植物生态学报 ›› 2020, Vol. 44 ›› Issue (12): 1285-1295.DOI: 10.17521/cjpe.2020.0225
扈明媛1,2, 袁野3, 戴晓琴1,2,*(), 付晓莉1,2, 寇亮1,2, 王辉民1,2
收稿日期:
2020-07-06
接受日期:
2020-09-27
出版日期:
2020-12-20
发布日期:
2021-04-01
通讯作者:
戴晓琴
作者简介:
* (daixq@igsnrr.ac.cn)基金资助:
HU Ming-Yuan1,2, YUAN Ye3, DAI Xiao-Qin1,2,*(), FU Xiao-Li1,2, KOU Liang1,2, WANG Hui-Min1,2
Received:
2020-07-06
Accepted:
2020-09-27
Online:
2020-12-20
Published:
2021-04-01
Contact:
DAI Xiao-Qin
Supported by:
摘要:
为了探讨人工林内优势乔木和林下灌草根际土壤氮矿化特征, 明确乔灌草根际土壤氮转化差异, 该研究以江西泰和千烟洲站区典型人工杉木(Cunninghamia lanceolata)、马尾松(Pinus massoniana)和湿地松(Pinus elliottii)林为对象, 在植被生长季初期(4月)和旺盛期(7月)分析3种人工林内乔木、优势灌木(檵木(Loropetalum chinense)、杨桐(Adinandra millettii)、格药柃(Eurya muricata))和草本(狗脊蕨(Woodwardia japonica)、暗鳞鳞毛蕨(Dryopteris atrata))根际土壤的净氮矿化速率、土壤化学性质及土壤微生物特征。结果发现: 1)物种、林型和取样季节显著影响了根际土壤净氮矿化速率(Nmin)、净铵化速率(Namm)和净硝化速率(Nnit)。马尾松和湿地松林内林下灌草根际土壤净氮矿化的季节敏感性高于乔木: 4月乔木根际土壤Nmin和Namm显著高于大多数林下灌草, 而7月林下灌草根际土壤Nmin和Namm显著提高, 与乔木不再具有显著差异, 与主成分综合得分方差分析的结果一致。一般情况下, 杉木林Nmin和Nnit显著高于马尾松林和湿地松林。7月净氮矿化显著高于4月。2)土壤铵态氮、硝态氮、全氮及土壤微生物量氮含量是影响根际土壤净氮矿化的主要因素。土壤化学性质对人工林根际土壤净氮矿化变异的贡献率为29.2%, 显著高于土壤微生物的解释率。充分考虑不同季节林下植被根际土壤的净氮矿化及其关键影响因素可为准确评估人工林生态系统养分循环状况提供重要支撑。
扈明媛, 袁野, 戴晓琴, 付晓莉, 寇亮, 王辉民. 亚热带人工林乔灌草根际土壤氮矿化特征. 植物生态学报, 2020, 44(12): 1285-1295. DOI: 10.17521/cjpe.2020.0225
HU Ming-Yuan, YUAN Ye, DAI Xiao-Qin, FU Xiao-Li, KOU Liang, WANG Hui-Min. Characteristics of soil nitrogen mineralization in the rhizosphere of trees, shrubs, and herbs in subtropical forest plantations. Chinese Journal of Plant Ecology, 2020, 44(12): 1285-1295. DOI: 10.17521/cjpe.2020.0225
图1 亚热带人工林内乔灌草根际土壤净氮矿化速率(A)、净铵化速率(B)和净硝化速率(C)。 AM, 杨桐; CL, 杉木; DA, 暗鳞鳞毛蕨; EM, 格药柃; LC, 檵木; PE, 湿地松; PM, 马尾松; WJ, 狗脊蕨。不同小写字母代表同一人工林内相同取样季节下不同物种之间差异显著(p < 0.05), 未标注小写字母则表示差异不显著。不同大写字母代表相同取样季节不同人工林类型间差异显著(括号内为4月, 括号外为7月; p < 0.05)。*代表同一人工林内相同物种不同取样季节差异显著(p < 0.05)。
Fig. 1 Net mineralization rate (Nmin), net ammonification rate (Namm), and net nitrification rate (Nnit) of the rhizosphere soil of overstory trees, understory shrubs, and herbs in subtropical plantations. AM, Adinandra millettii; CL, Cunninghamia lanceolata; DA, Dryopteris atrata; EM, Eurya muricate; LC, Loropetalum chinense; PE, Pinus elliottii; PM, Pinus massoniana; WJ, Woodwardia japonica. Different lowercase letters denote significant difference among species of each plantation in the same season (p < 0.05), while unmarked lowercase letters denote inapparent difference. Different uppercase letters denote significant difference among plantations in the same season (April is in the bracket, July is outside the bracket; p < 0.05). *denotes significant difference between the different seasons for the same species in each plantation (p < 0.05).
