为281.82 g•m-2•a-1, 其中亚热带常绿灌木年平均NPP最高为420.47 g•m-2•a-1, 而高寒荒漠灌木半灌木年平均NPP最低为52.65 g•m-2•a-1。在2001-2013年间, 中国灌木生态系统的NPP以1.23 g•m-2•a-1的速度显著增加, 其相对变化速率达到了5.99%, 其中高寒荒漠灌木半灌木、温带荒漠灌木半灌木、温带落叶灌木以及亚热带常绿灌木的NPP都显著增加, 温带落叶灌木的NPP增长最快, 达到3.05 g•m-2•a-1, 亚高山常绿灌木则以0.73 g•m-2•a-1的速率显著下降, 亚高山落叶灌木则无显著变化趋势。不同灌木生态系统的NPP对不同季节气候变化的响应不同, 但总体上中国灌木生态系统NPP的变化更多受到降水变化的影响, 此外, 春季气温升高也对NPP的增加起到积极的促进作用。
王亚林, 龚容, 吴凤敏, 范文武. 2001-2013年中国灌木生态系统净初级生产力的时空变化特征及其对气候变化的响应. 植物生态学报, 2017, 41(9): 925-937. DOI: 10.17521/cjpe.2016.0177
Ya-Lin WANG, Rong GONG, Feng-Min WU, Wen-Wu FAN. Temporal and spatial variation characteristics of China shrubland net primary production and its response to climate change from 2001 to 2013. Chinese Journal of Plant Ecology, 2017, 41(9): 925-937. DOI: 10.17521/cjpe.2016.0177
DCDSMT | DCDSTP | DSRTHC | DSRTTP | EVGNMT | EVGNST | |
---|---|---|---|---|---|---|
实际面积 Actual area (km2) | 87 701 | 163 077 | 113 031 | 1 068 218 | 188 952 | 467 142 |
实际计算面积 Actual calculated area (km2) | 81 029 | 153 349 | 12 409 | 203 125 | 178 435 | 449 461 |
表1 不同灌木类型的实际面积及实际计算的面积
Table 1 The actual area and actual calculated area of different shrubland types
DCDSMT | DCDSTP | DSRTHC | DSRTTP | EVGNMT | EVGNST | |
---|---|---|---|---|---|---|
实际面积 Actual area (km2) | 87 701 | 163 077 | 113 031 | 1 068 218 | 188 952 | 467 142 |
实际计算面积 Actual calculated area (km2) | 81 029 | 153 349 | 12 409 | 203 125 | 178 435 | 449 461 |
灌木类型 Shrubland type | 平均净初级生产力 Mean net primary production (g•m-2•a-1) | 平均净初级生产力总量 Mean total net primary production (Tg) |
---|---|---|
DCDSMT | 252.28 ± 8.64 | 20.44 ± 0.70 |
DCDSTP | 247.24 ± 14.12 | 37.91 ± 2.17 |
DSRTHC | 52.65 ± 3.05 | 0.65 ± 0.04 |
DSRTTP | 72.33 ± 5.67 | 14.69 ± 1.15 |
EVGNMT | 288.07 ± 11.84 | 51.40 ± 2.11 |
EVGNST | 420.47 ± 16.96 | 188.98 ± 7.62 |
CONTRY | 281.82 ± 10.13 | 302.94 ± 10.89 |
表2 中国灌木生态系统2001-2013年间平均净初级生产力和平均净初级生产力总量(平均值±标准偏差)
Table 2 China shrubland mean net primary production and mean total net primary production from 2001 to 2013 (mean ± SD)
灌木类型 Shrubland type | 平均净初级生产力 Mean net primary production (g•m-2•a-1) | 平均净初级生产力总量 Mean total net primary production (Tg) |
---|---|---|
DCDSMT | 252.28 ± 8.64 | 20.44 ± 0.70 |
DCDSTP | 247.24 ± 14.12 | 37.91 ± 2.17 |
DSRTHC | 52.65 ± 3.05 | 0.65 ± 0.04 |
DSRTTP | 72.33 ± 5.67 | 14.69 ± 1.15 |
EVGNMT | 288.07 ± 11.84 | 51.40 ± 2.11 |
EVGNST | 420.47 ± 16.96 | 188.98 ± 7.62 |
CONTRY | 281.82 ± 10.13 | 302.94 ± 10.89 |
TS | Z | 净初级生产力的变化趋势 Trend of net primary production | 占总面积比例 Percentage of total area (%) |
---|---|---|---|
>0 | >1.96 | 显著增加 Significantly increased | 13.14 |
