植物生态学报 ›› 2019, Vol. 43 ›› Issue (1): 27-36.DOI: 10.17521/cjpe.2018.0155
温晓示1,陈彬杭1,张树斌1,徐凯1,叶新宇1,倪伟杰2,王襄平1,*()
收稿日期:
2018-07-05
接受日期:
2019-01-04
出版日期:
2019-01-20
发布日期:
2019-04-25
通讯作者:
王襄平 ORCID:0000-0001-8158-560X
基金资助:
WEN Xiao-Shi1,CHEN Bin-Hang1,ZHANG Shu-Bin1,XU Kai1,YE Xin-Yu1,NI Wei-Jie2,WANG Xiang-Ping1,*()
Received:
2018-07-05
Accepted:
2019-01-04
Online:
2019-01-20
Published:
2019-04-25
Contact:
WANG Xiang-Ping ORCID:0000-0001-8158-560X
Supported by:
摘要:
研究人工林径向生长与气候变化的关系对全球气候变暖背景下人工林合理经营有着重要的意义。该文对在辽东山区广泛栽培的黄花落叶松(Larix olgensis)和日本落叶松(Larix kaempferi)人工林, 运用树木年轮气候学方法建立了辽宁草河口和湾甸子林场落叶松人工林年表, 分析了落叶松径向生长对气候变化的响应以及气候条件、树种、立地条件和林分因子(林龄、密度、蓄积量等)的相对影响程度。结果发现在影响年轮-气候关系的因素中, 气象因子的潜在蒸发散(PET)的影响力最大; 林龄、密度和蓄积量同时也具有重要的影响作用。中龄落叶松人工林径向生长主要与气温呈正相关关系, 成熟落叶松人工林径向生长主要与气温呈负相关关系; 而其他因素, 如树种、立地条件等的影响作用不大。这表明在气候变暖背景下随着林龄增加, 林分会逐渐受到气温升高导致的水分亏缺的限制, 导致明显的生长下降趋势, 因而气候变暖对成熟落叶松人工林威胁更为严重, 所以要注重对成熟林的优先保护, 同时可以预测, 随着东北地区今后气候进一步变暖, 可能将逐步影响到林龄更小的林分的生长, 因此需要进一步研究如何在落叶松人工林经营中采取科学的措施来更好地应对未来气候变化。
温晓示, 陈彬杭, 张树斌, 徐凯, 叶新宇, 倪伟杰, 王襄平. 不同林龄、树种落叶松人工林径向生长与气候变化的关系. 植物生态学报, 2019, 43(1): 27-36. DOI: 10.17521/cjpe.2018.0155
WEN Xiao-Shi, CHEN Bin-Hang, ZHANG Shu-Bin, XU Kai, YE Xin-Yu, NI Wei-Jie, WANG Xiang-Ping. Relationships of radial growth with climate change in larch plantations of different stand ages and species. Chinese Journal of Plant Ecology, 2019, 43(1): 27-36. DOI: 10.17521/cjpe.2018.0155
样地编号 Plot ID | 年平均气温 Annual mean air temperature (℃) | 年降水量 Annual precipitation (mm) | 树种 Tree species | 林龄 Stand age | 立地条件 Site quality | 林分密度 Stem density (tree·hm-2) | 蓄积量 Wood volume (m3·hm-2) | 平均胸径 Mean DBH (cm) |
---|---|---|---|---|---|---|---|---|
CHK01 | 5.71 | 874.84 | 黄花落叶松 L. olgensis | 77 | 好 Well | 570 | 294.56 | 22.72 |
CHK02 | 5.57 | 880.13 | 黄花落叶松 L. olgensis | 78 | 差 Poor | 990 | 324.91 | 19.72 |
CHK03 | 5.90 | 867.84 | 日本落叶松 L. kaempferi | 24 | 中 Good | 680 | 105.02 | 15.56 |
CHK04 | 5.97 | 865.17 | 日本落叶松 L. kaempferi | 25 | 差 Poor | 880 | 122.57 | 15.23 |
CHK05 | 5.78 | 869.58 | 日本落叶松 L. kaempferi | 69 | 中 Good | 540 | 442.54 | 26.93 |
CHK06 | 5.82 | 868.24 | 日本落叶松 L. kaempferi | 71 | 中 Good | 300 | 373.81 | 33.89 |
CHK07 | 6.15 | 858.84 | 日本落叶松 L. kaempferi | 21 | 好 Well | 580 | 108.62 | 17.14 |
CHK08 | 6.08 | 861.56 | 日本落叶松 L. kaempferi | 24 | 好 Well | 520 | 107.55 | 18.05 |
CHK09 | 5.89 | 868.66 | 黄花落叶松 L. olgensis | 21 | 好 Well | 620 | 157.50 | 18.95 |
CHK10 | 5.86 | 869.79 | 黄花落叶松 L. olgensis | 21 | 好 Well | 620 | 111.31 | 17.36 |
WDZ01 | 4.19 | 832.08 | 黄花落叶松 L. olgensis | 49 | 中 Good | 520 | 353.52 | 25.97 |