图2 亚热带人工林内乔灌草根际土壤净氮矿化速率、净铵化速率和净硝化速率的主成分分析(PCA)。 A, 4月。B, 7月。AM, 杨桐; CL, 杉木; DA, 暗鳞鳞毛蕨; EM, 格药柃; LC, 檵木; PE, 湿地松; PM, 马尾松; WJ, 狗脊蕨。
Fig. 2 Principal component analysis (PCA) of net nitrogen mineralization rate, net ammonification rate, and net nitrification rate of the rhizosphere soil of trees, understory shrubs, and herbs within subtropical plantations. A, April. B, July. AM, Adinandra millettii; CL, Cunninghamia lanceolata; DA, Dryopteris atrata; EM, Eurya muricate; LC, Loropetalum chinense; PE, Pinus elliottii; PM, Pinus massoniana; WJ, Woodwardia japonica.
图3 亚热带人工林根际土壤净氮矿化速率(Nmin)、净铵化速率(Namm)和净硝化速率(Nnit)与土壤化学性质和土壤微生物关系的冗余分析(RDA)。MBN, 微生物量氮含量; NH4+-N, 铵态氮含量; NO3--N, 硝态氮含量; TN, 全氮含量。
Fig. 3 Redundancy analysis (RDA) of the relationship between net nitrogen mineralization rate (Nmin), net ammonification rate (Namm), and net nitrification rate (Nnit) of the rhizosphere soil and soil chemical properties and soil microbial properties in subtropical plantations. MBN, microbial biomass nitrogen concentration; NH4+-N, ammonium nitrogen concentration; NO3--N, nitrate nitrogen concentration; TN, soil total N concentration.
图4 亚热带人工林土壤化学和微生物性质在根际土壤净氮矿化速率、净铵化和净硝化速率变异中的相对贡献。每个椭圆表示由土壤化学性质或土壤微生物性质能解释的变异百分比。椭圆重叠部分表示土壤化学性质和土壤微生物性质共同解释的比例。*表示影响显著(p < 0.05), **表示影响极显著(p < 0.01)。
Fig. 4 Relative importance of soil chemical and soil microbial properties in determining the variation in net nitrogen mineralization rate, net ammonification rate, and net nitrification rate of the rhizosphere soil in subtropical forest plantations. Each ellipse represents the percentage of the variations explained by soil chemical properties or soil microbial properties. The overlap of two ellipses represents the variation jointly explained by soil chemical and microbial properties. *indicates a significant effect (p < 0.05), ** indicates a highly significant effect (p < 0.01).
