植物生态学报 ›› 2016, Vol. 40 ›› Issue (10): 991-1002.DOI: 10.17521/cjpe.2015.0465
所属专题: 植物功能性状
李丹1, 康萨如拉1,,A;*, 赵梦颖1, 张庆1,2, 任海娟1, 任婧1, 周俊梅1, 王珍1, 吴仁吉1, 牛建明1,2,,A;*
出版日期:
2016-10-10
发布日期:
2016-11-02
通讯作者:
康萨如拉,牛建明
基金资助:
Dan LI1, Saruul KANG1,*, Meng-Ying ZHAO1, Qing ZHANG1,2, Hai-Juan REN1, Jing REN1, Jun-Mei ZHOU1, Zhen WANG1, Ren-Ji WU1, Jian-Ming NIU1,2,*
Online:
2016-10-10
Published:
2016-11-02
Contact:
Saruul KANG,Jian-Ming NIU
摘要:
深入认识植物功能性状的生态学含义, 对于阐明不同自然与人为干扰环境下的群落构建途径, 进一步揭示生态系统服务维持机制具有重要的理论意义。该文以内蒙古锡林河流域羊草(Leymus chinensis)草原不同退化演替阶段的群落为研究对象, 分析了土壤养分与植物功能性状的变化特征及两者之间的关系。结果表明: (1)退化导致土壤养分含量逐渐减少, 全氮和全磷在未退化的羊草+杂类草群落与严重退化的羊草+冷蒿(Artemisia frigida)群落之间差异显著; (2)随着退化演替的进程, 群落最大高度和叶片碳氮比减小, 群落最大高度在未退化的羊草+杂类草群落与轻度退化的羊草+针茅(Stipa sp.)群落之间差异显著, 碳氮比在未退化的羊草+杂类草群落与严重退化的羊草+冷蒿群落之间差异显著; (3)不同退化演替阶段的群落, 其土壤养分对植物功能性状的影响有所差异。在羊草+针茅群落, 速效氮与群落最大高度、叶片木质素含量和叶片碳氮比均呈显著负相关关系。而在羊草+糙隐子草(Cleistogenes squarrosa)群落中, 上述3种植物功能性状则表现为均与全磷含量显著正相关; (4)群落植物功能性状之间的关系也因退化阶段不同而有所不同。在轻度退化的羊草+针茅群落中, 叶片木质素含量与其他4个功能性状显著正相关, 叶片碳氮比与群落最大高度、叶干物质含量、木质素含量呈显著正相关关系。在严重退化的羊草+冷蒿群落中, 所有性状均呈极显著正相关关系。表明植物通过功能性状的协调或组合, 以适应贫瘠的土壤环境。上述结果深化了对典型草原退化演替的认识, 对退化草地的恢复与保护具有一定的指导意义。
李丹, 康萨如拉, 赵梦颖, 张庆, 任海娟, 任婧, 周俊梅, 王珍, 吴仁吉, 牛建明. 内蒙古羊草草原不同退化阶段土壤养分与植物功能性状的关系. 植物生态学报, 2016, 40(10): 991-1002. DOI: 10.17521/cjpe.2015.0465
Dan LI, Saruul KANG, Meng-Ying ZHAO, Qing ZHANG, Hai-Juan REN, Jing REN, Jun-Mei ZHOU, Zhen WANG, Ren-Ji WU, Jian-Ming NIU. Relationships between soil nutrients and plant functional traits in different degradation stages of Leymus chinensis steppe in Nei Mongol, China. Chinese Journal of Plant Ecology, 2016, 40(10): 991-1002. DOI: 10.17521/cjpe.2015.0465
类型 Type | 指标 Index | 全氮 TN | 速效氮 AN | 全磷 TP | 速效磷 AP | 有机碳 OC |
---|---|---|---|---|---|---|
羊草+杂类草 Leymus chinensis + forbs | SLA | -0.074 | -0.208 | 0.128 | -0.247 | 0.007 |
MH | -0.118 | 0.098 | 0.031 | 0.048 | -0.167 | |
LDMC | 0.225 | 0.297 | 0.208 | 0.090 | 0.244 | |
LLC | -0.361 | -0.196 | -0.218 | -0.316 | -0.268 | |
C:N | -0.275 | -0.571** | -0.043 | -0.534* | -0.126 | |
羊草+针茅 Leymus chinensis + Stipa sp. | SLA | -0.051 | -0.305 | 0.106 | 0.147 | 0.019 |
MH | -0.398 | -0.515* | -0.037 | -0.214 | -0.395 | |
LDMC | 0.061 | -0.349 | 0.204 | 0.142 | 0.054 | |
LLC | -0.384 | -0.667** | -0.102 | -0.126 | -0.382 | |
C:N | -0.203 | -0.697** | 0.068 | -0.114 | -0.208 | |
羊草+糙隐子草 Leymus chinensis + Cleistogenes squarrosa | SLA | 0.052 | -0.078 | 0.034 | -0.103 | 0.144 |
MH | 0.371 | 0.210 | 0.477* | -0.096 | 0.222 | |
LDMC | 0.306 | -0.257 | 0.376 | 0.293 | 0.049 | |
LLC | 0.509* | -0.066 | 0.514* | 0.181 | 0.286 | |
C:N | 0.223 | -0.362 | 0.562** | 0.262 | -0.029 | |
羊草+冷蒿 Leymus chinensis + Artemisia frigida | SLA | 0.519 | 0.127 | 0.309 | 0.280 | 0.416 |
MH | 0.432 | 0.140 | 0.236 | 0.254 | 0.332 | |