WDZ02 | 3.97 | 839.94 | 黄花落叶松 L. olgensis | 50 | 差 Poor | 540 | 322.13 | 26.26 |
WDZ03 | 3.74 | 848.05 | 日本落叶松 L. kaempferi | 73 | 好 Well | 1490 | 761.10 | 23.66 |
WDZ04 | 3.73 | 848.42 | 日本落叶松 L. kaempferi | 72 | 中 Good | 1090 | 608.39 | 24.09 |
WDZ05 | 3.74 | 844.35 | 日本落叶松 L. kaempferi | 23 | 好 Well | 1030 | 272.70 | 17.58 |
WDZ06 | 3.52 | 852.33 | 日本落叶松 L. kaempferi | 23 | 好 Well | 960 | 263.49 | 18.67 |
WDZ07 | 3.91 | 838.52 | 黄花落叶松 L. olgensis | 20 | 差 Poor | 1290 | 169.18 | 15.04 |
表1 草河口(CHK)、湾甸子(WDZ)黄花落叶松和日本落叶松的样地基本信息和林分结构特征
Table 1 Basic information of the study sites and stand structural characteristics of Larix olgensis and Larix kaempferi in Caohekou (CHK) and Wandianzi (WDZ)
样地编号 Plot ID | 年平均气温 Annual mean air temperature (℃) | 年降水量 Annual precipitation (mm) | 树种 Tree species | 林龄 Stand age | 立地条件 Site quality | 林分密度 Stem density (tree·hm-2) | 蓄积量 Wood volume (m3·hm-2) | 平均胸径 Mean DBH (cm) |
---|---|---|---|---|---|---|---|---|
CHK01 | 5.71 | 874.84 | 黄花落叶松 L. olgensis | 77 | 好 Well | 570 | 294.56 | 22.72 |
CHK02 | 5.57 | 880.13 | 黄花落叶松 L. olgensis | 78 | 差 Poor | 990 | 324.91 | 19.72 |
CHK03 | 5.90 | 867.84 | 日本落叶松 L. kaempferi | 24 | 中 Good | 680 | 105.02 | 15.56 |
CHK04 | 5.97 | 865.17 | 日本落叶松 L. kaempferi | 25 | 差 Poor | 880 | 122.57 | 15.23 |
CHK05 | 5.78 | 869.58 | 日本落叶松 L. kaempferi | 69 | 中 Good | 540 | 442.54 | 26.93 |
CHK06 | 5.82 | 868.24 | 日本落叶松 L. kaempferi | 71 | 中 Good | 300 | 373.81 | 33.89 |
CHK07 | 6.15 | 858.84 | 日本落叶松 L. kaempferi | 21 | 好 Well | 580 | 108.62 | 17.14 |
CHK08 | 6.08 | 861.56 | 日本落叶松 L. kaempferi | 24 | 好 Well | 520 | 107.55 | 18.05 |
CHK09 | 5.89 | 868.66 | 黄花落叶松 L. olgensis | 21 | 好 Well | 620 | 157.50 | 18.95 |
CHK10 | 5.86 | 869.79 | 黄花落叶松 L. olgensis | 21 | 好 Well | 620 | 111.31 | 17.36 |
WDZ01 | 4.19 | 832.08 | 黄花落叶松 L. olgensis | 49 | 中 Good | 520 | 353.52 | 25.97 |
WDZ02 | 3.97 | 839.94 | 黄花落叶松 L. olgensis | 50 | 差 Poor | 540 | 322.13 | 26.26 |
WDZ03 | 3.74 | 848.05 | 日本落叶松 L. kaempferi | 73 | 好 Well | 1490 | 761.10 | 23.66 |
WDZ04 | 3.73 | 848.42 | 日本落叶松 L. kaempferi | 72 | 中 Good | 1090 | 608.39 | 24.09 |
WDZ05 | 3.74 | 844.35 | 日本落叶松 L. kaempferi | 23 | 好 Well | 1030 | 272.70 | 17.58 |
WDZ06 | 3.52 | 852.33 | 日本落叶松 L. kaempferi | 23 | 好 Well | 960 | 263.49 | 18.67 |
WDZ07 | 3.91 | 838.52 | 黄花落叶松 L. olgensis | 20 | 差 Poor | 1290 | 169.18 | 15.04 |
图1 草河口(CHK)和湾甸子(WDZ)年平均气温(A)与帕尔默干旱指数(B)的变化趋势。
Fig. 1 Trends in annual mean air temperature (A) and palmer drought severity index (B) in Caohekou (CHK) and Wandianzi (WDZ).