变异来源 Source of variation | NH4+-N | NO3--N | TN | MBN |
---|---|---|---|---|
物种 Specise (S) | <0.001** | 0.082 | <0.001** | 0.136 |
林型 Forest type (F) | 0.002** | <0.000** | 0.303 | 0.695 |
季节 Time (T) | <0.001** | <0.001** | 0.725 | 0.002** |
S × F | 0.773 | 0.590 | 0.769 | 0.901 |
S × T | 0.928 | 0.626 | 0.929 | 0.931 |
F × T | 0.026 | 0.061 | 0.516 | 0.086 |
S × F × T | 0.581 | 0.854 | 0.655 | 0.727 |
表1 物种、林型和季节对亚热带人工林4个主要土壤化学和微生物性质影响的混合线性模型分析结果(p值)
Table 1 Mixed linear model analysis of the effects of species, forest types, and seasons on four main soil chemical and microbial properties in subtropical forest plantations (p value)
变异来源 Source of variation | NH4+-N | NO3--N | TN | MBN |
---|---|---|---|---|
物种 Specise (S) | <0.001** | 0.082 | <0.001** | 0.136 |
林型 Forest type (F) | 0.002** | <0.000** | 0.303 | 0.695 |
季节 Time (T) | <0.001** | <0.001** | 0.725 | 0.002** |
S × F | 0.773 | 0.590 | 0.769 | 0.901 |
S × T | 0.928 | 0.626 | 0.929 | 0.931 |
F × T | 0.026 | 0.061 | 0.516 | 0.086 |
S × F × T | 0.581 | 0.854 | 0.655 | 0.727 |
图5 亚热带人工林不同物种根际土壤铵态氮(NH4+-N)和全氮含量(TN)的多重比较(平均值±标准误差)。 AM, 杨桐; CL, 杉木; DA, 暗鳞鳞毛蕨; EM, 格药柃; LC, 檵木; PE, 湿地松; PM, 马尾松; WJ, 狗脊蕨。不同小写字母表明物种之间差异显著(p < 0.05)。
Fig. 5 Multiple comparison of soil ammonium nitrogen (NH4+-N) and total soil nitrogen concentrations (TN) in the rhizosphere soil of different species in subtropical forest plantations (mean ± SE). AM, Adinandra millettii; CL, Cunninghamia lanceolata; DA, Dryopteris atrata; EM, Eurya muricate; LC, Loropetalum chinense; PE, Pinus elliottii; PM, Pinus massoniana; WJ, Woodwardia japonica. Different lowercase letters showed significant differences among species (p < 0.05).
[1] | Aber JD, Nadelhoffer KJ, Steudler P, Melillo JM (1989). Nitrogen saturation in northern forest ecosystems. BioScience, 39, 378-386. |
[2] | Bell CW, Asao S, Calderon F, Wolk B, Wallenstein MD (2015). Plant nitrogen uptake drives rhizosphere bacterial community assembly during plant growth. Soil Biology & Biochemistry, 85, 170-182. |
[3] |
Blagodatskaya E, Blagodatsky S, Anderson TH, Kuzyakov Y (2014). Microbial growth and carbon use efficiency in the rhizosphere and root-free soil. PLOS ONE, 9, e93282. DOI: 10.1371/journal.pone.0093282.
URL PMID |
[4] |
Booth MS, Stark JM, Rastetter E (2005). Controls on nitrogen cycling in terrestrial ecosystems: a synthetic analysis of literature data. Ecological Monographs, 75, 139-157.
DOI URL |
[5] | Borcard D, Gillet F, Legendre P (2011). Numerical Ecology with R. Springer, New York. |
[6] |
Burns RG, DeForest JL, Marxsen J, Sinsabaugh RL, Stromberger ME, Wallenstein MD, Weintraub MN, Zoppini A (2013). Soil enzymes in a changing environment: current knowledge and future directions. Soil Biology & Biochemistry, 58, 216-234.
DOI URL |
[7] | Chen FS, Zeng DH, He XY (2004). Soil nitrogen transformation and cycling in forest ecosystem. Chinese Journal of Ecology, 23(5), 126-133. |
[ 陈伏生, 曾德慧, 何兴元 (2004). 森林土壤氮素的转化与循环. 生态学杂志, 23(5), 126-133.] | |
[8] |
Chen J, Xiao G, Kuzyakov Y, Jenerette GD, Ma Y, Liu W, Wang Z, Shen W (2017). Soil nitrogen transformation responses to seasonal precipitation changes are regulated by changes in functional microbial abundance in a subtropical forest. Biogeosciences, 14, 2513-2525.