LDMC | 0.404 | 0.305 | 0.202 | 0.159 | 0.329 | |
LLC | 0.354 | 0.144 | 0.132 | 0.143 | 0.250 | |
C:N | 0.608 | 0.342 | 0.441 | 0.260 | 0.526 |
表1 土壤养分含量与植物功能性状之间的关系
Table 1 Relationships between soil nutrient contents and plant functional traits
类型 Type | 指标 Index | 全氮 TN | 速效氮 AN | 全磷 TP | 速效磷 AP | 有机碳 OC |
---|---|---|---|---|---|---|
羊草+杂类草 Leymus chinensis + forbs | SLA | -0.074 | -0.208 | 0.128 | -0.247 | 0.007 |
MH | -0.118 | 0.098 | 0.031 | 0.048 | -0.167 | |
LDMC | 0.225 | 0.297 | 0.208 | 0.090 | 0.244 | |
LLC | -0.361 | -0.196 | -0.218 | -0.316 | -0.268 | |
C:N | -0.275 | -0.571** | -0.043 | -0.534* | -0.126 | |
羊草+针茅 Leymus chinensis + Stipa sp. | SLA | -0.051 | -0.305 | 0.106 | 0.147 | 0.019 |
MH | -0.398 | -0.515* | -0.037 | -0.214 | -0.395 | |
LDMC | 0.061 | -0.349 | 0.204 | 0.142 | 0.054 | |
LLC | -0.384 | -0.667** | -0.102 | -0.126 | -0.382 | |
C:N | -0.203 | -0.697** | 0.068 | -0.114 | -0.208 | |
羊草+糙隐子草 Leymus chinensis + Cleistogenes squarrosa | SLA | 0.052 | -0.078 | 0.034 | -0.103 | 0.144 |
MH | 0.371 | 0.210 | 0.477* | -0.096 | 0.222 | |
LDMC | 0.306 | -0.257 | 0.376 | 0.293 | 0.049 | |
LLC | 0.509* | -0.066 | 0.514* | 0.181 | 0.286 | |
C:N | 0.223 | -0.362 | 0.562** | 0.262 | -0.029 | |
羊草+冷蒿 Leymus chinensis + Artemisia frigida | SLA | 0.519 | 0.127 | 0.309 | 0.280 | 0.416 |
MH | 0.432 | 0.140 | 0.236 | 0.254 | 0.332 | |
LDMC | 0.404 | 0.305 | 0.202 | 0.159 | 0.329 | |
LLC | 0.354 | 0.144 | 0.132 | 0.143 | 0.250 | |
C:N | 0.608 | 0.342 | 0.441 | 0.260 | 0.526 |
图2 不同退化阶段土壤养分含量比较(平均值±标准误差)。I, 羊草+杂类草; II, 羊草+针茅; III, 羊草+糙隐子草; IV, 羊草+冷蒿。ns, 群落间差异不显著。每个子图中不同字母表示不同演替阶段之间差异显著(p < 0.05)。
Fig. 2 Comparison of soil nutrient among different degradation stages (mean ± SE). I, Leymus chinensis + forbs; II, Leymus chinensis + Stipa sp.; III, Leymus chinensis + Cleistogenes squarrosa; IV, Leymus chinensis + Artemisia frigida. ns refers to no significant difference at p > 0.05. Letters in each subgraph indicate significant differences between stages (p < 0.05). AN, available nitrogen; AP, available phosphorus; OC, organic carbon; TN, total nitrogen; TP, total phosphorus.
图3 不同退化阶段植物功能性状比较(平均值±标准误差)。I, 羊草+杂类草; II, 羊草+针茅; III, 羊草+糙隐子草; IV, 羊草+冷蒿。ns, 群落间差异不显著。每个子图中不同字母表示不同演替阶段之间差异显著(p < 0.05)。
Fig. 3 Comparison of plant functional traits among different degradation stages (mean ± SE). I, Leymus chinensis + forbs; II, Leymus chinensis + Stipa sp.; III, Leymus chinensis + Cleistogenes squarrosa; IV, Leymus chinensis + Artemisia frigida. ns refers to no significant difference at p > 0.05. Letters in each subgraph indicate significant differences between stages (p < 0.05). C:N, leaf carbon and nitrogen ratio; LDMC, leaf dry matter content; LLC, leaf lignin content; MH, maximum height; SLA, specific leaf area.