样地 Plot | 树芯/株数 Number of cores/trees | 样芯长度 Length of series (a) | 用于气候分析 的年表长度 Chronology length for climate analysis (a) | 平均敏感度 Mean sensitivity | 标准偏差 Standard deviation | R1样本间平均相关系数 Mean correlations among all radii | 一阶自相 关系数 Autocorrelation order 1 | 信噪比 Signal-to- noise ratio | 样本总体 代表性 Express population signal | 第一主成分所占方差量 PCA1 (%) |
---|---|---|---|---|---|---|---|---|---|---|
CHK01 | 39/23 | 1950-2016 | 1986-2016 | 0.170 | 0.217 | 0.340 | 0.610 | 18.064 | 0.948 | 0.411 |
CHK02 | 63/34 | 1950-2016 | 1986-2016 | 0.199 | 0.250 | 0.431 | 0.586 | 38.694 | 0.975 | 0.463 |
CHK03 | 43/23 | 1996-2016 | 1996-2016 | 0.160 | 0.142 | 0.324 | -0.054 | 14.382 | 0.935 | 0.396 |
CHK04 | 46/23 | 1996-2016 | 1996-2016 | 0.165 | 0.151 | 0.395 | 0.244 | 20.857 | 0.954 | 0.432 |
CHK05 | 38/20 | 1956-2016 | 1986-2016 | 0.147 | 0.212 | 0.307 | 0.680 | 13.743 | 0.932 | 0.368 |
CHK06 | 49/27 | 1956-2016 | 1986-2016 | 0.154 | 0.167 | 0.242 | 0.449 | 13.431 | 0.931 | 0.283 |
CHK07 | 39/20 | 2002-2016 | 2002-2016 | 0.213 | 0.217 | 0.475 | 0.409 | 33.504 | 0.971 | 0.524 |
CHK08 | 38/20 | 2000-2016 | 2000-2016 | 0.151 | 0.145 | 0.285 | 0.142 | 15.149 | 0.938 | 0.354 |
CHK09 | 46/26 | 1989-2016 | 1989-2016 | 0.161 | 0.186 | 0.493 | 0.392 | 36.937 | 0.974 | 0.535 |
CHK10 | 40/22 | 1996-2016 | 1996-2016 | 0.181 | 0.239 | 0.603 | 0.491 | 51.739 | 0.981 | 0.639 |
WDZ01 | 40/22 | 1968-2016 | 1986-2016 | 0.200 | 0.199 | 0.414 | 0.267 | 24.718 | 0.961 | 0.464 |
WDZ02 | 41/21 | 1967-2016 | 1986-2016 | 0.225 | 0.220 | 0.501 | 0.246 | 36.094 | 0.973 | 0.533 |
WDZ03 | 62/36 | 1944-2016 | 1986-2016 | 0.204 | 0.211 | 0.313 | 0.349 | 26.460 | 0.964 | 0.347 |
WDZ04 | 44/24 | 1945-2016 | 1986-2016 | 0.166 | 0.178 | 0.284 | 0.247 | 11.489 | 0.920 | 0.329 |
WDZ05 | 64/34 | 1994-2016 | 1994-2016 | 0.143 | 0.150 | 0.278 | 0.273 | 20.824 | 0.954 | 0.332 |
WDZ06 | 42/28 | 1994-2016 | 1994-2016 | 0.154 | 0.155 | 0.430 | 0.100 | 26.446 | 0.964 | 0.470 |
WDZ07 | 81/43 | 1971-2016 | 1986-2016 | 0.253 | 0.278 | 0.247 | 0.448 | 20.714 | 0.954 | 0.308 |
Table 2 Summary of statistics for standard chronology in sampling plots of Caohekou (CHK) and Wandianzi (WDZ)
样地 Plot | 树芯/株数 Number of cores/trees | 样芯长度 Length of series (a) | 用于气候分析 的年表长度 Chronology length for climate analysis (a) | 平均敏感度 Mean sensitivity | 标准偏差 Standard deviation | R1样本间平均相关系数 Mean correlations among all radii | 一阶自相 关系数 Autocorrelation order 1 | 信噪比 Signal-to- noise ratio | 样本总体 代表性 Express population signal | 第一主成分所占方差量 PCA1 (%) |
---|---|---|---|---|---|---|---|---|---|---|
CHK01 | 39/23 | 1950-2016 | 1986-2016 | 0.170 | 0.217 | 0.340 | 0.610 | 18.064 | 0.948 | 0.411 |
CHK02 | 63/34 | 1950-2016 | 1986-2016 | 0.199 | 0.250 | 0.431 | 0.586 | 38.694 | 0.975 | 0.463 |
CHK03 | 43/23 | 1996-2016 | 1996-2016 | 0.160 | 0.142 | 0.324 | -0.054 | 14.382 | 0.935 | 0.396 |
CHK04 | 46/23 | 1996-2016 | 1996-2016 | 0.165 | 0.151 | 0.395 | 0.244 | 20.857 | 0.954 | 0.432 |
CHK05 | 38/20 | 1956-2016 | 1986-2016 | 0.147 | 0.212 | 0.307 | 0.680 | 13.743 | 0.932 | 0.368 |
CHK06 | 49/27 | 1956-2016 | 1986-2016 | 0.154 | 0.167 | 0.242 | 0.449 | 13.431 | 0.931 | 0.283 |
CHK07 | 39/20 | 2002-2016 | 2002-2016 | 0.213 | 0.217 | 0.475 | 0.409 | 33.504 | 0.971 | 0.524 |