DOI URL |
[9] | Chen LY, Liu L, Qin SQ, Yang GB, Fang K, Zhu B, Kuzyakov Y, Chen PD, Xu YP, Yang YH (2019). Regulation of priming effect by soil organic matter stability over a broad geographic scale. Nature Communication, 10, 5112. DOI: 10.1038/s41467-019-13119-z. |
[10] | Dai X, Fu X, Kou L, Wang H, Shock CC (2018). C, N, P stoichiometry of rhizosphere soils differed significantly among overstory trees and understory shrubs in plantations in subtropical China. Canadian Journal of Forest Research, 48, 1398-1405. |
[11] |
Finzi AC, Abramoff RZ, Spiller KS, Brzostek ER, Darby BA, Kramer MA, Phillips RP (2015). Rhizosphere processes are quantitatively important components of terrestrial carbon and nutrient cycles. Global Change Biology, 21, 2082-2094.
URL PMID |
[12] |
Fu XL, Wang JL, Di YB, Wang HM (2015 a). Differences in fine-root biomass of trees and understory vegetation among stand types in subtropical forests. PLOS ONE, 10, e0128894. DOI: 10.1371/journal.pone.0128894.
DOI URL PMID |
[13] | Fu XL, Yang FT, Wang JL, Di YB, Dai XQ, Zhang XY, Wang HM (2015b). Understory vegetation leads to changes in soil acidity and in microbial communities 27 years after reforestation. Science of the Total Environment, 502, 280-286. |
[14] |
Gao YQ, Dai XQ, Wang JL, Fu XL, Kou L, Wang HM (2019). Characteristics of soil enzymes stoichiometry in rhizosphere of understory vegetation in subtropical forest plantations. Chinese Journal of Plant Ecology, 43, 258-272.
DOI URL |
[ 高雨秋, 戴晓琴, 王建雷, 付晓莉, 寇亮, 王辉民 (2019). 亚热带人工林下植被根际土壤酶化学计量特征. 植物生态学报, 43, 258-272.] | |
[15] | Gill RA, Jackson RB (2000). Global patterns of root turnover for terrestrial ecosystems. New Phytologist, 147, 13-31. |
[16] |
Gilliam FS, Yurish BM, Adams MB (2001). Temporal and spatial variation of nitrogen transformations in nitrogen- saturated soils of a central Appalachian hardwood forest. Canadian Journal of Forest Research, 31, 1768-1785.
DOI URL |
[17] | He JZ, Zhang LM (2013). Key processes and microbial mechanisms of soil nitrogen transformation. Microbiology China, 40, 98-108. |
[ 贺纪正, 张丽梅 (2013). 土壤氮素转化的关键微生物过程及机制. 微生物学通报, 40, 98-108.] | |
[18] | Hishi T, Urakawa R, Tashiro N, Maeda Y, Shibata H (2014). Seasonality of factors controlling N mineralization rates among slope positions and aspects in cool-temperate deciduous natural forests and larch plantations. Biology and Fertility of Soils, 50, 343-356. |
[19] | Hodge A (2004). The plastic plant: root responses to heterogeneous supplies of nutrients. New Phytologist, 162, 9-24. |
[20] |
Jiang PP, Wang HM, Fu XL, Dai XQ, Kou L, Wang JL (2018). Elaborate differences between trees and understory plants in the deployment of fine roots. Plant and Soil, 431, 433-447.
