植物生态学报 ›› 2022, Vol. 46 ›› Issue (10): 1151-1166.DOI: 10.17521/cjpe.2022.0223

所属专题: 生态学研究的方法和技术 生态遥感及应用 植物功能性状

• 综述 • 上一篇    下一篇

高光谱遥感技术在植物功能性状监测中的应用与展望

严正兵, 刘树文, 吴锦*()   

  1. 香港大学生物科学学院, 香港
  • 收稿日期:2022-06-01 接受日期:2022-09-05 出版日期:2022-10-20 发布日期:2022-09-28
  • 通讯作者: * 吴锦(jinwu@hku.hk)
  • 基金资助:
    国家自然科学基金(31901086);国家自然科学基金(31922090)

Hyperspectral remote sensing of plant functional traits: monitoring techniques and future advances

YAN Zheng-Bing, LIU Shu-Wen, WU Jin*()   

  1. School of Biological Sciences, The University of Hong Kong, Hong Kong, China
  • Received:2022-06-01 Accepted:2022-09-05 Online:2022-10-20 Published:2022-09-28
  • Contact: * WU Jin(jinwu@hku.hk)
  • Supported by:
    National Natural Science Foundation of China(31901086);National Natural Science Foundation of China(31922090)

摘要:

植物功能性状作为指示植物对环境适应和进化的可量度特征, 其变异格局和驱动机制是植物生态学和地球系统建模的重要研究内容。传统野外测定方法费时费力费钱, 且通常关注生长季和优势物种, 使得功能性状的尺度延展和时空覆盖存在极大挑战。近些年兴起的多尺度高光谱遥感技术为解决当前植物功能性状数据时空覆盖度差的问题提供了新的思路和方法。该文在概述高光谱遥感技术监测植物功能性状的基本原理和发展简史的基础上, 详细介绍了当前光谱-性状关系的主要建模方法, 即经验或半经验方法、物理模型反演方法, 其中以经验统计模型方法中的偏最小二乘回归使用最为广泛。进一步结合实例, 重点讨论了高光谱遥感技术在叶片、群落和景观尺度监测植物功能性状的应用及存在的主要问题。最后, 为促进高光谱技术在植物功能性状及其多样性监测方面的研究, 提出以下4个未来应该重点关注的方向: 1)检验光谱-性状模型的普适性, 并解析其背后的调控机理; 2)发展光谱-性状关系尺度延展的方法体系; 3)解析植物功能性状及其多样性的时空变异和调控机制; 4)探究环境-植物功能多样性-生物多样性-生态系统功能间的关联。

关键词: 高光谱遥感, 植物功能性状, 时空普适性, 尺度延展, 光谱-性状模型

Abstract:

Plant functional traits are the measurable characteristics that indicates plant adaptation to the environment, and understanding the patterns of certain characteristics, and their drivers is an essential component of plant ecology and earth system modeling research. Traditional field-based approaches for characterizing plant functional traits are time-consuming, labor-intensive and expensive, and usually focus on the traits of peak growing season and dominant species, making the scaling extension and spatiotemporal coverage of plant functional traits a great challenge. In contrast, newly emerging multi-scale hyperspectral remote sensing techniques potentially provide new avenues to easily identify and characterize functional traits. Here we first overview the principles and brief history of hyperspectral remote sensing technology for plant functional traits monitoring. Then, we detailed the principal methods for modelling the spectral-trait relationships, including empirical and semi-empirical statistical methods and inversion methods relying on physical-based modelling, among which the statistical partial least squares regression is widely used. We then used case studies to demonstrate the application while illustrating the remaining problems of plant functional traits monitoring using the hyperspectral remote sensing techniques respectively at leaf, community and landscape scales. Finally, we highlight four important future directions to advance hyperspectral remote sensing of plant functional traits, including: 1) exploring the generalizability and underlying mechanisms of spectral-trait modelling; 2) developing novel, transparent methodology that scales the spectral-trait relationships from leaf, canopy to satellite levels; 3) elucidating the pattern and drivers of remotely sensed plant functional traits and diversity across various spatiotemporal scales; and 4) investigating the linkage among environment, plant functional diversity, biodiversity and ecosystem functioning.

Key words: hyperspectral remote sensing, plant functional trait, spatiotemporal generalizability, scaling extension, spectral-trait modelling