CHK08 | 38/20 | 2000-2016 | 2000-2016 | 0.151 | 0.145 | 0.285 | 0.142 | 15.149 | 0.938 | 0.354 |
CHK09 | 46/26 | 1989-2016 | 1989-2016 | 0.161 | 0.186 | 0.493 | 0.392 | 36.937 | 0.974 | 0.535 |
CHK10 | 40/22 | 1996-2016 | 1996-2016 | 0.181 | 0.239 | 0.603 | 0.491 | 51.739 | 0.981 | 0.639 |
WDZ01 | 40/22 | 1968-2016 | 1986-2016 | 0.200 | 0.199 | 0.414 | 0.267 | 24.718 | 0.961 | 0.464 |
WDZ02 | 41/21 | 1967-2016 | 1986-2016 | 0.225 | 0.220 | 0.501 | 0.246 | 36.094 | 0.973 | 0.533 |
WDZ03 | 62/36 | 1944-2016 | 1986-2016 | 0.204 | 0.211 | 0.313 | 0.349 | 26.460 | 0.964 | 0.347 |
WDZ04 | 44/24 | 1945-2016 | 1986-2016 | 0.166 | 0.178 | 0.284 | 0.247 | 11.489 | 0.920 | 0.329 |
WDZ05 | 64/34 | 1994-2016 | 1994-2016 | 0.143 | 0.150 | 0.278 | 0.273 | 20.824 | 0.954 | 0.332 |
WDZ06 | 42/28 | 1994-2016 | 1994-2016 | 0.154 | 0.155 | 0.430 | 0.100 | 26.446 | 0.964 | 0.470 |
WDZ07 | 81/43 | 1971-2016 | 1986-2016 | 0.253 | 0.278 | 0.247 | 0.448 | 20.714 | 0.954 | 0.308 |
图2 草河口和湾甸子落叶松径向生长与不同季节气温相关关系随林龄的变化趋势。A, 上年夏季气温。B, 上年秋季气温。C, 当年夏季气温。D, 当年秋季气温。
Fig. 2 The trends of relationships between the radial growth of larch and air temperature in different seasons with increasing age of Caohekou and Wandianzi. A, Air temperature in summer of the previous year. B, Air temperature in autumn of the previous year. C, Air temperature in summer of the current year. D, Air temperature in autumn of the current year.
图3 草河口和湾甸子落叶松年轮宽度指数与气温(T)、帕尔默干旱指数(PDSI)的主成分分析。P表示上一年, C表示当年, Spr、Sum、Aut、Win分别表示春、夏、秋、冬季。
Fig. 3 Principal component analysis of ring width index of larch and air temperature (T), palmer drought severity index (PDSI) of Caohekou and Wandianzi. P designates the previous year, and C the current year. Spr, Sum, Aut and Win are abbreviations for spring, summer, autumn and winter, respectively.
变量 Variable | Comp. 1 | Comp. 2 | Comp. 3 | Comp. 4 |
---|---|---|---|---|
P_Sum_T | -0.253 | 0.361 | -0.318 | 0.233 |
P_Aut_T | -0.115 | 0.507 | -0.048 | 0.084 |
P_Win_T | -0.330 | -0.035 | 0.426 | 0.005 |
C_Spr_T | -0.310 | 0.134 | -0.427 | 0.167 |
C_Sum_T | -0.171 | 0.381 | 0.440 | -0.555 |
C_Aut _T | 0.146 | 0.427 | -0.353 | -0.445 |
P_Sum_PDSI | 0.219 | 0.405 | 0.212 | 0.475 |
P_Aut_PDSI | 0.291 | 0.261 | 0.363 | 0.356 |
P_Win_PDSI | 0.365 | 0.105 | -0.053 | -0.133 |
C_Spr_PDSI | 0.359 | 0.102 | 0.002 | -0.183 |
C_Sum_PDSI | 0.374 | -0.066 | -0.052 | -0.022 |
C_Aut_PDSI | 0.364 | -0.092 | -0.178 | 0.019 |
表3 季节气候因子在年轮宽度指数与气温、帕尔默干旱指数主成分分析各轴的载荷值
Table 3 Loading of seasonal climatic factors in each axis of the principal components of ring width index and air temperature, palmer drought severity index
变量 Variable | Comp. 1 | Comp. 2 | Comp. 3 | Comp. 4 |
---|---|---|---|---|
P_Sum_T | -0.253 | 0.361 | -0.318 | 0.233 |
P_Aut_T | -0.115 | 0.507 | -0.048 | 0.084 |
P_Win_T | -0.330 | -0.035 | 0.426 | 0.005 |
C_Spr_T | -0.310 | 0.134 | -0.427 | 0.167 |
C_Sum_T | -0.171 | 0.381 | 0.440 | -0.555 |
C_Aut _T | 0.146 | 0.427 | -0.353 | -0.445 |
P_Sum_PDSI | 0.219 | 0.405 | 0.212 | 0.475 |
P_Aut_PDSI | 0.291 | 0.261 | 0.363 | 0.356 |
P_Win_PDSI | 0.365 | 0.105 | -0.053 | -0.133 |
C_Spr_PDSI | 0.359 | 0.102 | 0.002 | -0.183 |
C_Sum_PDSI | 0.374 | -0.066 | -0.052 | -0.022 |
C_Aut_PDSI | 0.364 | -0.092 | -0.178 | 0.019 |