>0 | -1.96-1.96 | 不显著增加 Insignificantly increased | 58.09 |
0 | -1.96-1.96 | 基本不变 Essentially unchanged | 0.01 |
<0 | -1.96-1.96 | 不显著减小 Insignificantly decreased | 26.81 |
<0 | <-1.96 | 显著减小 Significantly decreased | 1.95 |
表3 中国灌木生态系统2001-2013年间净初级生产力空间变化趋势统计结果
Table 3 Statistical results of China shrubland net primary production spatial variation from 2001 to 2013
TS | Z | 净初级生产力的变化趋势 Trend of net primary production | 占总面积比例 Percentage of total area (%) |
---|---|---|---|
>0 | >1.96 | 显著增加 Significantly increased | 13.14 |
>0 | -1.96-1.96 | 不显著增加 Insignificantly increased | 58.09 |
0 | -1.96-1.96 | 基本不变 Essentially unchanged | 0.01 |
<0 | -1.96-1.96 | 不显著减小 Insignificantly decreased | 26.81 |
<0 | <-1.96 | 显著减小 Significantly decreased | 1.95 |
图1 中国灌木生态系统2001-2013年间净初级生产力(NPP)变化速率空间分布。图中的圈代表不同灌木类型的分布区域。DCDSMT、DCDSTP、DSRTHC、DSRTTP、EVGNMT和EVGNST分别代表亚高山落叶灌木、温带落叶灌木、高寒荒漠灌木半灌木、温带荒漠灌木半灌木、亚高山常绿灌木和亚热带常绿灌木。亚高山落叶灌木和亚高山常绿灌木用一个圈表示, 是因为两者之间没有明显的分界线, 亚高山落叶灌木主要分布在圆圈的上半部分, 而亚高山常绿灌木则主要分布在下半部分。
Fig. 1 Spatial distribution of China shrubland net primary production (NPP) change rate from 2001 to 2013. The circles indicate the distribution of different shrubland types. DCDSMT, DCDSTP, DSRTHC, DSRTTP, EVGNMT and EVGNST represent subalpine deciduous, temperate deciduous, high cold desert, temperate desert, subalpine evergreen, and subtropical evergreen shrubland, respectively. DCDSMT and EVGNMT are in one circle because there is no clear boundary between them, DCDSMT mainly distributed in the upper half of the circle and EVNGMT distributed in the bottom half.
灌木类型 Shrubland type | 年际变化 Interannual change | 春 Spring | 夏 Summer | 秋 Autumn | 冬 Winter | |
---|---|---|---|---|---|---|
k (g•m-2•a-1) | ΔR (%) | k (g•m-2•a-1) | ||||
DCDSMT | 0.37 | 2.02 | 0.16 | 0.39 | -0.21 | NA |
DCDSTP | 3.05*** | 17.68 | 0.61*** | 1.90** | 0.36** | NA |
DSRTHC | 0.56*** | 15.58 | 0.10*** | 0.45*** | 0.02 | NA |
DSRTTP | 0.97** | 19.95 | 0.09* | 0.69** | 0.09** | NA |
EVGNMT | -0.73* | -3.26 | -0.07 | 0.12 | -0.64*** | -0.01 |
EVGNST | 1.76** | 5.71 | 0.83* | 0.31 | 0.66** | -0.00 |
CONTRY | 1.23** | 5.99 | 0.43** | 0.61* | 0.22* | -0.00 |
表4 中国灌木生态系统2001-2013年间净初级生产力(NPP)的年际和季节变化趋势
Table 4 Annual and seasonal trend of shrubland net primary production (NPP) in China from 2001 to 2013
灌木类型 Shrubland type | 年际变化 Interannual change | 春 Spring | 夏 Summer | 秋 Autumn | 冬 Winter | |
---|---|---|---|---|---|---|
k (g•m-2•a-1) | ΔR (%) | k (g•m-2•a-1) | ||||
DCDSMT | 0.37 | 2.02 | 0.16 | 0.39 | -0.21 | NA |
DCDSTP | 3.05*** | 17.68 | 0.61*** | 1.90** | 0.36** | NA |
DSRTHC | 0.56*** | 15.58 | 0.10*** | 0.45*** | 0.02 | NA |