类型 Type | 指标 Index | 比叶面积 SLA | 最大高度 MH | 叶片干物质含量 LDMC | 叶片木质素含量 LLC | 叶片碳氮比 C:N |
---|---|---|---|---|---|---|
羊草+杂类草 Leymus chinensis + forbs | SLA | 1 | 0.015 | -0.435* | -0.050 | 0.268 |
MH | 1 | -0.005 | 0.527* | 0.309 | ||
LDMC | 1 | 0.021 | -0.102 | |||
LLC | 1 | 0.575** | ||||
C:N | 1 | |||||
羊草+针茅 Leymus chinensis + Stipa sp. | SLA | 1 | 0.434 | 0.425 | 0.603** | 0.406 |
MH | 1 | 0.518* | 0.681** | 0.565* | ||
LDMC | 1 | 0.493* | 0.634** | |||
LLC | 1 | 0.693** | ||||
C:N | 1 | |||||
羊草+糙隐子草 Leymus chinensis + Cleistogenes squarrosa | SLA | 1 | -0.128 | -0.080 | 0.088 | 0.184 |
MH | 1 | 0.330 | 0.520* | 0.232 | ||
LDMC | 1 | 0.735** | 0.356 | |||
LLC | 1 | 0.388 | ||||
C:N | 1 | |||||
羊草+冷蒿 Leymus chinensis + Artemisia frigida | SLA | 1 | 0.961** | 0.838** | 0.935** | 0.944** |
MH | 1 | 0.854** | 0.919** | 0.892** | ||
LDMC | 1 | 0.953** | 0.842** | |||
LLC | 1 | 0.906** | ||||
C:N | 1 |
表2 植物功能性状之间的关系
Table 2 Relationships among plant functional traits
类型 Type | 指标 Index | 比叶面积 SLA | 最大高度 MH | 叶片干物质含量 LDMC | 叶片木质素含量 LLC | 叶片碳氮比 C:N |
---|---|---|---|---|---|---|
羊草+杂类草 Leymus chinensis + forbs | SLA | 1 | 0.015 | -0.435* | -0.050 | 0.268 |
MH | 1 | -0.005 | 0.527* | 0.309 | ||
LDMC | 1 | 0.021 | -0.102 | |||
LLC | 1 | 0.575** | ||||
C:N | 1 | |||||
羊草+针茅 Leymus chinensis + Stipa sp. | SLA | 1 | 0.434 | 0.425 | 0.603** | 0.406 |
MH | 1 | 0.518* | 0.681** | 0.565* | ||
LDMC | 1 | 0.493* | 0.634** | |||
LLC | 1 | 0.693** | ||||
C:N | 1 | |||||
羊草+糙隐子草 Leymus chinensis + Cleistogenes squarrosa | SLA | 1 | -0.128 | -0.080 | 0.088 | 0.184 |
MH | 1 | 0.330 | 0.520* | 0.232 | ||
LDMC | 1 | 0.735** | 0.356 | |||
LLC | 1 | 0.388 | ||||
C:N | 1 | |||||
羊草+冷蒿 Leymus chinensis + Artemisia frigida | SLA | 1 | 0.961** | 0.838** | 0.935** | 0.944** |
MH | 1 | 0.854** | 0.919** | 0.892** | ||
LDMC | 1 | 0.953** | 0.842** | |||
LLC | 1 | 0.906** | ||||
C:N | 1 |
图4 附录I TWINSPAN群落分类结果^顶端两行数字纵列代表样地编号, 从左至右如: 19、61、25至6样地; 每一行的左侧(前11个字符, 含空格)代表植物种编号, 其中Var是”变量”的缩写; 右侧0、1组合代表物种的分类;表格中央部分的数字与短线表示物种在样地中的重要性, 5代表最重要, 短线代表可以忽略; 表格底部的6行是样地分类结果, 0、1代表不同类群, 首先将样地划分为两类(倒数第6行), 接下来(倒数第5行)是对上述两个类群的再次划分(二分法), 形成4个类群, 以此类推。
Fig.4 Appendix I The result of TWINSPAN classification^ Site numbers are shown in vertical sequence (top-down) by the first two lines on the top of the table. The first three sites coded 19, 61, and 25, for example, are at the very beginning on the left, and the last one is site 6 on the right end. Code of plant species is shown on the very left (the first 11 chars, including blanks) for each line. Var is the abbreviation of “variable”. A group of 0 and 1 on the right demonstrates the classification of plant species; Numbers and dashes appeared in the central part of the table indicate the value of species in sites. The number 5 refers to the most important, and the sign of dash illustrates that the value of species in sites can be neglected; Results of site classification are summarized by the last 6 lines at the bottom of the table, 0 and 1 refer to differentiation. At first, all sites are categorized to 2 groups shown in the line 6 from the end. And then, these two groups are classified further into 4 groups (in the line 5 from the end) by means of dichotomy, and so forth.