变量 Variable | 年降水量 Mean annual precipitation | 潜在蒸发量 Potential evapotranspiration | 林龄 Stand age | 林分密度 Stem density | 蓄积量 Wood volume | 立地条件 Site quality | 树种 Tree species |
---|---|---|---|---|---|---|---|
PCA1 | -0.522** | -0.722*** | 0.091 | 0.287* | 0.512** | 0.013 | 0.007 |
PCA2 | -0.087 | 0.000 | -0.660*** | 0.011 | -0.197 | 0.090 | 0.056 |
表4 环境因子、林分结构特征对年轮宽度指数与气温、帕尔默干旱指数的PCA1、2轴得分的解释力(R2)
Table 4 The explanatory power of environmental factors and stand structural characteristics on the scores of PCA axes 1 and 2 of ring width index and air temperature, palmer drought severity index (R2)
变量 Variable | 年降水量 Mean annual precipitation | 潜在蒸发量 Potential evapotranspiration | 林龄 Stand age | 林分密度 Stem density | 蓄积量 Wood volume | 立地条件 Site quality | 树种 Tree species |
---|---|---|---|---|---|---|---|
PCA1 | -0.522** | -0.722*** | 0.091 | 0.287* | 0.512** | 0.013 | 0.007 |
PCA2 | -0.087 | 0.000 | -0.660*** | 0.011 | -0.197 | 0.090 | 0.056 |
PCA1 | PCA2 | |||||
---|---|---|---|---|---|---|
df | % SS | p | df | % SS | p | |
树种 Tree species | 1 | 0.729 | 0.535 | 1 | 5.567 | 0.167 |
林分密度 Stem density | 1 | 28.043 | 0.004** | 1 | 0.625 | 0.625 |
林龄 Stand age | 1 | 8.225 | 0.061 | 1 | 64.605 | 0.000*** |
蓄积量 Wood volume | 1 | 34.052 | 0.002** | 1 | 4.956 | 0.190 |
潜在蒸发量Potential evapotranspiration | 1 | 11.502 | 0.032* | 1 | 1.905 | 0.400 |
年降水量 Annual precipitation | 1 | 2.555 | 0.260 | 1 | 0.662 | 0.615 |
立地条件 Site quality | 2 | 1.012 | 0.755 | 2 | 2.356 | 0.631 |
残差 Residuals | 8 | 13.882 | 8 | 19.323 |
附录I 年轮宽度指数与气温、帕尔默干旱指数的PCA1、2轴得分与环境因子、林分结构特征多元回归分析
Supplement I Multiple regression analysis of the scores for PCA axes 1 and 2 of ring width index and air temperature, palmer drought severity index with environmental factors and stand structural characteristics
PCA1 | PCA2 | |||||
---|---|---|---|---|---|---|
df | % SS | p | df | % SS | p | |
树种 Tree species | 1 | 0.729 | 0.535 | 1 | 5.567 | 0.167 |
林分密度 Stem density | 1 | 28.043 | 0.004** | 1 | 0.625 | 0.625 |
林龄 Stand age | 1 | 8.225 | 0.061 | 1 | 64.605 | 0.000*** |
蓄积量 Wood volume | 1 | 34.052 | 0.002** | 1 | 4.956 | 0.190 |
潜在蒸发量Potential evapotranspiration | 1 | 11.502 | 0.032* | 1 | 1.905 | 0.400 |
年降水量 Annual precipitation | 1 | 2.555 | 0.260 | 1 | 0.662 | 0.615 |
立地条件 Site quality | 2 | 1.012 | 0.755 | 2 | 2.356 | 0.631 |
残差 Residuals | 8 | 13.882 | 8 | 19.323 |
PCA1 | PCA2 | |||||
---|---|---|---|---|---|---|
df | % SS | p | df | % SS | p | |
潜在蒸发量 Potential evapotranspiration | 1 | 72.170 | 0.000 2*** | 1 | 0.003 | 0.973 |
年降水量 Mean annual precipitation | 1 | 0.884 | 0.496 | 1 | 21.646 | 0.017* |
立地条件 Site quality | 2 | 1.122 | 0.733 | 2 | 13.291 | 0.123 |
树种 Tree species | 1 | 0.591 | 0.576 | 1 | 10.129 | 0.075 |
林分密度 Stem density | 1 | 0.212 | 0.736 | 1 | 1.219 | 0.498 |
林龄 Stand age | 1 | 7.990 | 0.064 | 1 | 27.443 | 0.009** |
蓄积量 Wood volume | 1 | 3.150 | 0.215 | 1 | 6.945 | 0.128 |
残差 Residuals | 8 | 13.881 | 8 | 19.323 |
表5 年轮宽度指数与气温、帕尔默干旱指数的PCA1、2轴得分与环境因子、林分结构特征多元回归分析
Table 5 Multiple regression analysis of the scores for the PCA axes 1 and 2 of ring width index and air temperature, palmer drought severity index with environmental factors and stand structural characteristics