DSRTTP | 0.97** | 19.95 | 0.09* | 0.69** | 0.09** | NA |
EVGNMT | -0.73* | -3.26 | -0.07 | 0.12 | -0.64*** | -0.01 |
EVGNST | 1.76** | 5.71 | 0.83* | 0.31 | 0.66** | -0.00 |
CONTRY | 1.23** | 5.99 | 0.43** | 0.61* | 0.22* | -0.00 |
年份 Year | 最大光能利用率 Maximum light use efficiency | 净初级生产力 Net primary production (g•m-2•a-1) | 标准化 Standardization | 参考文献 Reference |
---|---|---|---|---|
2001-2013 | 0.429 | 281.82 | 281.82 | 本文 This study |
1982-1999 | 0.405 | 257.80 | 273.08 | Piao et al., 2005 |
1989-1993 | 0.429 | 367.70 | 367.70 | Zhu et al., 2007 |
2001 | 0.389 | 362.38 | 399.64 | Li, 2004 |
表5 本文结果与其他研究结果的比较
Table 5 Comparisons with other study results
年份 Year | 最大光能利用率 Maximum light use efficiency | 净初级生产力 Net primary production (g•m-2•a-1) | 标准化 Standardization | 参考文献 Reference |
---|---|---|---|---|
2001-2013 | 0.429 | 281.82 | 281.82 | 本文 This study |
1982-1999 | 0.405 | 257.80 | 273.08 | Piao et al., 2005 |
1989-1993 | 0.429 | 367.70 | 367.70 | Zhu et al., 2007 |
2001 | 0.389 | 362.38 | 399.64 | Li, 2004 |
灌木类型 Shrubland type | 平均气温变化速率 Mean temperature change rate (℃∙a-1) | 降水量变化速率 Precipitation change rate (mm∙a-1) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
年 Annual | 春 Spring | 夏 Summer | 秋 Autumn | 冬 Winter | 年 Annual | 春 Spring | 夏 Summer | 秋 Autumn | 冬 Winter | |
DCDSMT | 0.026 2 | 0.068 7** | 0.079 9** | 0.011 1 | -0.005 6 | 2.94* | 0.53 | 1.97 | 0.54 | 0.26 |
DCDSTP | -0.048 6* | -0.045 1 | 0.016 7 | -0.009 1 | -0.013 0*** | 7.57** | 0.90 | 5.24** | 0.77 | 1.04** |
DSRTHC | 0.020 7 | 0.060 7* | 0.043 5*** | 0.040 6* | -0.019 0 | 1.34** | 0.24 | 0.64 | 0.07 | 0.17** |
DSRTTP | -0.009 9 | 0.082 3 | -0.013 0 | 0.032 0 | -0.069 8** | 0.38 | -0.28 | 1.11 | -0.11 | 0.32 |
EVGNMT | 0.030 3 | 0.053 3* | 0.079 8** | 0.006 3 | 0.001 2 | -4.10* | -0.29 | -3.24 | -0.32 | -0.36 |
EVGNST | -0.016 7 | -0.004 5 | 0.038 0** | -0.001 7 | -0.075 9* | -4.22 | -0.81 | -7.67* | 5.21** | -2.46** |
CONTRY | -0.006 6 | 0.039 9 | 0.018 3 | -0.002 0 | -0.081 1** | -0.02 | -0.24 | -0.80 | 1.25** | -0.49** |
表6 中国灌木生态系统2001-2013年间降水量和平均气温的变化趋势
Table 6 Temporal trend of China shrubland precipitation and mean temperature from 2001 to 2013
灌木类型 Shrubland type | 平均气温变化速率 Mean temperature change rate (℃∙a-1) | 降水量变化速率 Precipitation change rate (mm∙a-1) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
年 Annual | 春 Spring | 夏 Summer | 秋 Autumn | 冬 Winter | 年 Annual | 春 Spring | 夏 Summer | 秋 Autumn | 冬 Winter | |
DCDSMT | 0.026 2 | 0.068 7** | 0.079 9** | 0.011 1 | -0.005 6 | 2.94* | 0.53 | 1.97 | 0.54 | 0.26 |
DCDSTP | -0.048 6* | -0.045 1 | 0.016 7 | -0.009 1 | -0.013 0*** | 7.57** | 0.90 | 5.24** | 0.77 | 1.04** |