[1] | Ackerly DD, Cornwell WK (2007). A trait-based approach to community assembly: Partitioning of species trait values into within and among community components.Ecology Letters, 10, 135-145. |
[2] | Bai X, Cheng JH, Zheng SX, Zhan SX, Bai YF (2014). Ecophysiological responses of Leymus chinensis to nitrogen and phosphorus additions in a typical steppe.Chinese Journal of Plant Ecology, 38, 103-115.(in Chinese with English abstract)[白雪, 程军回, 郑淑霞, 詹书侠, 白永飞 (2014). 典型草原建群种羊草对氮磷添加的生理生态响应. 植物生态学报, 38, 103-115.] |
[3] | Bai YF, Wu JG, Clark CM, Naeem S, Pan QM, Huang JH, Zhang LX, Han XG (2010). Tradeoffs and thresholds in the effects of nitrogen addition on biodiversity and ecosystem functioning: Evidence from Inner Mongolia Grasslands.Global Change Biology, 16, 358-372. |
[4] | Barboni D, Harrison S, Bartlein P, Jalut G, New M, Prentice I, Sanchez-Goñi MF, Spessa A, Davis B, Stevenson A (2004). Relationships between plant traits and climate in the Mediterranean region: A pollen data analysis.Journal of Vegetation Science, 15, 635-646. |
[5] | Becknell JM, Powers JS (2014). Stand age and soils as drivers of plant functional traits and aboveground biomass in secondary tropical dry forest.Canadian Journal of Forest, 44, 604-613. |
[6] | Bernard-Verdier M, Navas ML, Vellend M, Violle C, Fayolle A, Garnier E (2012). Community assembly along a soil depth gradient: Contrasting patterns of plant trait convergence and divergence in a Mediterranean rangeland.Journal of Ecology, 100, 1422-1433. |
[7] | Bu WS, Zang RG, Ding Y, Zhang JY, Ruan YZ (2013). Relationships between plant functional traits at the community level and environmental factors during succession in a tropical lowland rainforest on Hainan Island, South China.Biodiversity Science, 21, 278-287.(in Chinese with English abstract)[卜文圣, 臧润国, 丁易, 张俊艳, 阮云泽 (2013). 海南岛热带低地雨林群落水平植物功能性状与环境因子相关性随演替阶段的变化. 生物多样性,21, 278-287.] |
[8] | Chen Y, Ni J (2008). Quantitative palaeovegetation reconstruction at large scale based on pollen records. Journal of Plant Ecology (Chinese Version), 32, 1201-1212.(in Chinese with English abstract)[陈瑜, 倪健 (2008). 利用孢粉记录定量重建大尺度古植被格局. 植物生态学报,32, 1201-1212.] |
[9] | Cornwell WK, Ackerly DD (2009). Community assembly and shifts in plant trait distributions across an environmental gradient in coastal California.Ecological Monographs, 79, 109-126. |
[10] | Craine JM, Morrow C, Stock WD (2008). Nutrient concentration ratios and co-limitation in South African grasslands.New Phytologist (Online), 179, 829-836. |
[11] | Díaz S, Cabido M, Casanoves F (1998). Plant functional traits and environmental filters at a regional scale.Journal of Vegetation Science, 9, 113-122. |
[12] | Ding J, Wu Q, Yan H, Zhang SR (2011). Effects of topographic variations and soil characteristics on plant functional traits in a subtropical evergreen broad-leaved forest.Biodiversity Science, 19, 158-167.(in Chinese with English abstract)[丁佳, 吴茜, 闫慧, 张守仁 (2011). 地形和土壤特性对亚热带常绿阔叶林内植物功能性状的影响. 生物多样性,19, 158-167.] |
[13] | Feng QH, Shi ZM, Dong LL (2008). Response of plant functional traits to environment and its application.Scientia Silvae Sinicae, 44, 125-131.(in Chinese with English abstract)[冯秋红, 史作民, 董莉莉 (2008). 植物功能性状对环境的响应及其应用. 林业科学, 44, 125-131.] |