PCA1 | PCA2 | |||||
---|---|---|---|---|---|---|
df | % SS | p | df | % SS | p | |
潜在蒸发量 Potential evapotranspiration | 1 | 72.170 | 0.000 2*** | 1 | 0.003 | 0.973 |
年降水量 Mean annual precipitation | 1 | 0.884 | 0.496 | 1 | 21.646 | 0.017* |
立地条件 Site quality | 2 | 1.122 | 0.733 | 2 | 13.291 | 0.123 |
树种 Tree species | 1 | 0.591 | 0.576 | 1 | 10.129 | 0.075 |
林分密度 Stem density | 1 | 0.212 | 0.736 | 1 | 1.219 | 0.498 |
林龄 Stand age | 1 | 7.990 | 0.064 | 1 | 27.443 | 0.009** |
蓄积量 Wood volume | 1 | 3.150 | 0.215 | 1 | 6.945 | 0.128 |
残差 Residuals | 8 | 13.881 | 8 | 19.323 |
[1] |
Chang JF, Wang XP, Zhang XP, Lin X ( 2009). Alpine timberline dynamics in relation to climatic variability in the northern Daxing’an Mountains. Mountain Research, 6, 703-711.
DOI URL |
[ 常锦峰, 王襄平, 张新平, 林鑫 ( 2009). 大兴安岭北部大白山高山林线动态与气候变化的关系. 山地学报, 6, 703-711.]
DOI URL |
|
[2] |
D’Amato AW, Palik BJ ( 2013). Effects of thinning on drought vulnerability and climate response in north temperate forest ecosystems. Ecological Applications, 23, 1735-1742.
DOI URL PMID |
[3] | Dong HD ( 2011). Vegetation and Vegetation Division of Liaoning Province. Liaoning University Press, Shenyang. |
[ 董厚德 ( 2011). 辽宁植被与植被区划. 辽宁大学出版社, 沈阳.] | |
[4] | Fang JY ( 1992). Study on the geographic elements affecting temperature distribution in China. Acta Ecologica Sinica, 12, 97-104. |
[ 方精云 ( 1992). 地理要素对我国气温分布影响的数量评价. 生态学报, 12, 97-104.] | |
[5] |
Fang JY, Wang XP, Shen ZH, Tang ZY, He JS, Yu D, Jiang Y, Wang ZH, Zheng CY, Zhu JL, Guo ZD ( 2009). Methods and protocols for plant community inventory. Biodiversity Science, 17, 533-548.
DOI URL |
[ 方精云, 王襄平, 沈泽昊, 唐志尧, 贺金生, 于丹, 江源, 王志恒, 郑成洋, 朱江玲, 郭兆迪 ( 2009). 植物群落清查的主要内容、方法和技术规范. 生物多样性, 17, 533-548.]
DOI URL |
|
[6] |
Ferrero ME, Villalba R, Membiela MD, Ripalta A, Delgado S, Paolini L ( 2013). Tree-growth responses across environmental gradients in subtropical Argentinean forests. Plant Ecology, 214, 1321-1334.
DOI URL |
[7] | Fritts HC ( 1976). Tree rings and climate. Scientific American, 226, 95-99. |
[8] |
Goldblum D, Rigg LS ( 2005). Tree growth response to climate change at the deciduous boreal forest ecotone, Ontario, Canada. Canadian Journal of Forest Research, 35, 2709-2718.
DOI URL |
[9] | Holmes RL ( 1983). Computer-assisted quality control in tree-ring dating and measurement. Tree-Ring Bulletin, 43, 69-75. |
[10] |
Hu FS, Lee BY, Kaufman DS, Yoneji S, Nelson DM, Henne PD ( 2002). Response of tundra ecosystem in southwestern Alaska to Younger-Dryas climatic oscillation. Global Change Biology, 8, 1156-1163.
DOI URL |
[11] | Huang QX, Zhao Y, He Q ( 2013). Climatic characteristics in Central Asia based on CRU data. Arid Zone Research, 30, 396-403. |
[ 黄秋霞, 赵勇, 何清 ( 2013). 基于CRU资料的中亚地区气候特征. 干旱区研究, 30, 396-403.] | |
[12] |
Kramer K, Leinonen I, Loustau D ( 2000). The importance of phenology for the evaluation of impact of climate change on growth of boreal, temperate and Mediterranean forests ecosystems: An overview. International Journal of Biometeorology, 44, 67-75.
DOI URL PMID |
[13] |
Leal S, Melvin TM, Grabner M, Wimmer R, Briffa KR ( 2007). Tree-ring growth variability in the Austrian Alps: The influence of site, altitude, tree species and climate. Boreas, 36, 426-440.