DOI URL |
[21] | Kuzyakov Y, Blagodatskaya E (2015). Microbial hotspots and hot moments in soil: concept & review. Soil Biology & Biochemistry, 83, 184-199. |
[22] | Li CC, Li QR, Xu XL, Ouyang H (2016). Nitrogen acquisition strategies of Cunninghamia lanceolata at different ages. Acta Ecologica Sinica, 36, 2620-2625. |
[ 李常诚, 李倩茹, 徐兴良, 欧阳华 (2016). 不同林龄杉木氮素的获取策略. 生态学报, 36, 2620-2625.] | |
[23] | Li HX, Hu F, Liu MQ, Cai GX, Fan XH (2000). Mineralization and nitrification of nitrogen in red soil. Soils, 4, 194-197. |
[ 李辉信, 胡锋, 刘满强, 蔡贵信, 范晓晖 (2000). 红壤氮素的矿化和硝化作用特征. 土壤, 4, 194-197.] | |
[24] | Li Y, Xu XH, Sun W, Shen Y, Ren TT, Huang JH, Wang CH (2019). Effects of different forms and levels of N additions on soil potential net N mineralization rate in meadow steppe, Nei Mongol, China. Chinese Journal of Plant Ecology, 43, 174-184. |
[ 李阳, 徐小惠, 孙伟, 申颜, 任婷婷, 黄建辉, 王常慧 (2019). 不同形态和水平的氮添加对内蒙古草甸草原土壤净氮矿化潜力的影响. 植物生态学报, 43, 174-184.] | |
[25] |
Li ZL, Tian DS, Wang BX, Wang JS, Wang S, Chen HYH, Xu XF, Wang CH, He NP, Niu SL (2019). Microbes drive global soil nitrogen mineralization and availability. Global Change Biology, 25, 1078-1088.
DOI URL PMID |
[26] | Li ZW, Xiao HB, Tang ZH, Huang JQ, Nie XD, Huang B, Ma WM, Lu YM, Zeng GM (2015). Microbial responses to erosion-induced soil physico-chemical property changes in the hilly red soil region of southern China. European Journal of Soil Biology, 71, 37-44. |
[27] | Lin GG, Guo DL, Li L, Ma CG, Zeng DH (2018). Contrasting effects of ectomycorrhizal and arbuscular mycorrhizal tropical tree species on soil nitrogen cycling: the potential mechanisms and corresponding adaptive strategies. Oikos, 127, 518-530. |
[28] | Liu Y, He NP, Wen XF, Yu GR, Gao Y, Jia YL (2016). Patterns and regulating mechanisms of soil nitrogen mineralization and temperature sensitivity in Chinese terrestrial ecosystems. Agriculture Ecosystems & Environment, 215, 40-46. |
[29] |
Liu Y, Wang CH, He NP, Wen XF, Gao Y, Li SG, Niu SL, Butterbach-Bahl K, Luo YQ, Yu GR (2017). A global synthesis of the rate and temperature sensitivity of soil nitrogen mineralization: latitudinal patterns and mechanisms. Global Change Biology, 23, 455-464.
URL PMID |
[30] | Lu YH, Zhang FS (2006). The advances in rhizosphere microorganisms. Soils, 38(2), 113-121. |
[ 陆雅海, 张福锁 (2006). 根际微生物研究进展. 土壤, 38(2), 113-121.] | |
[31] | Ma JM, Li K (2004). Current situation of research and prospects on forest ecosystem stability. World Forestry Research, 17(1), 15-19. |
[ 马姜明, 李昆 (2004). 森林生态系统稳定性研究的现状与趋势. 世界林业研究, 17(1), 15-19.] | |
[32] | Mo XL, Dai XQ, Wang HM, Fu XL, Kou L (2018). Rhizosphere effects of overstory tree and understory shrub species in central subtropical plantations—A case study at Qianyanzhou, Taihe, Jiangxi, China. Chinese Journal of Plant Ecology, 42, 723-733. |
[ 莫雪丽, 戴晓琴, 王辉民, 付晓莉, 寇亮 (2018). 中亚热带典型人工林常见乔灌木根际效应——以江西泰和千烟洲为例. 植物生态学报, 42, 723-733.] | |
[33] | Moreau D, Bardgett RD, Finlay RD, Jones DL, Philippot L (2019). A plant perspective on nitrogen cycling in the rhizosphere. Functional Ecology, 33, 540-552. |
[34] | Nilsson MC, Wardle DA (2005). Understory vegetation as a forest ecosystem driver: evidence from the northern Swedish boreal forest. Frontiers in Ecology and the Environment, 3, 421-428. |
[35] | Parker SS, Schimel JP (2011). Soil nitrogen availability and transformations differ between the summer and the growing season in a California grassland. Applied Soil Ecology, 48, 185-192. |
[36] | Phillips RP, Brzostek E, Midgley MG (2013). The mycorrhizal- associated nutrient economy: a new framework for predicting carbon-nutrient couplings in temperate forests. New Phytologist, 199, 41-51. |
[37] | Phillips RP, Erlitz Y, Bier R, Bernhardt ES (2008). New approach for capturing soluble root exudates in forest soils. Functional Ecology, 22, 990-999. |
[38] |
Phillips RP, Fahey TJ (2006). Tree species and mycorrhizal associations influence the magnitude of rhizosphere effects. Ecology, 87, 1302-1313.