[14] | Fujita Y, van Bodegom PM, Witte JP (2013). Relationships between nutrient-related plant traits and combinations of soil N and P fertility measures.PLOS ONE, 8, 16. |
[15] | Gachet S, Brewer S, Cheddadi R, Davis B, Gritti E, Guiot J (2003). A probabilistic approach to the use of pollen indicators for plant attributes and biomes: An application to European vegetation at 0 and 6 ka.Global Ecology and Biogeography, 12, 103-118. |
[16] | Gao YZ, Han XG, Wang SP (2004). The effects of grazing on grassland soils.Acta Ecologica Sinica, 24, 790-797.(in Chinese with English abstract)[高英志, 韩兴国, 汪诗平 (2004). 放牧对草原土壤的影响.生态学报,24, 790-797.] |
[17] | García-Palacios P, Maestre FT, Milla R (2013). Community- aggregated plant traits interact with soil nutrient heterogeneity to determine ecosystem functioning.Plant and Soil, 364, 119-129. |
[18] | Gong SH, Wen ZM, Shi Y (2011). The response of community-weighted mean plant functional traits to environmental gradients in Yanhe River catchment.Acta Ecologica Sinica, 31, 6088-6097.(in Chinese with English abstract)[龚时慧, 温仲明, 施宇 (2011). 延河流域植物群落功能性状对环境梯度的响应. 生态学报,31, 6088-6097.] |
[19] | Griffiths WM, Gordon IJ (2003). Sward structural resistance and biting effort in grazing ruminants.Animal Research, 52, 145-160. |
[20] | Jager MM, Richardson SJ, Bellingham PJ, Clearwater MJ, Laughlin DC (2015). Soil fertility induces coordinated responses of multiple independent functional traits.Journal of Ecology, 103, 374-385. |
[21] | Jiang Y, Bi XL, Huang JH, Bai YF (2010). Patterns and drivers of vegetation degradation in Xilin River Basin, Inner Mongolia, China.Chinese Journal of Plant Ecology, 34, 1132-1141.(in Chinese with English abstract)[姜晔, 毕晓丽, 黄建辉, 白永飞 (2010). 内蒙古锡林河流域植被退化的格局及驱动力分析. 植物生态学报,34, 1132-1141.] |
[22] | Kühner A, Kleyer M (2009). A parsimonious combination of functional traits predicting plant response to disturbance and soil fertility.Journal of Vegetation Science, 19, 681-692. |
[23] | LeBauer DS, Treseder KK (2008). Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed.Ecology, 89, 371-379. |
[24] | Li B (1997). The rangeland degradation in north China and its preventive strategy.Scientia Agricultura Sinica, 30, 2-10.(in Chinese with English abstract) [李博 (1997). 中国北方草地退化及其防治对策. 中国农业科学,30, 2-10.] |
[25] | Li QJ, Zhao ZR, Chen WX, Wang MJ, Ding ST, Wu JY (2015a). Changes in leaf traits of Quercus liaotungensis Koidz at different altitudes in Kongdong Mountain of Gansu Province. Journal of Lanzhou University (Natural Sciences), 51, 13-19, 30.(in Chinese with English abstract)[李琪佳, 赵振瑞, 陈稳兴, 王茂江, 丁素婷, 吴靖宇 (2015). 甘肃平凉崆峒山不同海拔梯度辽东栎叶特性变化. 兰州大学学报(自然科学版),51, 13-19, 30.] |
[26] | Li JW, Wang LX, Wang W, Liang CZ, Liu HM (2012). Characterization of degradation of wetland plant communities on floodplain in typical steppe region of Inner Mongolia Plateau, China.Chinese Journal of Plant Ecology, 36, 10-18.(in Chinese with English abstract)[李建玮, 王立新, 王炜, 梁存柱, 刘华民 (2012). 内蒙古高原典型草原区河漫滩湿地植物群落退化表征. 植物生态学报,36, 10-18.] |
[27] | Li XL, Liu ZY, Hou XY, Wu XH, Wang Z, Hu J, Wu ZN (2015). Plant functional traits and their trade-offs in response to grazing: A review.Chinese Bulletin of Botany, 50, 159-170.(in Chinese with English abstract)[李西良, 刘志英, 侯向阳, 吴新宏, 王珍, 胡静, 武自念 (2015). 放牧对草原植物功能性状及其权衡关系的调控. 植物学报,50, 159-170.] |