DSRTHC | 0.020 7 | 0.060 7* | 0.043 5*** | 0.040 6* | -0.019 0 | 1.34** | 0.24 | 0.64 | 0.07 | 0.17** |
DSRTTP | -0.009 9 | 0.082 3 | -0.013 0 | 0.032 0 | -0.069 8** | 0.38 | -0.28 | 1.11 | -0.11 | 0.32 |
EVGNMT | 0.030 3 | 0.053 3* | 0.079 8** | 0.006 3 | 0.001 2 | -4.10* | -0.29 | -3.24 | -0.32 | -0.36 |
EVGNST | -0.016 7 | -0.004 5 | 0.038 0** | -0.001 7 | -0.075 9* | -4.22 | -0.81 | -7.67* | 5.21** | -2.46** |
CONTRY | -0.006 6 | 0.039 9 | 0.018 3 | -0.002 0 | -0.081 1** | -0.02 | -0.24 | -0.80 | 1.25** | -0.49** |
灌木类型 Shrubland type | 截距 Intercept | 气温系数Air temperature coefficients (g∙m-2∙a-1∙℃-1) | 降水量系数Precipitation coefficients (g∙m-2∙a-1∙mm-1) | ||||||
---|---|---|---|---|---|---|---|---|---|
春 Spring | 夏 Summer | 秋 Autumn | 冬 Winter | 春 Spring | 夏 Summer | 秋 Autumn | 冬 Winter | ||
DCDSMT | 199.60*** | 7.68*** | -19.31*** | -1.19*** | 0.08** | -0.51*** | |||
DCDSTP | 91.12*** | 3.76*** | 7.83*** | 0.51*** | -0.40*** | ||||
DSRTHC | 7.45 | 1.62** | 0.17* | 0.26*** | |||||
DSRTTP | 46.70*** | 0.20** | 0.26*** | -0.14* | |||||
EVGNMT | 554.26 *** | -8.15** | -9.97*** | -0.24** | -0.29*** | -0.21** | -1.45*** | ||
EVGNST | -86.92 | 43.47*** | -10.19*** | 2.57* | -0.21*** | -0.10*** | 0.23*** | -0.35*** |
表7 不同灌木生态系统年净初级生产力对季节降水和季节平均气温进行回归的系数
Table 7 Regression coefficients of annual net primary production on seasonal mean temperature and precipitation
灌木类型 Shrubland type | 截距 Intercept | 气温系数Air temperature coefficients (g∙m-2∙a-1∙℃-1) | 降水量系数Precipitation coefficients (g∙m-2∙a-1∙mm-1) | ||||||
---|---|---|---|---|---|---|---|---|---|
春 Spring | 夏 Summer | 秋 Autumn | 冬 Winter | 春 Spring | 夏 Summer | 秋 Autumn | 冬 Winter | ||
DCDSMT | 199.60*** | 7.68*** | -19.31*** | -1.19*** | 0.08** | -0.51*** | |||
DCDSTP | 91.12*** | 3.76*** | 7.83*** | 0.51*** | -0.40*** | ||||
DSRTHC | 7.45 | 1.62** | 0.17* | 0.26*** | |||||
DSRTTP | 46.70*** | 0.20** | 0.26*** | -0.14* | |||||
EVGNMT | 554.26 *** | -8.15** | -9.97*** | -0.24** | -0.29*** | -0.21** | -1.45*** | ||
EVGNST | -86.92 | 43.47*** | -10.19*** | 2.57* | -0.21*** | -0.10*** | 0.23*** | -0.35*** |
图4 净初级生产力与气候因子回归模型预测值与CASA模型估算值的对比图。DCDSMT、DCDSTP、DSRTHC、DSRTTP、EVGNMT和EVGNST分别代表亚高山落叶灌木、温带落叶灌木、高寒荒漠灌木半灌木、温带荒漠灌木半灌木、亚高山常绿灌木和亚热带常绿灌木。
Fig. 4 Regression of annual net primary production of the six shrubland types on pertinent climate variables: Regression predicted vs. simulated values. DCDSMT, DCDSTP, DSRTHC, DSRTTP, EVGNMT and EVGNST represent subalpine deciduous, temperate deciduous, high cold desert, temperate desert, subalpine evergreen and subtropical evergreen shrubland, respectively.