DOI URL PMID |
[39] | Ribbons RR, Levy-Booth DJ, Masse J, Grayston SJ, McDonald MA, Vesterdal L, Prescott CE (2016). Linking microbial communities, functional genes and nitrogen-cycling processes in forest floors under four tree species. Soil Biology & Biochemistry, 103, 181-191. |
[40] | Sha LQ, Meng Y, Feng ZL, Zheng Z, Cao M, Liu HM (2000). Nitrification and net N mineralization rate of soils under different tropical forests in Xishuangbanna, southwest China. Acta Phytoecologica Sinica, 24, 152-156. |
[ 沙丽清, 孟盈, 冯志立, 郑征, 曹敏, 刘宏茂 (2000). 西双版纳不同热带森林土壤氮矿化和硝化作用研究. 植物生态学报, 24, 152-156.] | |
[41] | Sinsabaugh RL, Follstad Shah JJ (2012). Ecoenzymatic stoichiometry and ecological theory. Annual Review of Ecology, Evolution, and Systematics, 43, 313-343. |
[42] |
Spohn M, Carminati A, Kuzyakov Y (2013). Soil zymography—A novel in situ method for mapping distribution of enzyme activity in soil. Soil Biology & Biochemistry, 58, 275-280.
DOI URL |
[43] | Su LY, Cheng AX, Yu AL, Fu WQ, Zheng PY (1992). Investigation on mycorrhizae of forest trees in natural reserve of Mount Tianmu. Journal of Zhejiang Forestry College, 9(3), 263-276. |
[ 苏琍英, 程爱兴, 喻爱林, 傅卫庆, 郑平谣 (1992). 天目山自然保护区林木菌根调查. 浙江林学院学报, 9(3), 263-276.] | |
[44] |
Subbarao GV, Wang HY, Ito O, Nakahara K, Berry WL (2007). NH4+ triggers the synthesis and release of biological nitrification inhibition compounds in Brachiaria humidicola roots. Plant and Soil, 290, 245-257.
DOI URL |
[45] |
Talbot JM, Allison SD, Treseder KK (2008). Decomposers in disguise: mycorrhizal fungi as regulators of soil C dynamics in ecosystems under global change. Functional Ecology, 22, 955-963.
DOI URL |
[46] | Urakawa R, Ohte N, Shibata H, Isobe K, Tateno R, Oda T, Hishi T, Fukushima K, Inagaki Y, Hirai K, Oyanagi N, Nakata M, Toda H, Kenta T, Kuroiwa M, et al. (2016). Factors contributing to soil nitrogen mineralization and nitrification rates of forest soils in the Japanese archipelago. Forest Ecology and Management, 361, 382-396. |
[47] | van der Wal A, van Veen JA, Smant W, Boschker HTS, Bloem J, Kardol P, van der Putten WH, de Boer W (2006). Fungal biomass development in a chronosequence of land abandonment. Soil Biology & Biochemistry, 38, 51-60. |
[48] | Vance ED, Brookes PC, Jenkinson DS (1987). Microbial biomass measurements in forest soils: the use of the chloroform fumigation-incubation method in strongly acid soils. Soil Biology & Biochemistry, 19, 697-702. |
[49] | Wang FM, Zou B, Li HF, Li ZA (2014). The effect of understory removal on microclimate and soil properties in two subtropical lumber plantations. Journal of Forest Research, 19, 238-243. |
[50] | Wang GJ, Tian DL, Zhu F, Yan WD, Li SZ (2009). Net nitrogen mineralization in soils under four forest communities in Hunan Province. Acta Ecologica Sinica, 29, 1607-1615. |
[ 王光军, 田大伦, 朱凡, 闫文德, 李树战 (2009). 湖南省4种森林群落土壤氮的矿化作用. 生态学报, 29, 1607-1615.] | |
[51] | Wang XZ, Hu ZL, Du YX, Liu YZ, Li LQ, Pan GX (2010). Comparison of microbial biomass and community structure of rhizosphere soil between forest and shrubbery in karst ecosystems. Soils, 42, 224-229. |
[ 王新洲, 胡忠良, 杜有新, 刘永卓, 李恋卿, 潘根兴 (2010). 喀斯特生态系统中乔木和灌木林根际土壤微生物生物量及其多样性的比较. 土壤, 42, 224-229.] | |
[52] |
Wu LK, Lin XM, Lin WX (2014). Advances and perspective in research on plant-soil-microbe interactions mediated by root exudates. Chinese Journal of Plant Ecology, 38, 298-310.