DOI URL |
[14] |
Lévesque M, Siegwolf R, Saurer M, Eilmann B, Rigling A ( 2014). Increased water-use efficiency does not lead to enhanced tree growth under xeric and mesic conditions. New Phytologist, 203, 94-109.
DOI URL PMID |
[15] | Li JF ( 2000). Research and Application of Dendrohydrology. Science Press, Beijing. |
[ 李江风 ( 2000). 树木年轮水文学研究与应用. 科学出版社, 北京.] | |
[16] |
Liang PH, Wang XP, Wu YL, Xu K, Wu P, Guo X ( 2016). Growth responses of broad-leaf and Korean pine mixed forests at different successional stages to climate change in the Shengshan Nature Reserve of Heilongjiang Province, China. Chinese Journal of Plant Ecology, 40, 425-435.
DOI URL |
[ 梁鹏鸿, 王襄平, 吴玉莲, 徐凯, 吴鹏, 郭鑫 ( 2016). 黑龙江胜山保护区阔叶红松林不同演替阶段径向生长与气候变化的关系. 植物生态学报, 40, 425-435.]
DOI URL |
|
[17] |
Liu M, Mao ZY, Li Y, Sun T, Li XH, Huang W, Liu RP, Li YH ( 2016). Response of radial growth of Pinus koraiensis in broad-leaved Korean pine forests with different latitudes to climatical factors. Chinese Journal of Applied Ecology, 27, 1341-1352.
DOI URL |
[ 刘敏, 毛子军, 厉悦, 孙涛, 李兴欢, 黄唯, 刘瑞鹏, 李元昊 ( 2016). 不同纬度阔叶红松林红松径向生长对气候因子的响应. 应用生态学报, 27, 1341-1352.]
DOI URL |
|
[18] |
Mérian P, Lebourgeois F ( 2011). Size-mediated climat-growth relationships in temperate forests: A multi-species analysis. Forest Ecology & Management, 261, 1382-1391.
DOI URL |
[19] |
Mitchell TD, Jones PD ( 2005). An improved method of constructing a database of monthly climate observations and associated high-resolution grids. International Journal of Climatology, 25, 693-712.
DOI URL |
[20] | Primicia I, Camarero JJ, Janda P, Čada V ( 2015). Age, competition, disturbance and elevation effects on tree and stand growth response of primary Picea abies forest to climate. Forest Ecology and Management, 354, 77-86. |
[21] | Qi Y, Wang B, Huang JB ( 2014). Application of CRU dataset to calculation of ET0 of Heilongjiang Province. Journal of Hehai University (Natural Sciences), 42, 367-371. |
[ 戚颖, 王斌, 黄金柏 ( 2014). CRU数据集在黑龙江省ET0计算中的应用. 河海大学学报(自然科学版), 42, 367-371.] | |
[22] | Rais A, Kuilen JWGV, Pretzsch H ( 2014 a). Growth reaction patterns of tree height, diameter, and volume of Douglas-?fir (Pseudotsuga menziesii( Mirb.) Franco) under acute drought stress in Southern Germany. European Journal of Forest Research, 133, 1043-1056. |
[23] | Rais A, Poschenrieder W, Pretzsch H, Kuilen JWGV ( 2014 b). Influence of initial plant density on sawn timber properties for Douglas-fir (Pseudotsuga menziesii( Mirb.) Franco). Annals of Forest Science, 71, 617-626. |
[24] |
Ryan MG, Yoder BJ ( 1997). Hydraulic limits to tree height and tree growth. Bioscience, 47, 235-242.
DOI URL |
[25] |
Schuster R, Oberhuber W ( 2013). Drought sensitivity of three co-occurring conifers within a dry inner alpine environment. Trees, 27, 61-69.
DOI URL |
[26] | Stokes MA ( 1996). An Introduction to Tree-Ring Dating. University of Arizona Press, Tucson, USA. |
[27] | Wang XC, Zhang YD, Mcrae DJ ( 2009). Spatial and age-?dependent tree-ring growth responses of Larix gmelinii to climate in northeastern China. Trees, 23, 875-885. |
[28] | Wang XP, Fang JY, Tang ZY, Zhu B ( 2006). Climatic control of primary forest structure and DBH-height allometry in Northeast China. Forest Ecology & Management, 234, 264-274. |
[29] |
Webb II T ( 2001). Past global changes and their significance for the future. Journal of Paleolimnology, 26, 227-229.
DOI URL |
[30] | Wu XD ( 1990). Application of tree ring analysis to the study on environment variation. Quaternary Sciences, 2, 188-196. |
[ 吴祥定 ( 1990). 树木年轮分析在环境变化研究中的应用. 第四纪研究, 2, 188-196.] | |
[31] | Wu YL, Wang XP, Ouyang S, Xu K, Hawkins BA, Sun OJ ( 2017). A test of BIOME-BGC with dendrochronology for forests along the altitudinal gradient of Mt. Changbai in Northeast China. Journal of Plant Ecology, 10, 415-425. |
[32] |
Xu K, Wang XP, Liang PH, An HL, Sun H, Han W, Li QY ( 2017). Tree-ring widths are good proxies of annual variation in forest productivity in temperate forests. Scientific Report, 7, 1945. DOI: 10.1038/s41598-017-02022-6.