[1] | Allen CD, Macalady AK, Chenchouni H, Bachelet D, McDowell N, Vennetier M, Kitzberger T, Rigling A, Breshears DD, Hogg EH, Gonzalez P, Fensham R, Zhang Z, Castro J, Demidova N, Lim JH, Allard G, Running SW, Semerci A, Cobb N (2010). A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests.Forest Ecology and Management, 259, 660-684. |
[2] | Angert A, Biraud S, Bonfils C, Henning CC, Buermann W, Pinzon J, Tucker CJ, Fung I (2005). Drier summers cancel out the CO2 uptake enhancement induced by warmer springs.Proceedings of the National Academy of Sciences of the United States of America, 102, 10823-10827. |
[3] | Breshears DD, Cobb NS, Rich PM, Price KP, Allen CD, Balice RG, Romme WH, Kastens JH, Floyd ML, Belnap J, Anderson JJ, Myers OB, Meyer CW (2005). Regional vegetation die-off in response to global-change-type drought.Proceedings of the National Academy of Sciences of the United States of America, 102, 15144-15148. |
[4] | Canadell J, Jackson R, Ehleringer J, Mooney HA, Sala OE, Schulze E-D (1996). Maximum rooting depth of vegetation types at the global scale.Oecologia, 108, 583-595. |
[5] | Chapin FS, Matson PA, Mooney HA (2002). Principles of Terrestrial Ecosystem Ecology. Springer, New York. |
[6] | Dai A (2011). Drought under global warming: A review.Wiley Interdisciplinary Reviews: Climate Change, 2, 45-65. |
[7] | Ding Y, Ren G, Zhao Z, Xu Y, Luo Y, Li Q, Zhang J (2007). Detection, causes and projection of climate change over China: An overview of recent progress.Advances in Atmospheric Sciences, 24, 954-971. |
[8] | Dubovyk O, Landmann T, Erasmus BFN, Tewes A, Schellberg J (2015). Monitoring vegetation dynamics with medium resolution MODIS-EVI time series at sub-regional scale in southern Africa.International Journal of Applied Earth Observation and Geoinformation, 38, 175-183. |
[9] | Fang JY, Piao SL, Field CB, Pan YD, Guo QH, Zhou LM, Peng CH, Tao S (2003). Increasing net primary production in China from 1982 to 1999.Frontiers in Ecology and the Environment, 1, 293-297. |
[10] | Fensholt R, Proud SR (2012). Evaluation of earth observation based global long term vegetation trends—Comparing GIMMS and MODIS global NDVI time series.Remote Sensing of Environment, 119, 131-147. |
[11] | Field CB (1998). Primary production of the biosphere: Integrating terrestrial and oceanic components.Science, 281, 237-240. |
[12] | Field CB, Randerson JT, Malmstrom CM (1995). Global Net Primary Production: Combining Ecology and Remote Sensing.Remote Sensing of Environment, 51, 74-88. |
[13] | Gao Q, Yu M, Zhang X, Xu H, Huang Y (2005). Modelling seasonal and diurnal dynamics of stomatal conductance of plants in a semiarid environment.Functional Plant Biology, 32, 583-598. |
[14] | Gao Q, Yu M, Zhou C (2013). Detecting the differences in responses of stomatal conductance to moisture stresses between deciduous shrubs and Artemisia subshrubs. PLOS ONE, 8, e84200. doi:10.1371/journal.pone.0084200. |
[15] | Gao Q, Zhao P, Zeng X, Cai X, Shen W (2002). A model of stomatal conductance to quantify the relationship between leaf transpiration, microclimate and soil water stress.Plant, Cell & Environment, 25, 1373-1381. |
[16] | Gao QZ, Wan YF, Li YE Lin ED, Yang K, Jinagcun WZ, Wang BS, Li WF (2007). Grassland net primary productivity and its spatiotemporal distribution in Northern Tibet: A study with CASA model.Chinese Journal of Applied Ecology, 18, 2526-2532. (in Chinese with English abstract)[高清竹, 万运帆, 李玉娥, 林而达, 杨凯, 江村旺扎, 王宝山, 李文福 (2007). 基于CASA模型的藏北地区草地植被净第一性生产力及其时空格局. 应用生态学报, 18, 2526-2532.] |