DOI URL |
[ 吴林坤, 林向民, 林文雄 (2014). 根系分泌物介导下植物-土壤-微生物互作关系研究进展与展望. 植物生态学报, 38, 298-310.] | |
[53] |
Xiao HY, Liu B, Yu ZP, Wan XH, Sang CP, Zhou FW, Huang ZQ (2017). Seasonal dynamics of soil mineral nitrogen pools and nitrogen mineralization rate in different forests in subtropical China. Chinese Journal of Applied Ecology, 28, 730-738.
DOI URL PMID |
[ 肖好燕, 刘宝, 余再鹏, 万晓华, 桑昌鹏, 周富伟, 黄志群 (2017). 亚热带不同林分土壤矿质氮库及氮矿化速率的季节动态. 应用生态学报, 28, 730-738.]
PMID |
|
[54] |
Yin HJ, Xu ZF, Chen Z, Wei YY, Liu Q (2012). Nitrogen transformation in the rhizospheres of two subalpine coniferous species under experimental warming. Applied Soil Ecology, 59, 60-67.
DOI URL |
[55] |
York LM, Carminati A, Mooney SJ, Ritz K, Bennett MJ (2016). The holistic rhizosphere: integrating zones, processes, and semantics in the soil influenced by roots. Journal of Experimental Botany, 67, 3629-3643.
URL PMID |
[56] |
Zhang JB, Cai ZC, Zhu TB, Yang WY, Müller C (2013a). Mechanisms for the retention of inorganic N in acidic forest soils of southern China. Scientific Reports, 3, 2342. DOI: 10.1038/srep02342.
DOI URL PMID |
[57] |
Zhang JB, Zhu TB, Cai ZC, Muller C (2011). Nitrogen cycling in forest soils across climate gradients in Eastern China. Plant and Soil, 342, 419-432.
DOI URL |
[58] |
Zhang YC, Zhang JB, Meng TZ, Zhu TB, Muller C, Cai ZC (2013b). Heterotrophic nitrification is the predominant NO3- production pathway in acid coniferous forest soil in subtropical China. Biology and Fertility of Soils, 49, 955-957.