DOI URL |
[33] | Yu GR, Liu YB, Wang XC, Ma KP ( 2008). Age-dependent tree-ring growth responses to climate in Qilian juniper (Sabina przewalskii Kom.). Trees, 22, 197-204. |
[34] | Zeng FP, Chi GY, Chen X, Shi Y ( 2016). The stoichiometric characteristics of C, N and P in soil and root of larch (Larix spp.) plantation at different stand ages in mountainous region of eastern Liaoning Province, China. Chinese Journal of Ecology, 35, 1819-1825. |
[ 曾凡鹏, 迟光宇, 陈欣, 史奕 ( 2016). 辽东山区不同林龄落叶松人工林土壤-根系C:N:P生态化学计量特征. 生态学杂志, 35, 1819-1825.] | |
[35] | Zeng LB, Wang XP, Chang JF, Lin X, Wu YL, Yin WL ( 2012). Alpine timberline ecotone tree growth in relation to climatic variability for Picea crassifolia forests in the middle Qilian Mountains, northwestern China. Journal of Beijing Forestry University, 34(5), 50-56. |
[ 曾令兵, 王襄平, 常锦峰, 林鑫, 吴玉莲, 尹伟伦 ( 2012). 祁连山中段青海云杉高山林线交错区树轮宽度与气候变化的关系. 北京林业大学学报, 34(5), 50-56.] |
[1] | 党宏忠, 张学利, 韩辉, 石长春, 葛玉祥, 马全林, 陈帅, 刘春颖. 樟子松固沙林林水关系研究进展及对营林实践的指导[J]. 植物生态学报, 2022, 46(9): 971-983. |
[2] | 魏瑶, 马志远, 周佳颖, 张振华. 模拟增温改变青藏高原植物繁殖物候及植株高度[J]. 植物生态学报, 2022, 46(9): 995-1004. |
[3] | 李肖, PIALUANG Bounthong, 康文辉, 冀晓东, 张海江, 薛治国, 张志强. 近几十年来冀西北山地白桦次生林径向生长对气候变化的响应[J]. 植物生态学报, 2022, 46(8): 919-931. |
[4] | 刘沛荣, 同小娟, 孟平, 张劲松, 张静茹, 于裴洋, 周宇. 散射辐射对中国东部典型人工林总初级生产力的影响[J]. 植物生态学报, 2022, 46(8): 904-918. |
[5] | 苏启陶, 杜志喧, 周兵, 廖永辉, 王呈呈, 肖宜安. 牯岭凤仙花及其传粉昆虫在中国的潜在分布区域分析[J]. 植物生态学报, 2022, 46(7): 785-796. |
[6] | 黄冬柳, 项伟, 李忠国, 朱师丹. 南亚热带10种造林树种的水力结构和水力安全[J]. 植物生态学报, 2022, 46(5): 602-612. |
[7] | 胡潇飞, 魏临风, 程琦, 吴星麒, 倪健. 青藏高原地区气候图解数据集[J]. 植物生态学报, 2022, 46(4): 484-492. |
[8] | 丛楠, 张扬建, 朱军涛. 北半球中高纬度地区近30年植被春季物候温度 敏感性[J]. 植物生态学报, 2022, 46(2): 125-135. |
[9] | 原媛, 母艳梅, 邓钰洁, 李鑫豪, 姜晓燕, 高圣杰, 查天山, 贾昕. 植被覆盖度和物候变化对典型黑沙蒿灌丛生态系统总初级生产力的影响[J]. 植物生态学报, 2022, 46(2): 162-175. |
[10] | 王俐爽 同小娟 孟平 张劲松 刘沛荣 李俊 张静茹 周宇. 辽西半干旱地区两种典型人工林生态系统能量通量及蒸散特征[J]. 植物生态学报, 2022, 46(12): 1508-1522. |
[11] | 高德才, 白娥. 冻融循环期间土壤氧化亚氮排放影响因素[J]. 植物生态学报, 2021, 45(9): 1006-1023. |
[12] | 倪铭, 张曦月, 姜超, 王鹤松. 中国西南部地区植被对极端气候事件的响应[J]. 植物生态学报, 2021, 45(6): 626-640. |
[13] | 孙浩哲, 王襄平, 张树斌, 吴鹏, 杨蕾. 阔叶红松林不同演替阶段凋落物产量及其稳定性的影响因素[J]. 植物生态学报, 2021, 45(6): 594-605. |
[14] | 方欧娅, 张永, 张启, 贾恒锋. 黄河上游甘蒙柽柳生长对极端旱涝的响应[J]. 植物生态学报, 2021, 45(6): 641-649. |
[15] | 汲玉河, 周广胜, 王树东, 王丽霞, 周梦子. 2000-2019年秦岭地区植被生态质量演变特征及 驱动力分析[J]. 植物生态学报, 2021, 45(6): 617-625. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19