[17] | Hansen J, Ruedy R, Sato M, Lo K (2010). Global surface temperature change. Reviews of Geophysics, 48, RG4004. doi: 10.1029/2010RG000345. |
[18] | Hicke JA, Asner GP, Randerson JT, Los S, Birdsey R, Jenkins JC, Tucker C, Field C (2002). Trends in North American net primary productivity derived from satellite observations, 1982-1998. Global Biogeochemical Cycles, 16, 2-1-2-14. doi: 10.1029/2001GB001550. |
[19] | Hipel KW, McLeod AI (1994). Time Series Modelling of Water Resources and Environmental Systems. Elsevier Science, New York. |
[20] | Hunt ER (1994). Relationship between woody biomass andPAR conversion efficiency for estimating net primary production from NDVI. International Journal of Remote Sensing, 15, 1725-1729. |
[21] | Jackson RB, Canadell J, Ehleringer JR, Mooney HA, Sala OE, Schulze ED (1996). A global analysis of root distributions for terrestrial biomes.Oecologia, 108, 389-411. |
[22] | Jeong SJ, Ho CH, Gim HJ, Brown ME (2011). Phenology shifts at start vs. end of growing season in temperate vegetation over the Northern Hemisphere for the period 1982-2008.Global Change Biology, 17, 2385-2399. |
[23] | Jiang W, Yuan L, Wang W, Cao R, Zhang Y, Shen W (2015). Spatio-temporal analysis of vegetation variation in the Yellow River Basin.Ecological Indicators, 51, 117-126. |
[24] | Kurz WA, Dymond CC, Stinson G, Rampley GJ, Neilson ET, Carroll AL, Ebata T, Safranyik L (2008). Mountain pine beetle and forest carbon feedback to climate change.Nature, 452, 987-990. |
[25] | Li GC (2004). Estimation of Chinese Terrestrial Net Primary Production Using LUE Model and MODIS Data. PhD dissertation, Institute of Remote Sensing Applications, The Chinese Academy of Sciences, Beijing. 60-72. (in Chinese with English abstract)[李贵才 (2004). 基于MODIS数据和光能利用率模型的中国陆地净初级生产力估算研究. 博士学位论文, 中国科学院遥感应用研究所, 北京. 60-72.] |
[26] | Liang W, Yang Y, Fan D, Guan HD, Zhang T, Long D, Zhou Y, Bai D (2015). Analysis of spatial and temporal patterns of net primary production and their climate controls in China from 1982 to 2010.Agricultural and Forest Meteorology, 204, 22-36. |
[27] | Lotsch A, Friedl MA, Anderson BT, Tucker CJ (2005). Response of terrestrial ecosystems to recent Northern Hemispheric drought.Geophysical Research Letters, 32, 1-5. |
[28] | Melillo JM, McGuire AD, Kicklighter DW, Moore Iii B, Vorosmarty CJ, Schloss AL (1993). Global climate change and terrestrial net primary production.Nature, 363, 234-240. |
[29] | Monserud RA, Marshall JD (1999). Allometric crown relations in three northern Idaho conifer species.Canadian Journal of Forest Research, 29, 521-535. |
[30] | Park H-S, Sohn BJ (2010). Recent trends in changes of vegetation over East Asia coupled with temperature and rainfall variations.Journal of Geophysical Research, 115, D14101. doi: 10.1029/2009JD012752. |
[31] | Peng J, Liu Z, Liu Y, Wu J, Han Y (2012). Trend analysis of vegetation dynamics in Qinghai-Tibet Plateau using Hurst Exponent.Ecological Indicators, 14, 28-39. |
[32] | Peng SL, Guo ZH, Wang BS (2000). Use of GIS and RS to estimate the light utilization efficiency of the vegetation in Guangdong, China.Acta Ecologica Sinica, 20, 903-909. (in Chinese with English abstract)[彭少麟, 郭志华, 王伯荪 (2000). 利用GIS和RS估算广东植被光利用率. 生态学报, 20, 903-909. |