[28] | Liu XJ, Swenson NG, Wright SJ, Zhang LW, Song K, Jun DY, Zhang JL, Cheng MX, Ren HB, Ma KP (2012). Covariation in plant functional traits and soil fertility within two species-rich forests.PLOS ONE, 7(4), e34767. doi: 10. 1371/journal.pone.0034767. |
[29] | Liu ZL, Wang W, Liang CZ, Hao DY (1998). The regressive succession pattern and its diagnostic of Inner Mongolia Steppe in sustained and superstrong grazing.Acta Agrestia Sinica, 6, 244-251.(in Chinese with English abstract)[刘钟龄, 王炜, 梁存柱, 郝敦元 (1998). 内蒙古草原植被在持续牧压下退化演替的模式与诊断. 草地学报,6, 244-251.] |
[30] | Mao W, Li YL, Cui D, Zhao XY, Zhang TH, Li YQ (2014). Biomass allocation response of species with different life history strategies to nitrogen and water addition in sandy grassland in Inner Mongolia.Chinese Journal of Plant Ecology, 38, 125-133.(in Chinese with English abstract)[毛伟, 李玉霖, 崔夺, 赵学勇, 张铜会, 李玉强 (2014). 沙质草地不同生活史植物的生物量分配对氮素和水分添加的响应. 植物生态学报,38, 125-133.] |
[31] | McIntyre S, Lavorel S, Landsberg J, Forbes T (1999). Disturbance response in vegetation-towards a global perspective on functional traits.Journal of Vegetation Science, 10, 621-630. |
[32] | Meng TT, Ni J, Wang GH (2007). Plant functional traits, environments and ecosystem functioning. Journal of Plant Ecology (Chinese Version), 31, 150-165.(in Chinese with English abstract)[孟婷婷, 倪健, 王国宏 (2007). 植物功能性状与环境和生态系统功能. 植物生态学报,31, 150-165.] |
[33] | Nanjing Agricultural University (1998). Soil Agricultural Chemistry Analysis. 2nd edn. Agriculture Press, Beijing.(in Chinese)[南京农业大学 (1998).土壤农化分析. 第二版. 农业出版社, 北京.] |
[34] | Niu DC, Dong XY, Fu H (2011). Seasonal dynamics of carbon, nitrogen and phosphorus stoichiometry in Stipa bungeana.Pratacultural Science, 28, 915-920.(in Chinese with English abstract)[牛得草, 董晓玉, 傅华 (2011). 长芒草不同季节碳氮磷生态化学计量特征. 草业科学,28, 915-920.] |
[35] | Niu HY, Wang ZF, Lian JY, Ye WH, Shen H (2011). New progress in community assembly: Community phylogenetic structure combining evolution and ecology.Biodiversity Science, 19, 275-283.(in Chinese with English abstract)[牛红玉, 王峥峰, 练琚愉, 叶万辉, 沈浩 (2011). 群落构建研究的新进展: 进化和生态相结合的群落谱系结构研究. 生物多样性,19, 275-283.] |
[36] | Pan QM, Bai YF, Han XG, Yang JC (2005). Effects of nitrogen additions on a Leymus chinensis population in typical steppe of Inner Mongolia.Acta Phytoecologica Sinica, 29, 311-317.(in Chinese with English abstract)[潘庆民, 白永飞, 韩兴国, 杨景成 (2005). 氮素对内蒙古典型草原羊草种群的影响. 植物生态学报,29, 311-317.] |
[37] | Ren HY, Zheng SX, Bei YF (2009). Effects of grazing on biomass allocation of grassland communities in Xilin River basin, Inner Mongolia.Chinese Journal of Plant Ecology, 33, 1065-1074.(in Chinese with English abstract)[任海彦, 郑淑霞, 白永飞 (2009). 放牧对内蒙古锡林河流域草地群落植物茎叶生物量资源分配的影响. 植物生态学报,33, 1065-1074.] |
[38] | Roderick ML, Berry SL, Noble IR (2000). A framework for understanding the relationship between environment and vegetation based on the surface area to volume ratio of leaves.Functional Ecology, 423-437. |
[39] | Sarula, Hou XY, Li JX, Ding Y, Wu XH, Yun XJ (2013). Organic carbon storage in vegetation-soil systems of typical grazing degraded steppes.Acta Prataculturae Sinica, 22, 18-26.(in Chinese with English abstract)[萨茹拉, 侯向阳, 李金祥, 丁勇, 吴新宏, 运向军 (2013). 不同放牧退化程度典型草原植被-土壤系统的有机碳储量. 草业学报,22, 18-26.] |
[40] | Schellberg J, Pontes LDS (2012). Plant functional traits and nutrient gradients on grassland.Grass and Forage Science, 67, 305-319. |