DOI URL |
[59] | Zhao Q, Zeng DH, Fan ZP (2010). Nitrogen and phosphorus transformations in the rhizospheres of three tree species in a nutrient-poor sandy soil. Applied Soil Ecology, 46, 341-346. |
[60] | Zhao QG (1995). Degradation of red soil in China. Soils, 38, 281-285. |
[ 赵其国 (1995). 我国红壤的退化问题. 土壤, 38, 281-285.] | |
[61] | Zhu B, Gutknecht JLM, Herman DJ, Keck DC, Firestone MK, Cheng W (2014). Rhizosphere priming effects on soil carbon and nitrogen mineralization. Soil Biology & Biochemistry, 76, 183-192. |
[62] | Zulkarnaen N, Cheng Y, Zhang JB (2019). Effects of land use on soil nitrogen mineralization and nitrification transformation in red soil in subtropical region of China. Chinese Journal of Soil Science, 50, 1210-1217. |
[ Zulkarnaen N, 程谊, 张金波 (2019). 土地利用方式对红壤氮素矿化和硝化作用的影响. 土壤通报, 50, 1210-1217.] |
[1] | 刘瑶 钟全林 徐朝斌 程栋梁 郑跃芳 邹宇星 张雪 郑新杰 周云若. 不同大小刨花楠细根功能性状与根际微环境关系[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 杨尚锦, 范云翔, 章毓文, 韩巧玲, 赵玥, 段劼, 邸楠, 席本野. 树木夜间液流组分划分方法对比——以毛白杨为例[J]. 植物生态学报, 2024, 48(4): 496-507. |
[3] | 吴帆, 吴晨, 张宇辉, 余恒, 魏智华, 郑蔚, 刘小飞, 陈仕东, 杨智杰, 熊德成. 增温对成熟杉木人工林不同季节细根生长、形态及生理代谢特征的影响[J]. 植物生态学报, 2023, 47(6): 856-866. |
[4] | 刘婧, 缑倩倩, 王国华, 赵峰侠. 晋西北丘陵风沙区柠条锦鸡儿叶片与土壤生态化学计量特征[J]. 植物生态学报, 2023, 47(4): 546-558. |
[5] | 范云翔, 邸楠, 刘洋, 章毓文, 段劼, 李新, 王海红, 席本野. 毛白杨茎干夜间液流时空动态及其环境影响因子[J]. 植物生态学报, 2023, 47(2): 262-274. |
[6] | 姚萌, 康荣华, 王盎, 马方园, 李靳, 台子晗, 方运霆. 利用15N示踪技术研究木荷与马尾松幼苗叶片对NO2的吸收与分配[J]. 植物生态学报, 2023, 47(1): 114-122. |
[7] | 党宏忠, 张学利, 韩辉, 石长春, 葛玉祥, 马全林, 陈帅, 刘春颖. 樟子松固沙林林水关系研究进展及对营林实践的指导[J]. 植物生态学报, 2022, 46(9): 971-983. |
[8] | 刘沛荣, 同小娟, 孟平, 张劲松, 张静茹, 于裴洋, 周宇. 散射辐射对中国东部典型人工林总初级生产力的影响[J]. 植物生态学报, 2022, 46(8): 904-918. |
[9] | 黄冬柳, 项伟, 李忠国, 朱师丹. 南亚热带10种造林树种的水力结构和水力安全[J]. 植物生态学报, 2022, 46(5): 602-612. |
[10] | 王俐爽, 同小娟, 孟平, 张劲松, 刘沛荣, 李俊, 张静茹, 周宇. 辽西半干旱地区两种典型人工林生态系统能量通量及蒸散特征[J]. 植物生态学报, 2022, 46(12): 1508-1522. |
[11] | 丁凯, 张毓婷, 张俊红, 柴雄, 周世水, 童再康. 不同密度杉木林对林下植被和土壤微生物群落结构的影响[J]. 植物生态学报, 2021, 45(1): 62-73. |
[12] | 邓梦达, 游健荣, 李家湘, 李雄, 杨静, 邓创发, 刘昂, 刘文剑, 丁聪, 谢勇, 周国辉, 喻勋林. 长株潭城市群生态绿心地区主要植被类型的群落特征[J]. 植物生态学报, 2020, 44(12): 1296-1304. |
[13] | 吕中诚, 康文星, 黄志宏, 赵仲辉, 邓湘雯. 不同林龄杉木组织迁移养分的再利用[J]. 植物生态学报, 2019, 43(5): 458-470. |
[14] | 高雨秋, 戴晓琴, 王建雷, 付晓莉, 寇亮, 王辉民. 亚热带人工林下植被根际土壤酶化学计量特征[J]. 植物生态学报, 2019, 43(3): 258-272. |
[15] | 温晓示, 陈彬杭, 张树斌, 徐凯, 叶新宇, 倪伟杰, 王襄平. 不同林龄、树种落叶松人工林径向生长与气候变化的关系[J]. 植物生态学报, 2019, 43(1): 27-36. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19