[33] | Peng SS, Chen AP, Xu L, Cao CX, Fang JY, Myneni RB, Pinzon JE, Tucker CJ, Piao SL (2011). Recent change of vegetation growth trend in China.Environmental Research Letters, 6, 044027. |
[34] | Piao S (2003). Interannual variations of monthly and seasonal normalized difference vegetation index (NDVI) in China from 1982 to 1999. Journal of Geophysical Research, 108, 4401. |
[35] | Piao S, Fang J, Ciais P, Peylin P, Huang Y, Sitch S, Wang T (2009). The carbon balance of terrestrial ecosystems in China.Nature, 458, 1009-1013. |
[36] | Piao S, Fang J, Jinsheng HE (2006a). Variations in vegetation net primary production in the Qinghai-Xizang Plateau, China, from 1982 to 1999.Climatic Change, 74, 253-267. |
[37] | Piao S, Fang J, Zhou L, Ciais P, Zhu B (2006b). Variations in satellite-derived phenology in China’s temperate vegetation.Global Change Biology, 12, 672-685. |
[38] | Piao S, Fang J, Zhou L, Zhu B, Tan K, Tao S (2005). Changes in vegetation net primary productivity from 1982 to 1999 in China. Global Biogeochemical Cycles, 19, GB2027. doi: 10.1029/2004GB002274. |
[39] | Piao S, Wang X, Ciais P, Zhu B, Wang T, Liu J (2011). Changes in satellite-derived vegetation growth trend in temperate and boreal Eurasia from 1982 to 2006.Global Change Biology, 17, 3228-3239. |
[40] | Potter C, Klooster S, Genovese V (2012). Net primary production of terrestrial ecosystems from 2000 to 2009.Climatic Change, 115, 365-378. |
[41] | Potter C, Klooster S, Myneni R, Genovese V, Tan PN, Kumar V (2003). Continental-scale comparisons of terrestrial carbon sinks estimated from satellite data and ecosystem modeling 1982-1998.Global and Planetary Change, 39, 201-213. |
[42] | Potter CS, Randerson JT, Field CB, Matson PA, Vitousek PM, Mooney HA, Klooster SA (1993). Terrestrial ecosystem production—A Process Model-based on global satellite and surface data.Global Biogeochemical Cycles, 7, 811-841. |
[43] | Qi Y, Fang SB, Zhou WZ (2014). Variation and spatial distribution of surface solar radiation in China over recent 50 years.Acta Ecologica Sinica, 34, 7444-7453. (in Chinese with English abstract)[齐月, 房世波, 周文佐 (2014). 近50年来中国地面太阳辐射变化及其空间分布. 生态学报, 34, 7444-7453. |
[44] | Robeson SM (2004). Trends in time-varying percentiles of daily minimum and maximum temperature over North America.Bulletin of the American Meteorological Society, 31, 4379-4384. |
[45] | Shi XZ, Yu DS (2004). Soil database of 1:1,000,000 digital soil survey and reference system of the Chinese Genetic Soil Classification System.Soil Survey Horizons, 45, 111-148. |
[46] | The Editorial Committee of Vegetation Map of China,Chinese Academy of Sciences(2007).Vegetation Map of the People’s Republic of China 1:1 000 000. Geological Publishing House, Beijing. (in Chinese)[中国科学院中国植被图编辑委员会 (2007).中华人民共和国植被图1:1 000 000. 地质出版社, 北京.] |
[47] | Wang X, Piao S, Ciais P, Li J, Friedlingstein P, Koven C, Chen A (2011). Spring temperature change and its implication in the change of vegetation growth in North America from 1982 to 2006.Proceedings of the National Academy of Sciences of the United State of America, 108, 1240-1245. |
[48] | Wang YL, Gao Q, Liu T, Tian YQ, Yu M (2016). The greenness of major shrublands in China increased from 2001 to 2013.Remote Sensing, 8, 121. |
[49] | Wilson BF (1995). Shrub stems: Form and function. In: Gartner BL ed. Plant Stems. Academic Press, San Diego, USA. 91-102. |
[50] | Xiao JF, Zhuang QL (2007). Drought effects on large fire activity in Canadian and Alaskan forests.Environmental Research Letters, 2, 44003. doi: 10.1088/1748-9326/2/4/044003. |