[41] | Song LN, Zhu JJ, Li MC, Yan T, Zhang JX (2012). Needles stable carbon isotope composition and traits of Pinus sylvestris var. mongolica in sparse wood grassland in south edge of Keerqin Sandy Land under the conditions of different precipitation.Chinese Journal of Applied Ecology, 23, 1435-1440.(in Chinese with English abstract)[宋立宁, 朱教君, 李明财, 闫涛, 张金鑫 (2012). 不同降水条件下科尔沁沙地南缘疏林草地樟子松针叶δ13C和叶性状特征. 应用生态学报,23, 1435-1440.] |
[42] | Song YT, Zhou DW, Wang P, Li Q (2013). Leaf traits of 66 herbaceous species in Songnen grassland in Northeast China.Acta Ecologica Sinica, 33, 79-88.(in Chinese with English abstract)[宋彦涛, 周道玮, 王平, 李强 (2013). 松嫩草地66种草本植物叶片性状特征. 生态学报,33, 79-88.] |
[43] | Thompson K, Parkinson JA, Band SR, Spencer RE (1997). A comparative study of leaf nutrient concentrations in a regional herbaceous flora.New Phytologist, 136, 679-689. |
[44] | Violle C, Navas ML, Vile D, Kazakou E, Fortunel C, Hummel I, Garnier E (2007). Let the concept of trait be functional!Oikos, 116, 882-892. |
[45] | Wan HW, Yang Y, Bai SQ, Xu YH, Bai YF (2008). Variations in leaf functional traits of six species along a nitrogen addition gradient in Leymus Chinensis steppe in Inner Mongolia.Journal of Plant Ecology (Chinese Version), 32, 611-621.(in Chinese with English abstract)[万宏伟, 杨阳, 白世勤, 徐云虎, 白永飞 (2008). 羊草草原群落6种植物叶片功能特性对氮素添加的响应. 植物生态学报,32, 611-621.] |
[46] | Wang MJ, Zhao ML, Cui GW, Han GD (2010). Effect of grazing intensities on vegetation and soil in meadow steppe. Acta Agrestia Sinica, 18, 758-762.(in Chinese with English abstract)[王明君, 赵萌莉, 崔国文, 韩国栋 (2010). 放牧对草甸草原植被和土壤的影响. 草地学报,18, 758-762.] |
[47] | Wang W, Liang CZ, Liu ZL, Hao DY (2000). Analysis of the plant individual behaviour during the degradation and restoring succession in steppe community.Acta Phytoecologica Sinica, 24, 268-274.(in Chinese with English abstract)[王炜, 梁存柱, 刘钟龄, 郝敦元 (2000). 草原群落退化与恢复演替中的植物个体行为分析. 植物生态学报,24, 268-274.] |
[48] | Wei LY, Shangguan ZP (2008). Relation between specific leaf areas and leaf nutrient contents of plants growing on slopelands with different farming-abandoned periods in the Loess Plateau.Acta Ecologica Sinica, 28, 2526-2535.(in Chinese with English abstract)[韦兰英, 上官周平 (2008). 黄土高原不同退耕年限坡地植物比叶面积与养分含量的关系. 生态学报,28, 2526-2535.] |
[49] | Westoby M, Falster DS, Moles AT, Vesk PA, Wright IJ (2002). Plant ecological strategies: Some leading dimensions of variation between species.Annual Review of Ecology and Systematics, 33, 125-159. |
[50] | Wilson PJ, Thompson K, Hodgson JG (1999). Specific leaf area and leaf dry matter content as alternative predictors of plant strategies.New Phytologist, 143, 155-162. |
[51] | Wu X, Wang LX, Liu HM, Liang CZ, Wang W, Liu ZL (2011). Vigor and resilience of plant communities of typical steppe in Inner Mongolia Plateau.Journal of Arid Land Resources and Environment, 25, 47-51.(in Chinese with English abstract)[吴璇, 王立新, 刘华民, 梁存柱, 王炜, 刘钟龄 (2011). 内蒙古高原典型草原生态系统健康评价和退化分级研究. 干旱区资源与环境,25, 47-51.] |
[52] | Xi XQ, Zhao YJ, Liu YG, Wang X, Gao XM (2011). Variation and correlation of plant functional traits in karst area of central Guizhou Province, China.Chinese Journal of Plant Ecology, 35, 1000-1008.(in Chinese with English abstract)[习新强, 赵玉杰, 刘玉国, 王欣, 高贤明 (2011). 黔中喀斯特山区植物功能性状的变异与关联. 植物生态学报,35, 1000-1008.] |
[53] | Yang DM, Zhang JJ, Zhou D, Qian MJ, Zheng Y, Jin LM (2012). Leaf and twig functional traits of woody plants and their relationships with environmental change: A review.Chinese Journal of Ecology, 31, 702-713.(in Chinese with English abstract)[杨冬梅, 章佳佳, 周丹, 钱敏杰, 郑瑶, 金灵妙 (2012). 木本植物茎叶功能性状及其关系随环境变化的研究进展. 生态学杂志,31, 702-713.] |
[54] | Yang H, Luo YC (2015). Responses of the functional traits in Cleistogenes squarrosa to nitrogen addition and drought.Chinese Journal of Plant Ecology, 39, 32-42.(in Chinese with English abstract) [杨浩, 罗亚晨 (2015). 糙隐子草功能性状对氮添加和干旱的响应. 植物生态学报,39, 32-42.] |
[55] | Yang HM, Wang DM (2011). Advances in the study on ecological stoichiometry in grass-environment system and its response to environmental factors.Acta Prataculturae Sinica, 20, 244-252.(in Chinese with English abstract)[杨惠敏, 王冬梅 (2011), 草-环境系统植物碳氮磷生态化学计量学及其对环境因子的响应研究进展. 草业学报,20, 244-252.] |
[56] | Yin XR, Liang CZ, Wang LX, Wang W, Liu ZL, Liu XP (2010). Ecological stoichiometry of plant nutrients at different restoration succession stages in typical steppe of Inner Mongolia, China.Chinese Journal of Plant Ecology, 34, 39-47.(in Chinese with English abstract)[银晓瑞, 梁存柱, 王立新, 王炜, 刘钟龄, 刘小平 (2010). 内蒙古典型草原不同恢复演替阶段植物养分化学计量学. 植物生态学报,34, 39-47.] |
[57] | Zhan SX, Zheng SX, Wang Y, Bai YF (2016). Response and correlation of above- and below-ground functional traits of Leymus chinensis to nitrogen and phosphorus additions.Chinese Journal of Plant Ecology, 40, 36-47.(in Chinese with English abstract) [詹书侠, 郑淑霞, 王扬, 白永飞 (2016). 羊草的地上-地下功能性状对氮磷施肥梯度的响应及关联. 植物生态学报,40, 36-47.] |
[58] | Zhang CX, Nan ZB (2010). Research progress on effects of grazing on physical and chemical characteristics of grassland soil.Acta Prataculturae Sinica, 19, 204-211.(in Chinese with English abstract)[张成霞, 南志标 (2010). 放牧对草地土壤理化特性影响的研究进展. 草业学报,19, 204-211.] |
[1] | 付粱晨, 丁宗巨, 唐茂, 曾辉, 朱彪. 北京东灵山白桦和蒙古栎的根际效应及其季节动态[J]. 植物生态学报, 2024, 48(4): 508-522. |
[2] | 汤璐瑶, 方菁, 钱海蓉, 张博纳, 上官方京, 叶琳峰, 李姝雯, 童金莲, 谢江波. 落羽杉和池杉功能性状随高度的变异与协同[J]. 植物生态学报, 2023, 47(11): 1561-1575. |
[3] | 李万年, 罗益敏, 黄则月, 杨梅. 望天树人工幼林混交对土壤微生物功能多样性与碳源利用的影响[J]. 植物生态学报, 2022, 46(9): 1109-1124. |
[4] | 孙彩丽, 仇模升, 黄朝相, 王艺伟. 黔西南石漠化过程中土壤胞外酶活性及其化学计量变化特征[J]. 植物生态学报, 2022, 46(7): 834-845. |
[5] | 朱玉荷, 肖虹, 王冰, 吴颖, 白永飞, 陈迪马. 蒙古高原草地不同深度土壤碳氮磷化学计量特征对气候因子的响应[J]. 植物生态学报, 2022, 46(3): 340-349. |
[6] | 张义, 程杰, 苏纪帅, 程积民. 长期封育演替下典型草原植物群落生产力与多样性关系[J]. 植物生态学报, 2022, 46(2): 176-187. |
[7] | 祁鲁玉, 陈浩楠, 库丽洪·赛热别力, 籍天宇, 孟高德, 秦慧颖, 王宁, 宋逸欣, 刘春雨, 杜宁, 郭卫华. 基于植物功能性状的暖温带5种灌木幼苗生长策略[J]. 植物生态学报, 2022, 46(11): 1388-1399. |
[8] | 罗源林, 马文红, 张芯毓, 苏闯, 史亚博, 赵利清. 内蒙古锦鸡儿属植物地理替代分布种的功能性状沿环境梯度的变化[J]. 植物生态学报, 2022, 46(11): 1364-1375. |
[9] | 牟文博, 徐当会, 王谢军, 敬文茂, 张瑞英, 顾玉玲, 姚广前, 祁世华, 张龙, 苟亚飞. 排露沟流域不同海拔灌丛土壤碳氮磷化学计量特征[J]. 植物生态学报, 2022, 46(11): 1422-1431. |
[10] | 严正兵, 刘树文, 吴锦. 高光谱遥感技术在植物功能性状监测中的应用与展望[J]. 植物生态学报, 2022, 46(10): 1151-1166. |
[11] | 毛瑾, 朵莹, 邓军, 程杰, 程积民, 彭长辉, 郭梁. 冬季增温和减雪对黄土高原典型草原土壤养分和细菌群落组成的影响[J]. 植物生态学报, 2021, 45(8): 891-902. |
[12] | 张景慧, 王铮, 黄永梅, 陈慧颖, 李智勇, 梁存柱. 草地利用方式对温性典型草原优势种植物功能性状的影响[J]. 植物生态学报, 2021, 45(8): 818-833. |
[13] | 朱蔚娜, 张国龙, 张璞进, 张迁迁, 任瑾涛, 徐步云, 清华. 大针茅草原6种主要植物叶凋落物和根系分解特征与功能性状的关系[J]. 植物生态学报, 2021, 45(6): 606-616. |
[14] | 王钊颖, 陈晓萍, 程英, 王满堂, 钟全林, 李曼, 程栋梁. 武夷山49种木本植物叶片与细根经济谱[J]. 植物生态学报, 2021, 45(3): 242-252. |
[15] | 石娇星, 许洺山, 方晓晨, 郑丽婷, 张宇, 鲍迪峰, 杨安娜, 阎恩荣. 中国东部海岛黑松群落功能多样性的纬度变异及其影响因素[J]. 植物生态学报, 2021, 45(2): 163-173. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19