[51] | Xu X, Piao S, Wang X, Chen A, Ciais P, Myneni RB (2012). Spatio-temporal patterns of the area experiencing negative vegetation growth anomalies in China over the last three decades.Environmental Research Letters, 7, 035701. doi: 10.1088/1748-9326/7/3/035701. |
[52] | Zhang F, Zhou GS, Wang YH (2008). Dynamics simulation of net primary productivity by a satellite data-driven CASA model in inner Mongolian typical steppe, China.Journal of Plant Ecology (Chinese Version), 32, 786-797. (in Chinese with English abstract)[张峰, 周广胜, 王玉辉 (2008). 基于CASA模型的内蒙古典型草原植被净初级生产力动态模拟. 植物生态学报, 32, 786-797.] |
[53] | Zhang Y, Gao Q, Xu L, Yu M, Tian Y (2014). Shrubs proliferated within a six-year exclosure in a temperate grassland -- Spatiotemporal relationships between vegetation and soil variables.Sciences in Cold and Arid Regions, 6, 139-149. |
[54] | Zhao M, Heinsch FA, Nemani RR, Running SW (2005). Improvements of the MODIS terrestrial gross and net primary production global data set.Remote Sensing of Environment, 95, 164-176. |
[55] | Zhao M, Running SW (2010). Drought-induced reduction in global terrestrial net primary production from 2000 through 2009.Science, 329, 940-943. |
[56] | Zhou L, Tucker CJ, Kaufmann RK, Slayback D, Shabanov N V, Myneni RB (2001). Variations in northern vegetation activity inferred from satellite data of vegetation index during 1981 to 1999.Journal of Geophysical Research, 106, 20069-20083. |
[57] | Zhu W, Pan Y, He H, Yu D, Hu H (2006). Simulation of maximum light use efficiency for some typical vegetation types in China.Chinese Science Bulletin, 51, 457-463. |
[58] | Zhu WQ, Pan YZ, Zhang JS (2007). Estimation of net primary productivity of Chinese terrestrial vegetation based on remote sensing.Journal of Plant Ecology (Chinese Version), 31, 413-424. (in Chinese with English abstract)[朱文泉, 潘耀忠, 张锦水 (2007). 中国陆地植被净级生产力遥感估算. 植物生态学报, 31, 413-424.] |
[1] | 陈以恒 玉素甫江·如素力 阿卜杜热合曼·吾斯曼. 2001-2020年天山新疆段草地植被覆盖度时空变化及驱动因素分析[J]. 植物生态学报, 2024, 48(5): 561-576. |
[2] | 张计深, 史新杰, 刘宇诺, 吴阳, 彭守璋. 气候变化下中国潜在自然植被生态系统碳储量动态[J]. 植物生态学报, 2024, 48(4): 428-444. |
[3] | 臧妙涵, 王传宽, 梁逸娴, 刘逸潇, 上官虹玉, 全先奎. 基于纬度移栽的落叶松叶、枝、根生态化学计量特征对气候变暖的响应[J]. 植物生态学报, 2024, 48(4): 469-482. |
[4] | 梁逸娴, 王传宽, 臧妙涵, 上官虹玉, 刘逸潇, 全先奎. 落叶松径向生长和生物量分配对气候变暖的响应[J]. 植物生态学报, 2024, 48(4): 459-468. |
[5] | 吴茹茹, 刘美珍, 谷仙, 常馨月, 郭立月, 蒋高明, 祁如意. 气候变化对巨柏适宜生境分布的潜在影响和预测[J]. 植物生态学报, 2024, 48(4): 445-458. |
[6] | 杨宇萌, 来全, 刘心怡. 气候变化和人类活动对内蒙古植被总初级生产力的定量影响[J]. 植物生态学报, 2024, 48(3): 306-316. |
[7] | 张启, 程雪寒, 王树芝. 北京西山老龄树记载的森林干扰历史[J]. 植物生态学报, 2024, 48(3): 341-348. |
[8] | 任培鑫, 李鹏, 彭长辉, 周晓路, 杨铭霞. 洞庭湖流域植被光合物候的时空变化及其对气候变化的响应[J]. 植物生态学报, 2023, 47(3): 319-330. |
[9] | 余海霞, 曲鲁平, 汤行昊, 刘南, 张子雷, 王浩, 王艺璇, 邵长亮, 董刚, 胡亚林. 闽楠和木荷非结构性碳水化合物对不同模式热浪的差异性响应[J]. 植物生态学报, 2023, 47(2): 249-261. |
[10] | 李杰, 郝珉辉, 范春雨, 张春雨, 赵秀海. 东北温带森林树种和功能多样性对生态系统多功能性的影响[J]. 植物生态学报, 2023, 47(11): 1507-1522. |
[11] | 张志山, 韩高玲, 霍建强, 黄日辉, 薛书文. 固沙灌木柠条锦鸡儿和中间锦鸡儿木质部导水与叶片光合能力对土壤水分的响应[J]. 植物生态学报, 2023, 47(10): 1422-1431. |
[12] | 魏瑶, 马志远, 周佳颖, 张振华. 模拟增温改变青藏高原植物繁殖物候及植株高度[J]. 植物生态学报, 2022, 46(9): 995-1004. |
[13] | 党宏忠, 张学利, 韩辉, 石长春, 葛玉祥, 马全林, 陈帅, 刘春颖. 樟子松固沙林林水关系研究进展及对营林实践的指导[J]. 植物生态学报, 2022, 46(9): 971-983. |
[14] | 李肖, PIALUANG Bounthong, 康文辉, 冀晓东, 张海江, 薛治国, 张志强. 近几十年来冀西北山地白桦次生林径向生长对气候变化的响应[J]. 植物生态学报, 2022, 46(8): 919-931. |
[15] | 苏启陶, 杜志喧, 周兵, 廖永辉, 王呈呈, 肖宜安. 牯岭凤仙花及其传粉昆虫在中国的潜在分布区域分析[J]. 植物生态学报, 2022, 46(7): 785-796. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19